用户名: 密码: 验证码:
水稻低温、低氧发芽力的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究鉴定了不同水稻品种种子的低溫、低氧发芽力,并检测了种子低温萌发过程中内源激素GA和ABA含量、淀粉酶类型的变化;利用RIL群体和分子标记技术检测了种子低温、低氧发芽力QTL;同时以USSR5/N22 F_2为作图群体,构建了包含114个SSR标记的连锁图谱,并利用该图谱对种子低温、低氧发芽力进行了QTL分析。结果如下:
     1.水稻品种资源低温、低氧发芽力的鉴定
     本研究鉴定了521份水稻品种资源的低温、低氧发芽力,结果表明低温、低氧发芽力在籼、粳稻品种间差异极显著。籼稻的低温发芽力高于粳稻品种,而粳稻品种的低氧发芽力高于籼稻。
     水稻种子低温、低氧发芽力都存在地域性差异.部分云南品种的低氧发芽力强,华南品种的低温发芽力高。
     低温、低氧发芽力的相关系数在0.05水平上不显著,在0.1水平上显著,说明两者之间相关性较小。
     2.水稻种子低温萌发生理机制的初步研究
     低温萌发时,种子一直保持较高的ABA水平,与低溫发芽力强的品种USSR5相比,低温发芽力弱的品种N22对ABA敏感度高。外源ABA、GA处理结果也说明了这一点。
     淀粉酶电泳结果说明温度没有影响淀粉酶类型,只是使其表达量减小,且表达延迟。电泳图谱中淀粉酶带3的变化与种子的萌发密切相关。
     3.水稻低温、低氧发芽力的QTL定位
     对Kinmaze/DV85 RIL群体进行低温、低氧发芽力QTL分析。在第2、6、7、11、12染色体上的X67、X386、R1440、G1465、X148等5个标记处分别检测到5个低温发芽力QTL,贡献率在8.8%-27.1%之间。在第3、5、7染色体上检测到两对互作位点。
     在第1、2、5、7染色体上检测到5个低氧发芽力QTL,第5染色体上分布有两个低氧发芽力QTL,分别位于G260、X105标记附近。5个QTLs的贡献率在
    
    硕士学位论文水稻低温、低氧发芽力的QTL定位
    12.05%一19.56%之间。所检测到的3对互作位点分别位于第2、3、5、11染色体上。
    4.SSR连锁图谱的构建及水稻低温、低氧发芽力的QTL定位
     本研究利用“USSRS闪22”的F:为作图群体,构建了一个包含114个分子标记,
    覆盖基因组总长度为2115.4cM的SSR遗传连锁图。标记间平均距离为18.56cM。
     对逐日检测的F:群体的低温发芽率进行QTL分析,在12个染色体区域检测到低
    温发芽力QTL。低温萌发早期:7一9天,位于第7、8、10、12染色体上的QTL起到
    了重要作用,其贡献率在7.1%一70.2%之间。位于第3、4、5、9、n染色体上的QTL
    是低温萌发过程中稳定表达的QTL。
     对F:群体在30℃、0.0035889/lo鲍水的氧浓度下黑暗萌发5天的芽长进行低氧发
    芽力QTL分析,共检测到4个低氧发芽力QTLs,分别位于第3、5、11染色体上。
    LOD值为2.78一4.89。贡献率在6.70%一14.50%之间。
     不同群体中控制种子低温、低氧发芽力的QTL大多不同,但主效QTL的遗传是稳
    定的。在第H染色体上存在控制种子低温发芽力主效QTL,在第3、5染色体上存在
    控制种子低氧发芽力主效QTL。对种子低温、低氧发芽力QTL定位结果进行比较分析,
    两直播性状相关,但不密切,与表型鉴定结果同。
LTG (low temperature germinability) and AG (anoxia germinability) in 521 rice varieties were evaluated. The mechanism of low temperature germination was discussed about content of endogenous ABA and GA, and the type of amylase during germination at low temperature. Mapping of quantitative trait loci (QTLs) controlling LTG and AG had been carried out in a RIL population using molecular markers. A linkage map including 114 SSR markers was constructed using USSR5/N22 F2 as a mapping population, and QTLs for LTG and AG were identified. The results were as follows:
    1. The evaluation of LTG and AG in rice varieties
    In this study, seed LTG and AG in 521 varieties were detected. The result showed there was significant difference in LTG and AG between japonica and indica. LTG in indica cultivars was higher than that in japonica. While AG in japonica cultivars was stronger than that in indica.
