用户名: 密码: 验证码:
黄萎病菌侵染过程中野生茄子托鲁巴姆的响应机制及病程相关基因的分离与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茄子黄萎病(Verticillium Wilt)俗称半边疯、黑心病,是由大丽轮枝菌(Verticillium dahliae Kleb)侵染引起的茄子重要病害之一,常常造成大幅度的减产。在已有相关经济作物抗病的理论研究和生产实践中,选育和种植抗病品种是控制病害最为经济有效的措施。但是目前茄子抗黄萎病的育种尚无突破性进展,究其原因,除了栽培品种中缺乏抗病材料外,还与茄子黄萎病的基础性研究不够深入有关。开展茄子抗黄萎病机制及其抗黄萎病相关基因的克隆研究,不仅能够为茄子抗黄萎病育种提供理论依据,而且可能为抗病育种提供抗病基因,具有十分重要的研究价值。
     本研究以野生茄子托鲁巴姆(Solanum torvum)和苏崎茄为主要材料,通过比较两种茄子在大丽轮枝菌(Verticillium dahliae Kleb)侵染过程中体内的生理生化指标变化,分析托鲁巴姆对黄萎病的防卫响应机制;同时运用cDNA-AFLP技术构建分析托鲁巴姆感染黄萎病前后的差异基因表达谱;并进一步结合RT-PCR和RACE技术,分离抗黄萎病相关的三个全长基因,对其进行诱导表达分析。研究结果如下:
     1.托鲁巴姆对黄萎病菌胁迫的响应机制。采用黄萎病菌侵染方法对托鲁巴姆的抗性进行了分析,发现:托鲁巴姆植株表现出很强的自我防御和自我修复能力。对托鲁巴姆体内一些相关的生理指标分析结果表明,(1)在侵染前,托鲁巴姆体内存在的活性氧清除系统,如:SOD、POD、CAT等酶的活性均高于苏崎茄;而侵染后,托鲁巴姆体内各种酶的活性快速增加,其幅度高于苏崎茄;MDA的变化却恰恰相反。这个结果提示,托鲁巴姆具有较高活性氧清除基础能力,而黄萎病菌胁迫进一步增强了托鲁巴姆体内活性氧清除系统,加快了某些防御物质(如木质素和抗菌物质绿原酸等)的形成,同时减缓或降低MDA等有害物质在植株体内的积累,最终把病菌侵染造成的危害降到最低。(2)侵染后各生理指标的响应时间表现出差异。托鲁巴姆中POD、PAL的活性和可溶性蛋白含量在侵染后的12 h内就迅速作出响应(POD增加、PAL和可溶性蛋白减少);而SOD、PPO、CAT的活性和MDA的含量则在处理后初始阶段(至少12 h)进行了一些调整,随后才进入持续性的增加或减少阶段。由此可见,托鲁巴姆对黄萎病病菌侵染的响应具有时序性,其体内POD酶、PAL酶和可溶性蛋白首先参与植物的防卫反应来应对黄萎病的胁迫,其它酶随后参与响应,它们的共同作用形成对黄萎病菌的有效防卫。
     2.黄萎病菌胁迫下托鲁巴姆植株根部的基因差异表达谱分析。(1)利用cDNA-AFLP技术分析黄萎病菌侵染前后S. torvum根部的基因差异表达,获得118条TDFs (transcript-derived fragments)。根据基因的表达特征,可将其分为4种类型:诱导表达、抑制表达、上调表达、以及瞬时表达。(2)在118条TDFs中,共有50条TDFs与已知功能基因同源。根据功能推测分为7类:①与代谢相关的;②与细胞自救和防御相关的;③与细胞周期和DNA加工相关的;④与细胞组分的生物学合成相关的;⑤与蛋白质合成相关的;⑥与结合功能蛋白有关的;⑦与转运相关的。这些结果表明,托鲁巴姆对黄萎病的防卫反应是一个多方面、多层次的复杂的生物学过程。
     3. Stcyp450、Strpll6和StDAHP基因的克隆。采用同源序列克隆和RACE的方法从托鲁巴姆中克隆了Stcyp450、Strpll6和StDAHP基因:(1) Stcyp450 cDNA序列含有一个1536bp的开放阅读框,编码一个511个氨基酸残基构成的蛋白质分子,分子量为58.08 kD,等电点为9.17。采用DNAMAN对Stcyp450和其他同源蛋白的氨基酸序列比对,结果表明:Stcyp450氨基酸序列与拟南芥、大豆等四个CYP蛋白的氨基酸序列有较高的一致性;表达分析显示:Stcyp450受黄萎病病菌的诱导上调表达,侵染后期恢复。(2) Strpll6 cDNA序列含有一个498 bp的开放阅读框,编码一个由165个氨基酸残基组成的蛋白,其分子量为42.16kDa,等电点为5.2。DNAMAN软件对Strpl16编码的蛋白和其他四个RPL16进行氨基酸序列比对,结果表明:Strpl16和来自野生马铃薯、番茄、莳萝、辣椒的同源蛋白在氨基酸水平有较高的一致性,在蛋白的第91氨基酸位点出有一个保守的核糖体蛋白L16的标志性特征域Ⅱ;进化分析表明:Strpl16与野生马铃薯、番茄、和辣椒三种茄科植物的对应同源蛋白的亲缘关系更近。半定量RT-PCR分析结果显示:Strpl16属于组成型表达,表达量随病菌侵染时间延长有所增加。(3) StDAHP cDNA含有一个1683 bp的开放阅读框,编码一个由560个氨基酸残基组成的蛋白,该蛋白分子量为62.53 kD,等电点为9.1。DNAMAN软件对StDAHP和其他同源蛋白的氨基酸序列比对,结果表明:该蛋白与来自马铃薯、番茄、烟草和水稻四种植物的同源蛋白在氨基酸水平有较高的一致性;且在靠近N-末端和C-末端的氨基酸都比较保守;采用半定量RT-PCR方法对StDAHP mRNA水平分析结果显示:StDAHP属于诱导表达,病菌侵染后期持续表达。
Eggplant Verticillium wilt is a disastrous plant vascular disease causing severe yield and quality losses in eggplant. Practice shows that resistant variety is the most effective way for V. wilt control. However, little progress has been made in eggplant breeding for resistance to V. wilt. The main reasons are the lack of full understanding about the mechanism of Verticillium resistance and the rare resistant materials. Therefore, study on the mechanisms of V. wilt resistance and cloning of resistance-related genes in Solanum torvum could provide theoretical and practical basis for eggplant breeding in resistance to V. wilt.
     In this thesis, firstly, the physiological mechanisms in response to V. wilt were analyzed by comparing the physiological parameters of Solanum torvum and Suqi eggplant infected with V. dahliae, then the differentially expressed genes were identified using cDNA-AFLP in S. torvum infected by V. dahliae, finally, three pathogenesis-related genes were isolated by homology cloning and RACE, and their expression were analyzed by RT-PCR. The main results are as follows:
     1. The mechanisms of S. torvum in response to V. dahliae infection. We analyzed the resistance of S. torvum to V. dahliae, and found that the S. torvum had strong self-defense and self-repair capacity. A number of related physiological parameters in vivo analysis showed that:(1) The active oxygen scavenging system (such as:SOD, POD, CAT enzymes activity) in S. torvum was higher than in Suqi during the treatment. MDA and soluble protein content in S. torvum decreased after treatment, but increased in the Suqi. The results suggested that infection might activate active oxygen scavenging system in vivo, then producing certain defensive substances (such as lignin and chlorogenic acid et al.) quickly, while reducing the accumulation of MDA in the body, and then caused to a minimum harm. (2) The response time of the physiological parameters in S. torvum in response to V. dahliae was different:Activity of POD, PAL and content of soluble protein in S. torvum change rapidly within 12h, and then, change in activity of SOD, PPO, CAT and MDA content. Eventually, S. torvum defense against V. wilt effectively by combinations of the enzymes.
     2. Anaylise of differential geneexpression profiling in roots of S. torvum after V. dahliae inoculation. Optimization of cDNA-AFLP technology system applications in S. torvum. (1) Analysis of differential gene expression profiling in S. torvum after V. dahliae inoculation, a total of 118 differential transcript-derived fragments (TDFs) were isolated, which were divided into four kinds based on expression pattern: induced expression, inhibited expression, inducible up-regulated expression, and transient expression. (2) Functional analysis on showed that 50 of these TDFs belonged to function-known genes which mainly involved in seven biolgical processes:Metabolism, Cell rescue, defense and virulence, Cell cycle and DNA processing, Biogenesis of cellular components, Protein synthesis, Proteins with binding functions, and transport et al. The results showed that response of S. torvum resistance to V. wilt was a multifaceted, multi-level complex physiological process.
     3. Cloning and Expression of Stcyp450、Strpll6 and StDAHP from S. torvum. (1) A gene named Stcyp450 (Solanum torvum cytochrome P450) was isolated from S. torvum, the full length of the cDNA contained an open reading frame of 1536 bp coding a protein of 511 amino acids, corresponding to a 58.08 kD polypeptide with an isoelectric point of 9.17. Alignment of the amino acid sequence of Stcyp450 and that of other homologues showed that Stcyp450 had a high identity with CY77A1、CY77A3 and CY77A4 from Arabidopsis and Glycine at amino acid level. Analysis of Stcyp450 mRNA level by semi-quantity RT-PCR showed that it was induced up-regulated by V. dahliae infection, and restorated at the late infection. (2) A gene named Strp116(Solanum torvum ribosomal protein L16) was isolated from S. torvum, the full length of the cDNA contains an open reading frame of 498 bp coding a protein of 165 amino acids, corresponding to a 42.16 kD polypeptide with an isoelectric point of 5.2. Alignment of the amino acid sequence of Strpl16 and that of other homologues showed that Strpl16 had a high identity with RPL16 from five kinds of plants at amino acid level. In addition, the conserved 12-amino acid Ribosomal protein L16 signature 2 (RMGsGKGspeyW) was observed in N-terminal end of this protein. The deduced amino acid sequence and clustering analysis revealed that Strp116 was colse to RPL16 in S. tuberosum, S. lycopersicum, and C. annuum. Analysis of Strpl16 mRNA level by semi-quantity RT-PCR showed that it belongs to constitutive expression, and its expression increased during infection. (3) A gene named StDAHP (Solanum torvum 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase) was isolated from S. torvum, the full length of the cDNA contains an open reading frame of 1683 bp coding a protein of 560 amino acids, corresponding to a 62.53 kD polypeptide with an isoelectric point of 9.1. Alignment of the amino acid sequence of StDAHP and that of other homologues showed that StDAHP had a high identity with DAHP from four kinds of plants at amino acid level (S. tuberosum, S. lycopersicum, N. tabacum, and O. sativa). In addition, the amino acids are more conservative near the N-terminal and C-terminal in StDAHP. Analysis of StDAHP mRNA level by semi-quantity RT-PCR showed that its expression was induced by V. dahliae infection.
引文
1.采俊香,王向华,邓树元.嫁接技术在防治茄子黄萎病上的应用[J],山西农业科学,2000,28(3):69-71.
    2.蔡应繁,谭永久.棉花黄萎病抗源新品种川棉243[J],作物品种资源,1999,(1):56-57.
    3.蔡应繁,叶鹏盛,江怀仲,何洪华,谭永久,裴炎,郭余龙,李名扬,候磊.抗真菌基因导入棉花创造高抗黄萎病材料研究[J],西南农业学报,2000,13(4):45-49.
    4.柴友荣.植物抗大丽轮枝菌受体类蛋白基因及甘寡糖结合型凝集素基因的克隆与表达[D],2003,西南农业大学.
    5.阐光锋,张广民,房保海.防御酶系与植物抗病性[J],山东农业科学,2001:102-105.
    6.陈金峰,王宫南,程素满.过氧化氢酶在植物胁迫响应中的功能研究进展[J],西北植物学报,2008,28(1):0188-0193.
    7.陈旭升,陈永首,黄骏麒.棉花黄萎病菌株vD8外泌蛋白的生化特性[J],江苏农业科学,1998,14(2):126-128.
    8.陈旭升,陈永萱,黄骏麒.棉花黄萎病菌致病性生理生化研究进展[J],棉花学报,2001,13(3):183-187.
    9.陈云芳.小麦抗叶锈基因Lr35成株抗性的差异表达研究[D],硕士学位论文,河北农业大学,2004.
    10.储昭庆,贾军伟,周向军,陈晓亚.大丽轮枝菌分泌糖蛋白的分离及其致萎性研究[J],植物学报,1999,41(9):972-976.
    11.邓先明.棉花黄萎病菌种的鉴定[J],西南农学院学报,1983,(1):90-94.
    12.董金皋,李树正.植物病原菌毒素研究进展[M],北京:科学技术出版社,1997.
    13.董品霜.茄砧木托鲁巴姆扦插育苗技术[J],北京农业,1999,1:14-15.
    14.窦道龙.棉花抗黄萎病基因工程研究和防卫反应相关基因的克隆[D],中国农业科学院博十研究论文,2002.
    15.杜志如,席江,万佳.水稻核糖体蛋白(OsRPL14)基因的克隆及表达分析[J],中国农学通报,2008,24(4):130-134.
    16.范雪涛,马丹炜,向莎,杨晓娇,钟良文,陈兰,何微.不同逆境条件下辣子草抗氧化酶系统的变化[J],应用与环境生物学报,2008,14(5):616-619.
    17.方孝东,黄薇,林栖凤cDNA RDA法分离和识别盐藻(Dunaliella salina)盐胁迫相关基因[J],中国生物化学与分子生物学报,2004,20(1):67-72.
    18.房保海,张广民,迟长凤.烟草低头黑病菌毒素对烟草丙二醛含量和某些防御酶的动态影响 [J],植物病理学报,2004,34(1):27-31.
    19.房卫平,王家典,孙玉堂,马惠平.我国棉花黄萎病研究进展与高抗黄萎病新种质豫2067[J],河南农业科学,1998,(1):7-9
    20.房卫平,祝水金,季道藩.陆地棉和海岛棉的黄萎病抗性遗传研究[J],棉花学报,2003,15(1):3-7.
    21.冯东听,李宝栋,马宾生,梁励,王英.嫁接对茄子黄萎病的抗性及某些生物学性状的影响[J],中国蔬菜,2000,(4):13-15.
    22.冯洁,陈其英.棉株体内几种生化物质与抗枯萎病之间关系的初步研究[J],植物病理学报,1991,21(4):291-297.
    23.冯洁.几种生化物质与抗枯萎病之间的关系的初步研究[J],植物病理学报,1991,21(4):291-296.
    24.冯壮志.番茄抗青枯病生理机制及分子标记的研究,浙江大学硕士论文,2005
    25.付凤玲,李晚忱.用cDNA-AFLP技术构建基因组转录图谱[J],分子植物育种,2003,1(4):523-529.
    26.甘莉,吕金殿,汪沛洪.棉花黄萎病菌分泌的糖蛋白毒素与其致病力的关系[J],中国农业科学,1995,28(2):58-65.