    Regional difference existed in LTG and AG in rice varieties. Some varieties from Yunnan had stronger AG. LTG of Varieties from Southern China was stronger than that from other regions.
    The correlate coefficient between LTG and AG was significant at 0.1 level, which indicate correlation degree of two traits was low.
    2. The physiological mechanism of low temperature germination
    Germinating at low temperature, the level of ABA content in rice seeds kept high. Comparing with strong LTG variety, USSR5, poor LTG variety, N22 was more sensitive to ABA. Moreover, the result of exogenous ABA treatment also supports this conclusion.
    The results of amylase electrophoresis indicated that the type of amylase have no variation in germinating seeds at low temperature, but its expression lowered and delayed.
    3. Identification of QTL controlling LTG and AG in rice
    
    
    
    81 Rl lines from Kinmaze/DV85 were analyzed genetically using 137markers. Five putative LTG QTLs, qLTG-2, qLTG-6, qLTG-7, qLTG-11 and qLTG-12 were detected on chromosome 2, 6, 7, 11 and 12, respectively. PVE ranged from 8.8% to 27.1%. Two pairs of epistatic QTLs were detected on chromosome 3, 5 and 7 with significant epistatic effects.
    Five putative QTLs for AG linking with XR2635, R418, G260, XI05, X3 79 , whose PVE ranged from 12.05% to 19.56% , were detected on chromosome 1 , 2, 5, 7. There were two QTLs for LTG on chromosome 5. Three pairs of epistatic QTLs were detected on chromosome 2, 3, 5 and 11 with significant epistatic effects.
    4. Construction of a SSR linkage map and QTL analysis of LTG and AG
    A linkage map including 114 SSR markers, which covered 2115.4cM of 12 rice chromosomes, was constructed using 189USSR5/N22 p2 plants as a mapping population. The average distance between two markers was 18.56cM. Using this map, QTLs controlling LTG and AG were identified.
    LTG was evaluated day by day were analyze genetically. 12QTLs controlling LTG were detected. QTLs for LTG on chromosome 7, 8, 10, 12 played an important role at early germinating stage. PVE ranged from 7.1% to 70.2%. QTLs on chromosome 3, 4, 5, 9, 11 were expressed stably during the whole germination stage.
    AG was evaluated at 30 C and 0.003588g/100g H2O for 5days. Four putative QTLs for AG on chromosome 3, 5 , 11, respectively, were identified, and the LOD value ranged from 2.78 to 4.89, and PVE ranged from 6.70% to 14.50%.
    QTLs for LTG and AG detected in different population always changed, but main QTL was stable. Main QTL for LTG existed on chromosome 11. Main QTL for AG was found on chromosome 3, 5. The result of phenotype evaluation and QTL mapping showed LTG correlated with AG at some extent.
引文
1.卡恩编,王沙生译,种子休眠和萌发的生理生化,农业出版社,1989,第五、六、十二、十五章
    2.Bewley J. D. 著,何泽英等译,种子萌发的生理生化(第二卷),东南大学出版社,1990,232-238
    3. Bewley J. D. Seed germination and dormancy, The Plant Cell, 1997, 9: 1055-1066
    4.余淑文、汤章城,植物生理与分子生物学,科学出版社,1998,449-480
    5.Leopold编,颜季琼等译,植物的生长和发育,科学出版社,1984,189-212
    6. Hwang Y. S., Thomas B.R., Rodriguez R.L.. Differential expression of rice α-Amylase genes during seedling development under anoxia, Plant Molecular Biology, 1999, 40: 911-920
    7. Hedden, P., Phillips, A. L.. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci., 2000, 5: 523-630
    8. Davies, P.J., et al.. Plant hormones: physiology, biochemistry, and molecular biology. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1995.