    27.甘莉.棉花品种中糖及单宁与抗黄萎病的关系[J],陕西农业科学,1989,(6):13-14
    28.顾本康,李经仪,陆迅.江苏棉花的Verticillium dahliae Kleb生物学和致病性的研究[J],江苏农业学报,1988,4(4):27-32.
    29.顾本康,马存.中国棉花抗病育种[M],南京:江苏科学技术出版社,1996:73-90.
    30.顾振芳,支月娥.茄子黄萎病菌的研究及其毒素的生物测定[J],上海农学院学报,1995,13(3):218-221.
    31.郭海军,黄国存.黄萎病对棉花叶片SOD、POD酶活性和光合特性的影响[J],中国农业科学,1995,28(6):40-46.
    32.韩建民,姜丽,王惠哲.玉米大斑病菌HT毒素对玉米叶片木质素含量的影响[J],沈阳农业大学学报,2000,31(5):456-459
    33.韩祥铭,刘英欣,宋宪亮.陆地棉黄萎病抗性的遗传分析[J],作物学报,2001,27(4):465-468.
    34.黄薇,方孝东,林栖凤.红树植物秋茄中液泡膜内在蛋白(TIP)全长cDNA的克隆和表达分析[J],生物工程学报,2003,2(19):148-152.
    35.黄雪玲,喻修道,屈志鹏.小麦成株抗条锈性抑制差减杂交文库构建及表达序列标签分析[J],农业生物技术学报,2007,15(6):976-981.
    36.吉贞芳,许爱玲,刘惠民.山西棉花黄萎病致病性研究[J],棉花学报,2004,16(5):280-285.
    37.贾十荣,郭三堆,安道昌.《转基因棉花》(第一版)[M],科学出版社,2001.
    38.简桂良,邹亚飞,马存.棉花黄萎病连年流行的原因及对策[J],中国棉花,2003,30(3):13-14.
    39.蒋玉蓉,房卫平,祝水金.陆地棉植株组织结构和生化代谢与黄萎病抗性的关系[J],作物学报.2005,31(3):337-341.
    40.井立军,常彩涛,孙振久,刘文明,王武台,蔡荣旗.茄子抗黄萎病遗传的初步研究[J],园艺学报,2000,27(4):293-294.
    41.景忆莲,刘耀斌,范万法.棉花黄萎病及其抗性育种研究进展[J],西北农业学报,1999,8(3):106-110.
    42.孔令甲.棉花黄萎病的发病程度与旬气温的关系[M],北京:中国农业科技出版社,1990,381-385.
    43.孔庆科,丁爱云,刘招舰.茄子感染黄萎病菌前后酶活性的动态反应和同工酶变化.山东农业大学学报(自然科学版)[J],2001,32(3):271-274.
    44.蓝海燕,陈正华.植物与病原真菌互作的分子生物学及其研究进展[J],生物工程进展,2000,20(4):16-22.
    45.李保聚,李风云.黄瓜不同抗性品种感染黑星病菌后过氧化物酶和多酚氧化酶的变化[J],中国农业科学,1998,31(1):86-88.
    46.李海莲,侯喜林,易金鑫,卞永东,陈根娣,赵玲.黄萎病菌粗毒素接种对感病和抗病茄子品种的一些酶类活性和光合特性的影响[J],植物生理学通讯,2005,41(4):453-456.
    47.李合生.植物生理生化实验原理和技术[M],北京:高等教育出版社,2000,164-165.
    48.李怀芳,刘凤权,郭小密.园艺植物病理学[M],北京:中国农业大学出版社,2001.
    49.李建超.抗枣疯病基因的差异表达研究[D],硕士学位论文,河北农业大学,2006.
    50.李妙,李俊明,裴宝琦.病害对不同抗枯类型棉花品种SOD和POD活性的影响[J],棉花学报,1995,7(1):52-55
    51.李兴红,马峙英,张桂寅.棉花黄萎病抗病机制的研究进展[J],河北农业大学学报,1995,18(4):118-123.
    52.李跃建,彭云良,高荣.条锈菌侵染后小麦体内蛋白质的变化[J],西南农业学报2003,16(4):1-3.
    53.李正理,殷锡圣,刘润进.棉花黄萎病研究进展[J],中国棉花,1996,23(5):2-6.
    54.李子银,张松劲,陈受宜.水稻盐胁迫应答基因的克隆、表达及染色体定位[J],中国科学:C辑,1999,29(6):561-570.
    55.林密,付余,卢淑雯,关钟燕,牛柏忠,张佩芝,柳景兰,张慧.黑龙江省茄子品种资源黄萎病抗性鉴定[J],北方园艺,2000,2:42-43.
    56.林密,张佩芝,关钟燕,卢淑雯,牛柏忠,张军民,曲红云,柳景兰,张慧.黑龙江省茄子黄萎病病原菌及其致病力的分化[J],中国蔬菜,2008,(7):27-28.
    57.刘军,袁自强,刘建东.应用抑制消减杂交分离水稻幼穗发育早期特异表达的基因[J],科学通报,2000,45(13):1392-1397.
    58.刘西钊,陈长泳.湖北省棉花黄萎病菌致病力测定[J],华中农业大学学报,1989,8(3):227-230.
    59.刘学堂,宋晓轩,郭金城.棉花黄萎病菌的研究及最新进展[J],棉花学报,1998,10(1):6-13.
    60.陆家云,佘长夫,鞠理红.江苏省棉花黄萎病菌(Verticillium dahliae)致病力的分化[J],棉花学报,南京农学院学报,1983,(1):36-43.
    61.陆家云,张树琴,陈吉棣等,我国棉花黄萎病菌“种”的鉴定[J],植物病理学报,1981,11(3):13-18.
    62.吕金殿,甘莉,郭西凤.棉花黄萎病菌毒素研究粗毒素与致病力[M],棉花病虫害综合防治及研究进展,北京:中国农业科技出版社,1990,354-357.
    63.吕金殿,甘莉,阎飞龙.棉花黄萎病菌毒素的纯化与特征研究[J],植物病理学报,1991,21(2):129-133.
    64.吕晓梅,许向阳,李景富.野生番茄抗叶霉病生理指标的研究,东北农业大学学报[J],2003,34(1):24-29
    65.马春红,范尉尉,董文琦,李运朝,崔四平,贾银锁.黄萎病菌毒素粗提液对棉花抗性酶的诱导[J],中国农业科学,2008,41(12):4314-4320.
    66.马存,简桂良,孙文姬.我国棉花抗黄萎病育种现状、问题及对策[J],国农业科学,1997,30(2):58-64.
    67.马奇祥,何家泌.不同抗性小麦品种感染根腐叶斑病前后生化特性的研究[J],河南农业大学学报,1992,26(1):38-43.
    68.马峙英,李兴红,孙济中,刘金兰.棉花黄萎病菌致病力分化与寄主抗病性遗传研究进展[J],棉花学报,1996,8(4):172-176.
    69.马峙英,王省芬,张桂寅.不同来源海岛棉品种黄萎病抗性遗传的研究[J],作物学报,2000,26(3):315-321.
    70.马峙英,王省芬,张桂寅.河北棉花黄萎病菌致病性的研究[J],棉花学报,1997,9(1):15-20.
    71.马峙英.河北棉花黄萎病菌分化和棉花抗性遗传研究[D],华中农业大学博士学位论文,1997.
    72.内田勉.番茄黄萎病的水田轮作防治[J],今月の农业,1981,25(5):32-35.
    73.牛立元,王鸿升,石明旺.小麦叶片SOD、POD活性与白粉病抗性关系[J],河南职业技术师范学院学报,2004,32(4):5-8.
    74.潘家驹,张天真,蒯本科,等.棉花黄萎病抗性遗传研究[J],南京农业大学学报,1994,17(3):8-18.
    75.潘家驹主编,《棉花育种学》[M],中国农业出版社,1998年8月第一版.
    76.齐俊生,马存,赵良忠,刘素恩.海岛棉品种抗黄萎病遗传规律初步研究[J],棉花学报,2000, 12(4):169-171.
    77.齐俊生,史雪岩,简桂良,等.棉花黄萎病菌落叶型菌系毒素纯化及抗血清制备[J],棉花学报,2004,16(6):343-346.
    78.钱清海.棉花黄萎病病原菌的寄主种类的研究[M],江苏省棉花黄萎病综合防治研究资料汇编,1996.
    79.桥水光司,史跃林.茄子黄萎病[J],中国蔬菜,1992(5):49-50.
    80.阙友雄,许莉萍,陈如凯.对甘蔗受黑穗病菌侵染后差异表达基因的分离与鉴定[J],作物学报2009,35(3):452-458.
    81.沈其益编.棉花病害一基础理论与防治[M],北京:科学出版社,1992.
    82.石磊岩,王莉梅.北方棉区棉花黄萎病菌RAPD分析[J],植物保护,1997,23(5):3-7.
    83.石磊岩,我国棉花黄萎病研究进展[J],棉花学报,1995,7(4):243-245.
    84.宋风鸣,郑重,葛秀春.过氧化物酶在棉花对枯萎病抗病性中的作用[J],浙江农业大学学报,1997,23(2):143-148.
    85.宋凤鸣,郑重,葛秀春.活性氧及膜脂过氧化在植物-病原物互作中的作用[J],植物生理学通讯,1996,32(5):377-385.
    86.宋晓轩,朱荷琴,郭金城.棉花黄萎病(Verticillium dahliae Kleb.)安阳菌系致病力分化研究[J],中国农业科学,1997,30(1):13-18.
    87.孙文姬,简桂良,马存,石磊岩.抗黄萎病棉花新种质BD18及其利用[J],作物品种资源,1999,(3):1-3.
    88.谭永久,李琼芳,蔡应繁,何洪华,刘碧玉.棉花抗黄萎病新抗源种质川737、川2802的抗性研究[J],棉花学报,1995,7(3):184-188.
    89.汤华,帅爱华,向福英.植物基因差异表达的研究方法及进展.海南大学学报自然科学版[J],2006,24(3):309-315.
    90.汤华,郑用琏,贺立源.玉米耐铝毒基因的分离[J],植物生理与分子生物学学报,2005,31(5):507-514.
    91.汤章城.现代植物生理学实验指南[M],北京:科学出版社,1999,305.
    92.田雪亮,刘鸣韬,杨家荣.黄瓜枯萎菌粗毒素对不同抗性黄瓜种子萌发及幼苗胁迫作用研究[J],2008,16(6):1495-1498.
    93.田增元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J],科学通报,2002,47(18):1412-1416.
    94.田振东,柳俊,谢从华.利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因[J],遗传学报,2003,30(7):597-605.
    95.万翔,刘富中,宋明.茄子AFLP技术体系的优化与建立[J],西南农业大学学报(自然科学版), 2005,27(2):226-229.
    96.万佐玺,朱晶,强胜.链格抱毒素对紫茎泽兰的致病机理[J],植物资源与环境学报,2001,10(3):47-50.
    97.汪红,王烨,袁红霞,房卫平,李红莲,王家典,酚类物质含量与棉花抗黄萎病性能关系研究[J],中国棉花,1999,26(10):16-17.
    98.王大平,曾明,朱钧.绿斑病藻寄生对夏橙叶片光合作用特性的影响[J],应用生态学报,2006,17(6):1141-1144.
    99.王红梅.棉花抗黄萎病遗传及分子标记研究[D],华中农大博士论文,2005.
    100.王就光,蔬菜病理学[M],北京:农业出版社,1989,54-57.
    101.王克荣,陆家云.大丽轮枝菌培养性状的变异[J],植物病理学报,1987,17(1):28-33.
    102.王莉.不同抗性的棉花品种抗黄萎病机理的初步研究[D],山西农业大学硕士学位论文,2005
    103.王立新.几种植物黄萎病病原菌的鉴定[J],南京农业大学学报,1987(1):36-39.
    104.王清和,吴询耻,潘大陆.山东省棉花黄萎病生理型鉴定,(二)生理型的划分[J],植物病理学报,1982,12(1):19-22.
    105.王艇,苏应娟,刘良式.植物低温诱导蛋白和低温诱导基因的表达调控[J],武汉植物学研究,1997,15(1):80-90.
    106.王学德,朱英国.水稻雄性不育与可育花药的mRNA差别显示和cDNA差别片段的分析[J],中国科学:c辑,1998,28(3):257-263.
    107.王雅平,刘伊强,小麦对赤霉病抗性不同品种的SOD活性[J],植物生理学报,1993,19(4):553-558.
    108.王振山,马峙英,曲健木.棉花枯黄萎病的抗性基因效应分析[J],河北农业大学学报,1989,12(2):21-25.
    109.魏惠军,杜胜利,张历.黄瓜枯萎病菌滤液对黄瓜毒性初步研究[J],天津农业科学,1997,3(1):5-6.
    110.魏建华,宋艳茹.森质素生物合成途径及调控的研究进展[J],2001,43(8):771-779
    111.吴蔼民,夏正俊,陆郝胜.长江下游棉花落叶型黄萎病发生消长与气象因子关系分析[J],棉花学报,1999,11(6):284-289.
    112.吴茂森,田峰,齐放军,何晨阳.水稻与白叶枯病菌互作的基因表达谱分析与差异性表达基因的识别[J],中国农业科学2007,40(2):277-282.
    113.吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达[J],作物学报,2001,27(3):339-342.
    114.吴献忠,李风玲,郑长英.山东棉花黄萎病菌致病力分化的研究[J],植物保护,1995,21(6):2-5.
    115.吴询耻,杨翠云,姜士理.山东省棉花黄萎病菌“种”的鉴定[J],山东农业大学学报(自然科学版),1984,105-112.
    116.吴元华,刘永中,文才艺.过氧化物酶活性与烟草对马铃薯病毒抗性关系的研究[J],中国烟草学报,2000,6(3):23-26.
    117.席芳,余挺,钱冬梅.茄子果实冷害生理的研究[J],园艺学报,1998,25(3):303-305.
    118.夏正俊.棉花品种抗黄萎病性与生化成分相关分析[J],中国农业科学,1991,24(1):92.
    119.肖蕴华,林柏青.茄子种质资源抗病性鉴定[J],中国蔬菜,1995(1):32-33.
    120.校百才.陆地棉抗枯、黄萎病性状配合力、遗传力的初步研究[J],作物学报,1985,(4):267-273.
    121.杨昶.棉花抗黄萎病基因分子标记定位研究[D],南农大博士论文,2007.
    122.杨家荣,商鸿生,李玥仁.苜蓿品种对黄萎病的抗病性鉴定[J],西北农业大学学报,1997,25(5):100-102.
    123.杨玲,郑炳松,毛传澡.利用cDNA-AFLP技术分析旱作促进水稻种子根伸长过程中的基因表达[J],植物生理与分子生物学学报,2003,29(1):65-70.
    124.姚技强,林柏青,肖蕴华.茄子黄萎病抗病材料的组织病理学研究[J],植物病理学报,1996,26(2):159-163.
    125.姚明镜.陆地棉抗黄萎病细胞系几个生理生化指标的测定[J],华中农业大学学报,1995,14(4):338-343.