    9. Olszewski N., Sun T.P., Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell, 2002, suppl.: 61-80
    10. Yamaguchi S., et al. The GA2 locus of Arabidopsis thsliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology, 1998b, 116:1271-1278.
    11. Yamaguchi S., Kamiya Y.. Gibberellin biosynthesis:its regulation by endogenous and environment signals. Plant Cell Physiology, 2000, 41:251-257
    12. Thomas, S.G., et al.. Molecular cloning and functional expression of gibberellin deactivation. Proc. Natl. Acad. Sci. USA, 1999, 96:4698-4703.
    13. Elliott, et al.. Feedforward regulation of gibberellin deactivation in pea. J. Plant Growth Regul., 2001, 20: 87-94.
    14. Yamaguchi S., Kamiya Y., Sun T.P.. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. The Plant Cell, 2001, 28(4): 443-453
    15. Ritchie S M, Gliroy S. Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiology, 1998, 116: 765-776.
    16. Bethke P.C., et al. Hormone signaling in cereal aleurone. Journal of Experiment Botany, 1997, 48: 1337-1356.
    17. Hurtly A. K., Phillips A.L., gibberellin-regulated plant genes, Physiologia Plantarum, 1995, 95:310-317
    18. Debeaujon I., Koornneef M.. Gibberrllin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryomic abscisic acid, Plant Physiology, 2000, 122: 415-424
    
    
    19.简志英,陆嘉凌,蒋瑞君。温度对赤霉素诱导α-淀粉酶的影响(简报),植物生理学通讯,1989(5);44-46
    20. Frantz J. M., Bugbee B.. Anaerobic conditions improve gemination of a gibberrllic acid deficient rice, Crop Sci, 2002, 42: 651-654
    21. Loreti E., Yamaguchi T., Alpi A., Perata P.. Sugar modulation of alpha-amylase genes under anoxia. Ann Bot (Lond), 2003, 91(2): 143-148.
    22.杨洪强 接玉玲.高等植物脱落酸生物合成及其信号转导研究进展.华中农业大学学报,2001,20(1):92-98.
    23. Seo M., Koshiba T.. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci, 2002, 7(1): 41-48.
    24. Garciarrubio, et al.. Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta, 1997, 203: 182-187.
    25. Finkelstein R. R., Lynch T. J.. Abscisic acid inhibition of radical emergence but not seedling growth is suppressed by sugars. Plant Phsiolgy, April 2000, 122: 1179-1186.
    26. Toyomasu T., et al.. Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiology, 1998,118:1517-1523.
    27. Toyomasu T., et al.. Effects of exogenously applied gibberellin and red light on the endogenous levels of abscisic acid in photoblastic lettuce seeds. Plant Cell Physiology, 1994,35:127-129.
    28. Steber C., McCourt P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiology, 2001. 125: 763-769.
    29. Beaudoin N., Serizet C., Gosti F., Giraudat J.. Interactions between abscisic acid and ethylene signaling cascades, The Plant Cell, 2000,12(7):1103-1115
    30. Gulber F., Jacobsen J. V. Gibberellin-regulated expression of a Myb gene in barley aleurone cells for Myb transactivation of a high-plα-amylase gene promoter. The Plant Cell, 1995, 7: 1879-1891
    31. Gomez-Cadenas A. et al.. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA in relation to gibberellin signaling molecules. The Plant Cell, 2001, 13: 667-679.
    32. Gomez-Cadenase et al..An abscisic acid induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc. Natlk. Acad. Sci. USA, 1999, 96: 1767-1772.
    33. Shen Q., et al.. Dissection of abscisic acid signal transduction pathways in barley aleurone layers. Plant Molecular Biology,2001,47:437-448.
    34. Jacobsen J. V., Pearce D.W., Poole A.T., Pharis R.P., Mander L.N.. Abscisci acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiology Plant.
    
    2002, 115(3): 428-441.
    35. Yoshioka T., Endo T., Satoh S.. Restoration of seed germination at supraoptimal temperature by fluridone, an inhibitor of abscisic acid synthesis. Plant cell physiology, 1998, 39:307-312.