    126.姚耀文.棉花黄萎病菌生理型鉴定的初步研究[J],植物保护学报,1998.
    127.叶鹏盛,曾华兰,李琼芳.茄子品种抗黄萎病性鉴定方法研究[J],西南农业学报,2006,(6):110.
    128.易金鑫,陈静华.茄子抗黄萎病育种研究进展[J],中国蔬菜,1998,(6):52-55.
    129.易图永,谢丙炎,张宝玺,高必达.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用[J],生物技术通报,2002,2:16-20.
    130.于玲,王莱,牛吉山,陈佩度.植物抗病相关基因分离策略[J],西北植物学报,2002,22(6):1494-1503.
    131.袁美丽.茄子黄萎病菌的生物学特性及其防治[J],植物保护学报,1984,11(4):223-232.
    132.袁章虎,曲建森.棉花抗萎蔫病机理研究进展[J],河北农业大学学报,1994,17(1):100-105.
    133.翟淑梅,孟辉,尹小燕,张举仁.玉米候选抗病相关基因片段的克隆[J],山东大学学报(理学版),2003,38(2):97-100.
    134.张俊华,崔崇士.不同抗性南瓜品种感染Phytophthoracapsici病菌后几种酶活性测定东北农业大学学报[J],2003,34(2):124-128
    135.张雷,杨志攀,刘一鸣cDNA文库的差异筛选与抑制性减数杂交相结合分离胡萝卜体细胞胚根发育相关基因[J],自然科学进展,2002,12(3):261-265.
    136.张立军,宋广周,白霜,魏颖,崔震海,谢甫绨.H202对不同大豆品种低温萌发及主要抗氧化酶活性的影响[J],大豆科学,2008,27(1):97-105.
    137.张天真,周兆华,阂留芳.棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术[J],作物学报,2000,26(6):673-680.
    138.张绪振.我国棉花黄萎病菌“种”的鉴定[J],植物病理学报,1981,11(3):13-18.
    139.张志刚,曾昭云,贺云新.长江流域棉区抗黄萎病育种的对策与建议[J],江西棉花,2008,30(12):8-10.
    140.章元寿,于建新,顾本康.用棉花黄萎病毒素快速检测棉花抗病性研究初报[J],南京农业大学学报,1991,14(1):107-108.
    141.章元寿,王建新,周明国.棉花黄萎病毒素对棉花作用机制的初步探讨[J],植物病理学报,1991,21(1):49-52.
    142.章元寿.大丽轮枝菌毒素的分离、纯化及生物测定[J],真菌学报,1989,8(2):140-147.
    143.章元寿.大丽轮枝菌毒素致萎活性成分的研究[J],真菌学报,1990,9(1):69-72.
    144.赵大中,种康,万莉.冬小麦春化作用相关cDNA克隆Vrc79的分子克隆[J],植物学报:英文版,1999,41(1):34-39.
    145.郑翠明.感染后大豆种皮超氧化物歧化酶、过氧化物酶和多酚氧化酶的变化[J],1999,32(1):35-391.
    146.中国科学院上海植物生理研究所.上海市植物生理学会编.现代植物生理学实验指南[M],北京:科学出版社,1999,317-323.
    147.种康,谭克辉,黄华梁.冬小麦春化作用相关基因的cDNA分子克隆研究[J],中国科学:B辑,1994,24(9):964-970.
    148.周宝利,姜荷,赵鑫.同砧森嫁接茄子抗黄萎病特性及其与根系分泌物关系[J],沈阳农业大学学报,2001,32(6):414-417.
    149.周宝利,林桂荣,高艳新,付亚文.嫁接茄抗黄萎病特性与苯丙烷类代谢的关系[J],沈阳农业大学学报,2000,31(1):57-50.
    150.周兆华,戴新,潘家驹.陆地棉品种对多个大丽轮枝菌菌株的抗性分析[J],棉花学报,2001,13(1):3-6.
    151.朱荷琴,宋晓轩,简桂良.棉花黄萎病致病力变异生理机制的初步研究[J],棉花学报,2004,16(5):275-279.
    152.朱荷琴,宋晓轩,简桂良.温度胁迫对棉花黄萎病菌致病力的影响[J],棉花学报,2003,15(1):33-36.
    153.朱荷琴,宋晓轩,孙君灵.棉花黄萎病安阳菌系致病类型变异研究[J],棉花学报,1999,11(6):212-217.
    154.朱维琴,吴良欢,陶勤南.氮营养对干旱逆境下水稻体内可溶性渗透调节物质的影响[J],浙江大学学报(农业与生命科学版),2003,29(5):479-454
    155.诸葛强,曾燕如,王义琴,黄敏仁,王明庥.植物抗病基因克隆得研究进展[J],南京林业大学学报(自然科学版),2002,26(5):81-86.
    156.祝水金,高燕会,房卫平.高抗黄萎病的低酚棉种质系中5629的选育与抗性机理研究[J],棉花学报,2004,16(5):307-312.
    157.邹芳斌,司龙亭,李新,王莉莉.黄瓜枯萎病抗性与防御系统几种酶活性关系的研究华北农学报[J],2008,23(3):181-184.
    158. Alonso E., de Carvalho Niebel F., Obregon P. Differential in vitro DNA binding activity to a element of the gnl deta-1,3-glucanase gene in hypersensitively reacting tobacco plants [J]. Plant Journal.1995,7(5):309-320.
    159. Alstrom S. Root-colonizing fungi from oilseed rape and their inhibition of Vertieillium dahliae [J]. Journal of PhytoPathology.2000,148(7/8):417-424.
    160. Bachem C. W., Van Derhoeven R. S., De Bruijn S. M. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP, analysis of gene expression during potato tuber development [J]. Plant Journal.1996,9:745-753.
    161. Bahaev F. V. Role of tannins in the resistance of varieties of cotton wilts [J]. Chemistry Abstract. 1964,64:1021-1028.
    162. Baolong Z., Tony H. H., Chen M., Paul H. Analysis of Late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for osmotin-like protein [J]. Planta.1996,198(1):70-75.
    163. Barrow J. R. A genetic analysis of vertieillium wilts tolerance in cotton [J]. Proceedings Beltwide Cotton Conferences.1970,68.
    164. Barrow J. R. Heterozygosity inheritance of vertieillium wilts tolerance in cotton [J]. PhytoPathol. 1970,60:301-303.
    165. Becklnan C. H. Recognition and response between host and parasite as determinants in resistance and disease development [M]. Verlag Berlin Heidelberg, Germany.1989,153-169.
    166. Beckman C. H. Phenolic-storing cells:Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants [J]? Physiological and Molecular Plant Pathology.2000,57:101-110.
    167. Bedi P. S., Presley J. T. Temperature effeets upon resistance and phytoalexin synthesis in cotton inoculated with Verticillium albo-atrum [J]. PhytoPathology.1969,59:1141-1146.
    168. Bell A. A. Phytoalexin production and Verticillium wilt resistance in cotton [J]. Phytopathology. 1969,1119-1127.
    169. Bell A. A. Temperature effects upon resistance and phytolexin synthesis in cotton inoculated with Verticillium albo-atrum [J]. Phytopathology.1969,59:1141-1146.
    170. Bell A. A. Verticillium wilt In:Hilloeks, R.J. (ed) Cotton disease [J]. Wallingford, UK.1992: 87-126.
    171. Bell A. A., Stipanovic R.D., Howell C.R. and Fryxell P.A. Antimicrobial terpenoids of Gossypium: Hemigossypol,6-methoxyhemigossypol and 6-deoxyhemigossypol [J]. Phytochemistry.1975,14: 225-231.