    36. Grappin P., Bouinot D., Sotta B., Miginiac E., Jullien M.. Control of seed dormancy in Nicotiana plumbaginifolia:post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta, 2000, 210:279-285.
    37. Downie B., Gurusinghe S., Dakal P., Thacker R.R., Snyder J.C., Nonogaki H., Yim K., Fukanaga K., Alvarado V., Bradford K.J. Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radical protrusion is prevented. Plant Physiology, 2003, 131(3): 1347-1359.
    38.钟国瑞,水稻耐冷性研究进展,江苏农业学报,1991,7(3):52-56
    39. Yamaguchi J., et al. Characterization of β-amylase and its deficiency in various rice cultivars. Theor Appl Genet, 1999, 98: 32-38.
    40. Mitsunaga S.I., Kawakami O., Numata Y., Yamaguchi J., Fukui K., Mitsui T.. Polymophism in rice amylases at an early stage of seed germination. Biosci Biotechnol Biochem, 2001, 65(3): 662-665.
    41. Nagato Y., Yoshimura A., Conveners. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice genetic Newsletters, 1998, 15: 13-75.
    42.傅家瑞。种子生理。科学出版社,1985,第二章:102-152
    43.郑光华等编。实用种子生理学。农业出版社,1990。
    44. Raymond P, et al. ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starch germinating seeds. Plant Physiology, 1985, 79: 879-884.
    45. Guglielminetti L., Perata P., Alpi A.. Effect of anoxia on carbohydrate metabolism in rice seedling. Plant Physiology, 1995,108:735-741.
    46. Pearce DME and Jackson MB. Comparison of growth response of barnyard grass (Echinochloa oryzoides) and rice(Oryza sativa) to submergence, ethylene, carbon dioxide, and oxygen shortage. A nnals of Botany, 1991,68:201-209.
    47. Mujer C.V., Rumpho M.E., Lin J.J., Kennedy R.A.. Constitutive and inducible aerobic and anaerobic stress proteins in the echinochloa complex and rice. Plant Physiology, 1993, 101(1): 217-226.
    48. Gibbs J., Morrell S., Valdez A., Setter T.L., Greenway H.. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J Exp Bot, 2000,51(345): 785-796.
    49. Fukao T., Kennedy R.A., Yamasue Y., Rumpho M.E.. Genetic and biochemical analysis of anaerobically-induced enzymes during seed germination of Echinochloa crusgalli varieties tolerant and intolerant of anoxia. J Exp Bot, 2003, 54(386): 1421-1429.
    
    
    50. Chen E, Bradford K.J.. Expression of an expansin is associated with endosperm weaking during tomato seed germination, Plant Physiology, 2000, 124: 1265-1274
    51. Alia, Hayashi H., Chen T.H.H., Murata N.. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell and Environment, 1998, 21: 232-239.
    52. Miura K., Araki H.. Low temperature teatmeat during the imbibition period for the second Dormancy in rice Seeds(Oryza sativa L.). Breeding Science, 1996, 46:235-239
    53. Miyoshi K., Sato T.. The effects of ethanol on the germination of seeds of japonica and indica rice(Oryza sativa L.) under anaerobic and aerobic conditions, Annals of Botany,1997a,79:391-395
    54. Miyoshi K., Sato T.. The effects of kinetin and gibberellin on the germination of seeds of japonica and indica rice((Oryza sativa L.) under anaerobic and aerobic conditions, Annals of Botany, 1997b, 80: 479-483
    55. Masuda Y., Kamisaka S., Hoson T.. Growth behaviour of rice coleoptiles, Journal of Plant Physiology, 1998, 152: 180-188
    56.金润洲,日本关于水稻耐冷性鉴定及其遗传的研究。水稻文摘,1990,9(3):1-5
    57. Wan J., Tamura K., Sakai M., Imbe T.. Lingkage analysis of low temperature germinability in rice(Oryza sativa L.). Breeding Sci, 1999,Suppl, 2 (122).(in Japanese)
    58. Sub J.E, Ahn S.N., Moon H.P., Sub H.S.. QTL analysis of low temperature germinability in a Korean weedy rice(Oryza sativa L.), Rice Research Newsletter
    59.滕胜,曾大力,钱前,国光泰史,黄大年,朱立煌。低温条件下水稻发芽力QTL的定位分析。科学通报,2001,46(13):1104-1108
    60. Miura K., Lin S.Y., Yano M., Nagamine T.. Mapping of quantitative trait loci controlling low temperature germinability in rice(Oryza sativa L.), Breeding Science,2001, 51:293-299
    61. Cui K.H., et al. Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet, 2002, 105: 745-753.
    62. Wan J., Nakazaki T., Kawaura K., Ikehashi H.. Identification of marker loci for seed dormancy in rice (Oryza sativa L.),Crop Sci. 1997,37:1759-1763.
    63.严长杰,李欣,程祝宽,于恒秀,顾铭洪,朱立煌。利用分子标记定位水稻芽期耐冷性基因.中国水稻科学,1999,13(3):134-138
    64.詹庆才,曾曙珍,熊伏星,齐腾浩二,加藤明。水稻苗期耐冷性QTLs的分子定位。湖南农业大学学报(自然科学版),2003,29(1):7-11
    65.钱前等.水稻籼粳交DH群体苗期的耐冷性QTLS分析.科学通报,1999,44(22):2402-2407
    66. Ye C.R., Kato A., Saito K., Dai L.Y., Yang Q.Z.. QTL analysis of cold tolerance at the booting stage in Yunnan rice variety Chongtui. Chinese J Rice Sci, 2001, 15(3):13-16.
    
    
    67. Andaya V.C., Mackill D.J.. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica×indica cross. Theor Appl Genet, 2003, 106: 1084-1090.
    68. Kearsey M.J., Farquhar A.G.L.. QTL analysis in plants: where are we now. Heredity, 1998, 80: 137-142.
    69.吴为人,唐定中,李维明。数量性状的遗传剖析和分子剖析。作物学报,2000,26(4):501-507。
    70. Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. Ⅵ. Int. Congr. Genet, 1932, 1: 356-366.
    71. Wright S. The genetic structure of population. Ann. Eugen, 1951, 15: 323-354.
    72. Allard RW. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgrardia, 1956, 24: 235-278
    73. Tanksley SD, Hewitt JD. Use of molecular markers in breeding for soluble solids in tomato: a re-examination. Theor Appl Gener, 1988, 75: 811-823.
    74. Doebley J., et al.. Teosinte branchedl and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141: 333-346.
    75. Lark KG, et al.. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditioned upon a specific allele at another. Proc Natl Acad Sci USA. 1995, 92: 4656-4660.
    76. Li Z.K., Pinson S.R.M., Park W.D., Paterson A.H., Stansel J.W.. Epistasis for three Grain Yield Components in rice (Oryza sativa I.)[J].Genetics, 1997a, 145: 453—465.
    77. Li ZK, et al.. Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice(Oryza sativa L.) population. Genetics, 1997b, 145: 1139-1148.
    78. Yu S.B, et al.. Importance of epitasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA., 1997, 94: 9226-9231.
    79. Li ZK. Molecular analysis of epistasis affecting complex traits. In: Paterson AH, editor. Molecular analysis of complex traits. Boca Rato, Fla.(USA): CRC Press, 2001: 119-130.
    80. Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches.[J]. Yheor Appl Genet, 1999, 99: 1255—1264.
    81. Kao CH, et al.. Multiple interval mapping for quantitative trait loci. Genetics, 1999,152:1203-1216.
    82. Yan J. Q., Zhu J., He C.X., Benmoussa M., Wu P., Molecular dissection of development behavior of plant height in rice(Oryza sativa L.). Genetics, 1998, 150: 1257-1265.
    83.廖春燕,吴平,易可可,胡彬,倪俊健.不同遗传背景及环境中水稻(Oryza sativa L.)穗长的QTLs和上位性分析。遗传学报,2000,27(7):599-607.
    84. Lin H.X., Yamamoto T., Sasaki T., Yano M.. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor. Appl. Gene., 2000, 101:1021-1028.