    172. Bendahmane A., Querci M., Kanyuka K, and Baulconbe D. C. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes:application to the Rx2 locus in Potato [J]. Plant Journal.2000,21:73-81.
    173. Benhamou N. Ultrastructural and cytochemical aspects of the response of eggplant parenchyma cells in direct contact with Verticillium infected xylem vessels [J]. Physiological and Molecular Plant Pathology.1995,46(4):321-338.
    174. Benhamou N., Gagre S., Que D. L., Dehbi L. Bacterialn ediated induced resistance in cucumber beneficial effect of endophytic bacterium Serratia Plymuthica on the protection against infeetion by Pythium ultinum. PhytoPathology.2000,90:45-56.
    175. Bennetzen J. L., Jones J. D. G. Approaches and progress in the molecular cloning of plant disease resistance genes. In. JK Setlow, ed. Genetic Engineering [J]. Princioples and Methods, New York: Plenum Press.1992,14:99-124.
    176. Birch P. R. J., Avrova A. O., Duncan J. M. Isolation of potato genes that are induced during an early stage of the hypersensitive response toPhytophthora infestans [J]. Mol. Plant Micro. Interact.1999, 12:356-361.
    177. Bradley D., Kjellbom P., Lamb C. J. Elicitor and wound induced oxidavite cross-linking of a proline-rice plant cell wall protein: a novel rapid defense response. [J]. Cell.1992,70(1):21-30.
    178. Brandt J., Thordal-Christensen H., Vad K. Pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator [J]. Plant.1992,2:815-820.
    179. Buonario R, Torre G D, Mobtalbini P. Soluble superioxide dismutase (SOD) in susceptible and resistant host-parasite complex of phaseolus unlgaris and Uromyces phaseoli[J]. Physiol Plant Pathol.1987,31:173-184.
    180. Chellemi D.O. Adaptation of approaches to pest control in low-input agriculture [J]. Crop Protection.2000,19:855-858.
    181. Ciccarese F., Amenduni M., Cchiavone D. Effect of Verticillium wilt on the yield of susceptible and "slow wilting" resistant eggplants in the field [J]. Phytopathologia Mediterranea.1994,33(3): 212-216.
    182. Cirulli M. Pathobiology of Verticillium species. Mediterranean Phytopathological Union [M]. Firenze, Italy,1981, pp.36-68.
    183. Clemens M. J. Targets andmechanisms for the regulation of translation in malignant transformation [J]. Oncagene.2004,23:3180-3188.
    184. Corsini D. and Pavek J. J. Agronomic performance of potato germplasm selected for high resistance to Verfcillium wilt [J]. American Potato Journal.1996,73:249-260.
    185. Dat J. F., Pellinen R., Beeckman T., Van de cott B. Changes in hydrogen peroxide homeostasis t rigger an active cell deat h process in tobacco [J]. Plant J.2003,33(4):621-632.
    186. Davis D. A., Low P. S., Heinstein P. Purifieation of a glyeoProtein elieitor phytoalexin formation from Vertieillium dahliae [J]. Physiol Mol Plant Pathol.1998,52:259-273.
    187. Devey M. E., Roose M. L. Genetic analysis of Vertieillium wilt tolerance in cotton using pedigree data from three crosses [J]. Theor. App. Genet.1987,74(1):162-167.
    188. Diatchenko L., Lau Y. C., Campbell A. P., et al. Suppression subtractive hybridazation:A method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc.Natl. Acad. Sci. USA,1996,93:6025-6030.
    189. Diwan N., Fluhr R., Eshed Y., Zamir D., Tanksley S. D.1998. Mapping of Ve in tomato:a gene conferring resistance to the broad-spectrum pathogen, Verticilium dahliae race 1 [J]. Theoretical and Applied Genetics.98(2):315-319.
    190. Dubery I.A. and Slater V. Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae [J]. Phytochemistry.1997,44:1429-1434.
    191. Dubery L. A., Smit F. Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor [J]. Phytochemistry.1997,44(5):811-815.
    192. Ebel J. Phytoalexin systhesis: the bioehemieal analysis of the induetion Proeess [J]. Annu Rev PhytoPathol.1986,24:235-264.
    193. Ebel J., Gosio E. G. Elieitor of Plant defense response [J]. Int Rev Cytol.1994,148:1-36.
    194. Eiichi N., Kazuhito K., Noriyuki D., Hirofumi Y. Elicitation of primary and secondary metabolism during defense in the potato. [J]. J Gen Plant Pathol.2003,69:378-384.
    195. Elena K. Genetic relationships among Verticillium dahliae isolates from cotton in Greece based on vegetative compatibility [J]. European Journal of Plant Pathology.1999,105:609-616.
    196. Ellis J. G., Lawerence G. J., Peacock W. J. Approaches to cloning plant genes conferring resistance to fungal pathogens [J]. Ann Rev Phytopathol.1988,26:245-263.
    197. Fenillet C., Schachennayr G., and Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat [J]. Planta.1997,11:45-52.
    198. Flor H. H. Current status of the gene-for gene concept [J]. Annu Rev Phytopathol.1971,9:275-296.
    199. Freialdenhoven A., Scherag B., Hollricher K. Nar-1 and Nar-2, two loci required for Mlal2-specified race-specific resistance to powdery mildew in barley [J]. The Plant Cell.1994, 6:983-994.
    200. Gabriel D. W., Rolfe B. G. Working models of specific recognition in plant-microbe interactions [J]. Ann Rev Phytopathol.1990,28:365-391.
    201. Gao A. G., Hakimi S. M., Mittanck C. A., Wu Y., Woerner B.M., Stark D.M., Shah D.M., Liang J. and Rommens C.M. Fungal pathogen protection in potato by expression of a plant defensin peptide [J]. Nature Biotechnology.2000,18:1307-1310.
    202. Garber R. H., Houston B. R. Penetration and development of Verticillium albo-artum in the cotton Plant [J]. Phytopathology.1966,1:1121-1126.
    203. Giannopolitis C. N., Rice S. K. Superoxide dismutase, purification and quantitative relationship with water-solube proteinin breeding [J]. Plant Physiol.1977, (59):315-318.
    204. Gold J. and Robb J. The role of the coating response in Craigella tomatoes infected with Verticillium dahliae races 1 and 2 [J]. Physiological and Molecular Plant Pathology.1995,47: 141-157.
    205. Gorlach J., Rasescke H-R., Rentsch D., Regenass M., Roy P., Zala M., Keel C., Boller T., Amrhein N., Schmid J. Temporally distinct accumulation of transcripts encoding enzymes of the prechorismate pathway in elicitor-treated, cultured tomato cells[J]. Proc Natl Acad Sci USA.1995, 92:3166-3170.
    206. Gregory B. M. A., Bromnmonccenkel S. H., Chunwongse J. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science.1993,262:1432-1436.
    207. Guo Y., Xiong L., Ishitani M., Zhu J-K. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures [J]. Proceedings of the National Academy of Sciences. USA.2002,99:7786-7791.
    208. Guri A. and Sink K. C. Interspecific somatic hybrid plants between eggplant(Solanum melongena) and Solanum torvum [J]. Thoretical and Applied Genetics.1988,76(4):490-496.
    209. Habu Y., Fukada-Tanaka S., Hisatomi Y. Amplified restriction fragment length polymorphism based mRNA finger restriction enzyme that recognizes a 4-bp sequence [J]. Biochem. Biophys. Res. Commun.1997,234:516-521.