    
    
    85. Kato-Noguchi H. Ethanol sensitivity of rice and oat coleoptiles. Physiol Plant, 2002 May, 115(1): 119-124
    86. Mitsunori S. et al. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci, 2002, 7(1): 41-48.
    87.何忠效,张树政。电泳。科学出版社,1999,第8章.
    88.王树文,植物生理与分子生物学,科学出版社,1992,318-320
    89. Kaneko M., Itoh H., Tanaka M.U., Ashikari M., Matsuoka M.. The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiology, 2002, 128: 1264-1270
    90. Miura K., Araki H.. Effect of temperature during the ripening period on the induction of secondary dormancy in rice seeds(Oryza sativa L.). Breeding Sci., 1999,49:7-10
    91. Zeng Z.-B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    92. McCouch S R, Cho Y G, Yano M,et al. Report on QTL nomenclature. Rice Genet.Newslett, 1997,14: 11—13
    93. Lin S.Y., Sasaki T., Yano M.. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza Sativa L., using backcross inbred lines. Theor Appl Genet, 1998, 96: 997-1003
    94. Chrisopher D.R. Pathways to abscisic acid-regulated gene expression. New phytol, 2000, 148: 357-396.
    95. Ruth R. F., Srinivas S. L. Gampata et al.. Abscisic acid signaling in seeds and seedlings. The plant cell, 2002, supplement: 15-45.
    96. Dellaporta S.L, Wood T, Hicks TB. A plant DNA mini preparation: version Ⅱ. Plant Mot Bioi Rep, 1983, 1: 19-21
    97. Lander E., Green P., Abrahamson J., Barlow A., Daley M., Lincon S., Newburg L.. MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1987, 1:174-181
    98. Lincoln S., Daley M., Lander E.. Constructing genetic maps with MAPMAKER/EXR3.0. Whitehead institute technical report, 3rd edn.. Whitehead institute, Cambridge, Mass. 1992a
    99. Lincoln S., Daley M., Lander E.. Mapping genes controlling quantitative traits with MAPMAKER/OOTL 1.1. Whitehead institute technical report, 2nd edn., Whitehead institute, Cambridge, Mass. 1992b
    100. Allard RW. Future direction in plant population genetics, evolution and breeding. In: International Symposium for Population Genetics and Germplasm Resources in Crop Improvement. Suppl, 1988: 9-18.
    101.沈利爽,何平,徐云碧等.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12):1115-1122
    
    
    102. Harushima Y, Kurata N, Yano M, et al. Detection of segregation distortion in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet, 1996,92:145-150
    103. Lin S Y.,H lkehashi and S Yanagihara et al. Segregation distortion via male gametes in hybrid between indica and Japonica or wide-compatibility varieties of rice(Oryza sativa L).Theor Appl Genet, 1992,84:812-818
    104.陈静,籼粳杂种花粉不育基因的定位,南京农业大学硕士论文,2002.
    105.陈新建,刘国顺,陈占宽,郅玉宝,易明林,刘鸿先。乙烯生物合成途径及其相关基因工程的研究进展(综述)。热带亚热带植物学报,2002,10(1):83-98
    106.曹雅君.水稻种子休眠性的QTL定位.2002,硕士论文。
    107. Basten, C. J., B. S. Weir and Z.-B. Zeng. QTL Cartographer version 1.13: A reference manual and tutorial for QTL mapping. World Wide Web URL: Http://statgen.ncsu.edu/qtlcart/cartographer.html 1999
    108. Finkelstein R. R., Gampata S.S.L., Rock C.D.. Abscisic acid signaling in seeds and seedlings. The plant cell, 2002, supplement: 15-45.
    109. Fukuoka R.M., Nishimura M.. Introduction of low temperature germinability into high palatable cultimars 0frice,日本作物学会年纪事.1999,68(2):231-234
    110.沈同,王镜岩。生物化学,高等教育出版社,1991.p79。
    111. Susan R. McCouch, et al.,A high density rice genetic linkage map with 2240 markers using a single F2 population. Genetics, 2002,148:479-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700