    210. Haenseler C. M. Studies on eggplant wilt [M]. New Jersey Agr. Expt. Sta. Ann. Rept.1920-1921, 1922:469-470.
    211. Hahlbrock K., Scheel D. Physiology and molecular biology of phenylpropanoid metabolism [J]. Ann. Rev. Plant Physiol.1989,40:347-369.
    212. Hahn K. Microbial elieitors and their receptors in plants [J]. Annu Rev Phytopathol,1996, 34:387-412.
    213. Hammond-Kosack K. and Jones J. D. G. Response to plant pathogens. Biochemistry and Molecular Biology of Plants [J]. American Society of Plant Physiologists.2000,1102-1156.
    214. Harrison N. A. and Beckman C. H. Time/space relationships of colonization and host response in wilt-resistant and wilt-susceptible cotton (Gossypium) cultivars inoculated with Verticillium dahliae and Fusarium oxysporum f.sp. vasinfectum [J]. Physiological Plant Pathology.1982,21:193-207.
    215. Hashimoto K. Studies on Verticillimm wilt of eggplant [J]. Bulletin of the Saitama Horticultural. Experiment Station.1989,2(3):110.
    216. Hill M. K., Lyon K. J., Lyon B. R. Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae [J]. Plant Mot Biol.1999,40(2): 289-296.
    217. Huang L. K. Study of a tomato protein which inhibits endo-polygalacturonase from Verticilliun albo-atrum [J]. DAI-B 57/10,1997, p.6003, Apr.
    218. Hubank M., Schatz D. G. Identifying differences inmRNA expression by representational difference analysis of cDNA [J]. Nucleic Acids Res.1994,22:5640-5648.
    219. Hudspeth R.L., Hobbs S.L., Anderson D.M. and Grula J. W. Characterization and expression of chitinase and 1,3-beta-glucanase genes in cotton [J]. Plant Molecular Biology.1996,31:911-916.
    220. Ishii M., Hashimoto S., Tsutsumi S. Direct comparison of gene chip and SAGE on the quantitative accuracy in transcript profiling analysis [J]. Genomics.2000,68:136-143.
    221. Jadari R., Sihachakr D., Rossignol L. and Ducreux G. Transfer of resistance to Verticillium-dahliae Kleb from Solanum torvum Sw into potato (Solanum tuberosum L) by protoplast electrofusion [J]. Euphytica.1992,64:39-47.
    222. Jin Y., Statler G. D, Franckowiak J. D. Linkage between leaf rust resistance genes and morphological markers in barley [J]. Phytopathol.1993,83(2):230-233.
    223. Johal G. S, Briggs S. P. Reductase activity encoded by the Hm1 disease resistance gene in maize [J]. Science.1992,258(6):985-987.
    224. Jones J. Plant pathology. Paranoid plants have their genes examined [J]. Curr. Biol.1996,4 (8): 749-751.
    225. Jones T. O., Anderson A. J., and Albersheim P. Host pathogen interactions IV. Studies on the polysaccharide-degrading enzymes secreted by Fusarium oxysporum f. sp. Lycopersci [J]. Physiological Plant Pathology.1972,2:153-166.
    226. Karr A. L., Albersheim P. Polysaccharide-degrading enzymes are unable to attack plant cells without prior action by a "wallmodifying" enzyme [J]. Plant Physiology.1970,46:69-80.
    227. Katan J. Physical and cultural methods for the management of soil-borne patbogens [J]. Crop Protection.2000,19:725-731.
    228. Kawchuk L. M., Hachey J. and Lynch D. R. Development of sequence characterized DNA markets linked to a dominant Verticillium wilt resistance gene in tomato [J]. Genome.1988,41:91-95.
    229. Kawchuk L. M., Hachey J., Lynch D. R, Kulcsar F., van Rooijen G, Waterer D. R, Robertson A., Kokko E., Byers R, Howard R. J., Fischer R. and Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors [J]. Proceedings of the National Academy of Sciences of the United States of America.2001,98:6511-6515.
    230. Kawchuk L. M., Lynch D. R., Hachey J., Bains P. S., Kulcsar F. Identification of a codominant amplified polymorphic DNA marker linked to the Verticillium wilt resistance gene in tomato [J]. Theoretical and Applied Genetics.1994,89:661-664.
    231. Keen N. T. The molecular biology of disease resistance [J]. Plant Mol. Biol.1992,19:109-122.
    232. Kelemu S., Leach E. Cloning and characterization of an avirulence gene from Xanthomonas campestris pv, Oryza [J]. Molecular Plant-Microbe Interactions.1990,3(2):59-65.
    233. Kerr E. A., Bush L. V. A suggestion of linkage between Ve and alb [J]. Tomato Genet Coop.1977, 27:18.
    234. Kidou S. L., Umeda M., Kato A. Isolation and charaeterization of a rice cDNA similar to the bovine brains-pecific 14-3-3 protein gene [J]. Plant Mol Biol.1993,21:191-194.
    235. Kilian A., Chen J., Han F. Toward map-based cloning of the barley stem rust resistance gene Rpgl and Rpg2 using rice as an intergenomic cloning vehicle [J]. Plant Mol. Bilo.1997,35:187.
    236. Knott D. R., Dvorak J. Agronomic and quality characteristics of wheat lines with leaf rust resistance derived from Triticum speltoide s [J]. Can J Genet Cytol.1981,23:475-480.
    237. Kojima T., Habu Y., Iida S. Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based in RNA fingerprinting (AMF) method in combinationwith a deletion line ofwheat [J]. Mo.l Gen.Genet.2000,263:635-641.
    238. Kuc J. Induced immunity to plant disease [J]. Bioseience.1982,32:854-860.
    239. Lee J. Y., Lee D. H. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress [J]. PlantPhysiol.2003,132(2):517-529.
    240. Lee S. W., Nazar R. N., Powell D. A. Reduced PAL gene suppression in Verticillium-imfected resistant tomatoes [J]. Plant Mol. Biol.1992,18(2):345-352.
    241. Lee S., Tomasetto C., Sager R. Positive selection ofcandidate tumor-suppressorgenes by subtractive hybridization [J]. Proc.Nat.Acad. Sc.i USA.1991,88:2825-2829.
    242. Leon J., Awton M. L., Raskin I. Hydrogen peroxide stimulates salicyclic acid biosynt hesis in tobacco [J]. Plant physiol.1995,108(4):1673-1678.
    243. Li Q., Overmars H., Helder J. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematodeGlobodera rostochiensis [J]. Mol. Plant Microbe. Int.2000,13(8):830-836.
    244. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J]. Science.1992,257(14):967-971.
    245. Ligoxigakis E. K. and Vakalounakis D. J. Occurrence of race 2 of Verticillium dahliae on tomatoes in Crete [J]. Plant pathology.1992,41:774-776.
    246. Lockwood J. L., Markarian D. Breeding eggplants for resistanceto Verticillium wilt:1961-1966. Q. Bull [J]. Michigan Agric. Exp. Stn.1967,50:50-58.
    247. Luo G. Z., Wu R. A PCR differential screening method for rapid isolation of clones from a cDNA library [J]. Biotechniques.1997,35(6):893-903.
    248. Luo P., Wang Y. H., Wang G. D. Molecular cloning and functional identifieation of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 monooxygenase (CYP7O6BI) of cotton sesquiterpene biosynthesis [J]. Plant J.2001,28(1):95-104.
    249. Lynch D. R., Kawchuk L. M., Hachey J., Bains P. S. and Howard R. J. Identification of a gene conferring high levels of resistance to Verticillium wilt in Solanum chacoense [J]. Plant Disease. 1997,81:1011-1014.
    250. Martin G. B., Brommonschenkel S. H., Chunwongse J. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science.1993,262:1432-1436.
    251. Martin J. M., Bruce M. R., Ditterline R. L. and Mathre D. E. Influence of plant age, disease incubation time, and host plant resistance on Verticillium wilt symptom expression in lucerne (Medicago sativa) [J]. Euphytica.1993,69:123-128.
    252. Matsumura H., Nirasawa S., Terauchi R. Technical advance: transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE) [J]. Plant J.1999,20(6): 719-726.
    253. Meyer R., Slater V. and Dubery I.A. A phytotoxic protein-lipopolysaccharide complex produced by Verticillium dahliae [J]. Phytochemistry.1994,35:1449-1453.
    254. Muday G. K., Herrmann K. M. Wounding induces one of two isoenzymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase in Solarium tuberosum L [J]. Plant Physiol. 1992,98:496-500.
    255. Naomi ori N., Eshed Y. The 12C family from the wilt disease resistance locus 12 belong to the nucleotide binding, leucine rich repeat superfamily of plant resistance gene [J]. Plant cell.1997,9: 521.
    256. Nemoto Y., Sasakuma T. Differential stress responses of early salt-stress responding genes in common wheat [J]. Phytochemistry.2002,61(2):129-133.
    257. O'Brien R. G and Hutton D. G.. Identification of race 2 of Verticillium wilt in tomatoes in South-East Queensland [J]. Australasian Plant Pathology.1981,10:56-58.
    258. Okie W. R. and Gardner R. G. Screening tomato seedlings for resistance to Verticillium dahliae races 1 and 2 [J]. Plant Disease.1982,66:34-37.
    259. Overeen J. C. Hhrefall D. R. Biochemical aspects of plant parasite relationships [M]. Academic Press.1976,133-135.
    260. Perez-Artes E., Garcia-Pedrajas M. D., Bejarano-Alcazar J. and Jimenez-Diaz R. M. Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses [J]. European Journal of Plant Pathology.2000,106:507-517.
    261. Polidoros A. N., Mylona P. V., Scandalios J. G. Transgenic tobacco plants expressing t he maize Cat2 gene have altered catalase levels t hat affect plant-pathogen interactions and resistance to oxidative st ress[J]. Transgenic Res.2001,10(6):555-569.
    262. Pruvot G., Cuine S., Peltier G. Characterization of novel drought induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. [J]. Planta.1996,198:471-479.
    263. Riek C. M., Martin F. M. Gentile a linkage of Verrticillium resistance (Ve) [J].Tomato Genet Coop. 1959,9:44.
    264. Roberts C. L., Staten G. Heritability of Vertieillium wilt tolence in crosses of American Upland cotton [J]. Crop Sci.1972,12:63-66.
    265. Rommens C. M. and Kishore G. M. Exploiting the full potential of disease-resistance genes for agricultural use [J]. Current Opinion in Biotechnology.2000,11:120-125.
    266. Schaible P., Cannon OS., Waddoups V. Inheretance of resistance to Verticillium wilt in a tomato cross [J]. Phytopathology.1951,41:986-990.
    267. Schena M., Shalon D., Davis R. W. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science.1995,270:467-470.
    268. Schnathorst W. C. and Mathre D. E. Host range and differentiation of a severe form of Verticillium albo-atrum in cotton [J]. Phytopathology.1966,56:1155-1161.
    269. Schulze A. From membranes to chips-a pocket guide to DNA microarray technology:DNA microarrays:gene expression applications [J]. J. Cell Sci.2002,115:1781.
    270. Smit F. and Dubery I. A. Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor [J]. Phytochemistry.1997,44:811-815.
    271. Sokizawa Y., Haga M., Hirabayashi E. Dynamic behavior of superoxide generation in rice leaf tissue infected with blast fungus and its regulation by some substances. [J]. Agri. Biol. Chem.1987, 51:763.
    272. Song W. Y., Wang G.L., Chen L. L. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 [J]. Science.1995,270:1804-1806.
    273. Staskawicz B. J., Dahlbeck D., Keen N. T. Cloned avirulence gene of Pseudomonas syringae pv. Glycine max (L) Merr. Proc Natl Acad Sci USA.1984,81:6024-6028.
    274. Stoneley M., Willis A. E. Aberrant regulation of translation initiation in tumorigenesis [J].Curt. Mol. Med.2003,3:597-603.
    275. Talboys P. W. A culture-medium aiding the identification of Verticillium albo-artrum (dahliae) [J]. Plant Pathology.1960,9(2):57-58.
    276. Tobin L Peever,V erna J H iggins. Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum [J] Plant Physiol.1989, (90):867-875.
    277. Tseng T. C., Tsaith, Luem Y. Identification of sucrose-regulated genes in cultured rice cells using mRNA differential display [J]. Gene.1995,161(2):179-182.
    278. Van L., Pierpoint L. C., Boller W. S. Recommendations for naming plant pathogenesis-related proteins [J]. Plant Molecular Biology Reporter.1985,12:245-264.
    279. Van Lenteren J. C. A greenhouse without pesticides:fact or fantasy? [J]. Crop Protection.2000,19: 375-384.
    280. Van Loon. Pathogenesis-related proteins [J]. Plant Mol. Biol.1970,4:111-116.
    281. Veluculescu V. E., Zhang L., Vogestein B. Serial analysis of gene expression [J]. Science.1995,270: 484-487.
    282. Verhalen L. M., Brinkethoff L. A., Fun K. C. A quantitative genetic study of Vertieillium wilts resistance among seleeted lines of Upland cotton [J]. Crop Sci.1971,11:407-412.
    283. Vidhyaskaran P. Fungal Pathogenesis in Plants and Crops [M]. New York: Marcel Dekker Inc. 1997.380-381.
    284. Vlassova T. A. Total phenol content and phenol oxidizing enzymes activities in detached cotton roots inoculated with Verticillium dahliae Kleb [J]. Acta Horticulturae.1994,381:287-290.
    285. Von Stein O. D., Thiesw G., Hofmann M. A high throughout screening for rarely transcribed differentially expressed genes [J]. Nucleic Acid Res.1997,25(13):2598-2602.
    286. WANG J. Y., Cai Y., Gou J. Y. VdNEP, an elicitor from Verticillium dahliae induces cotton plant wilting [J]. Appl Environ Microbiol.2004,70(8):4989-4995.
    287. Wilhelm S., Sagen J. E., Tietz H. Resistance to Verticillium wilt transferred from Gosspium barbadense to Upland cotton [J]. PhytoPathology.1972,62:798-799.
    288. Wilkinson J. Q., Lanahanm B., Yen H. C. An ethylene-inducible component of signal transduction encoded byNever-ripe [J]. Science.1995,270:1807-1809.
    289. Wool I. G. Extraribosomal functions ribosomal proteins [J].Trends. Biochem. Sci.1996,21(5): 164-165.
    290. Xia Z. J., Achar P. N. and Gu B. K. Vegetative compatibility groupings of Verticillium dahliae from cotton in mainland China [J]. European Journal of Plant Pathology.1998,104:871-876.
    291. Xiong L., Zhu J. K, Molecular and genetic aspects of plant responses to osmotic stress [J]. Plant Cell and Environment.2002,25:131-139.
    292. Yin X. C., Yin Y., Feng Z. Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic potatoes [J].Proc Natl Acad Sci USA.1997,94:4861-4865.
    293. Zhao Y., Sohn J. H., Jonathan R.Warner.Autoregulation in the Bilsunthesis of Ribosomes [J]. Molecular and Cellular Biology.2003,23 (2):699-707.
    294. Zhou X. J., Lu S., Xu Y. H., Wang J. W, Chen X. Y. A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity [J]. Plant Science.2002,162: 629-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700