用户名: 密码: 验证码:
利用水稻代换系定位种子萌发速率和品质基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子萌发的快慢是作物的一个重要农艺性状。高活性的种子是水稻直播的先决条件。一般条件下,籼稻的发芽速率比粳稻要快。利用这一差别可以区分这两个亚种。本研究利用一套以籼稻珍汕97B为背景、粳稻日本晴为供体的染色体片段代换(导入)系为材料,对水稻种子萌发速率进行数量性状位点(QTL)分析,并精细定位其中一个主效QTL qGR2。同时,利用该套日本晴染色体片段代换系对稻米的品质性状进行QTL定位和应用研究。主要结果如下:
     1.在13℃、18℃、23℃和28℃条件下,珍汕97B与日本晴之间的种子萌动速率差异是稳定存在的。42份栽培稻品种的发芽试验表明,籼稻与粳稻两个亚种间存在显著的萌动速率差异。在23℃条件下,籼稻品种的平均萌动速率比粳稻品种快约5.8倍。
     2.利用143份日本晴染色体片段代换(导入)系,分别在第2、5、6和10四个染色体上定位到4个与水稻萌动速率相关的QTL,其来源于日本晴的等位基因在一定程度上降低了种子的萌发速率。
     3.利用其中1份代换系CSSL29衍生的F2群体,对第2染色体的QTL (qGR2)进行验证和精细定位。初步定为结果显示,qGR2在RM12532-RM12544区间,其解释的变异为24.3%。选取含有目标片段为杂合的1个单株,自交获得F3大群体(2720个单株),并从中筛选出23株qGR2区段交换单株。利用分子标记与表型相结合的方法,最终将qGR2精细定位到MC04和RM423之间,物理距离10.4kb,位于一个BAC克隆上。该区间预测含有3个候选基因,Loc_Os02g07410、 Loc_Os02g07420和Loc_Os02g07430。
     4.对143份代换系的种子长宽比,直链淀粉含量,蛋白质含量和千粒重与萌发速率进行相关分析,结果表明,种子的萌发速率只与蛋白质含量呈显著正相关。
     5.半定量(RT-PCR)表达分析显示,候选基因Loc_Os02g07430(OsMADS29)在珍汕97B和代换系CSSL29的萌动过程中表现出不同的表达模式。候选基因在两材料种子中的表达时间与各自种子胚根的突出时间相一致。
     6.珍汕97B与日本晴在直链淀粉含量,蛋白质含量,碱消值,垩白度上存在较大差异。利用143份日本晴染色体片段代换系,通过IciMapping v3.0软件共检测到6个品质性状共36个QTL。这些QTL有的含有已经被克隆的品质基因如Wx、alk等。这些主效QTL可以显著改良珍汕97B的稻米品质。
     7.143份代换系的品质性状与农艺性状的相关性分析表明,蛋白质含量,碱消值和垩白度与抽穗期相关,可能极易受环境影响。
     8.构建了7个分别含有不同品质基因的代换(导入)系材料,通过其与明恢63测交,评价其品质性状的表现,结果发现,代换系品质性状的改变可以影响其杂交种的品质。试验结果为改良杂交种稻米品质提供了一定理论指导和实践基础。
Rapid and uniform seed germination is one of the important agronomic traits and critical for direct seeding in rice. The Asian cultivated rice (O. sativa L.) consists of two subspecies, indica (O. sativa L. ssp. indica) and japonica (O. sativa L. ssp. japonica). Generally, indica cultivars geminate faster than japonica. Here, we developed a set of chromosomal segment substitution lines (CSSL) by backcrossing and marker-assisted selection in which the japonica Nipponbare was the donor parent, and the recurrent parent was the indica 'Zhenshan97B'(ZS97B). Each line contains a substituted Nipponbare donor segment of a particular chromosomal region within the uniform genetic background of the ZS97B, and all the substitution segments together cover the entire Nipponbare genome. We surveyed genetic bases of germination rate using this set of143CSSLs, validated and finely mapped a major QTL (qGR2) for germination rate. The main results are as follows:
     1. The differences in germination rate existed stably between ZS97B and Nipponbare at various genmination temperature conditions (13℃,18℃,23℃and28℃). Besides the two parents (ZS97B and Nipponbare), the other42cultivars also showed great variation in germination rate under23℃at2days after imbibition. On average, the germination rate of indica cultivars was5.8times faster than that in the japonica.
     2. Four QTL (qGR2, qGR5, qGR6and qGR10) were identified for germination rate in the CSSL population, of which all the japonica alleles decreased the germination rate.
     3. Using a F2population derived from a CSSL (CSSL29) that contains the target substitution region on chromosome2and ZS97B, qGR2was confirmed as a major QTL explained24.3%of phenotypic variance, and located in the interval of RM12532-RM12544. A large segregation population comprised2,720individuals was further generated by selfing a single F2individual heterozygous at the qGR2region. Twenty-three informative recombinants were identified with8markers in the region, and grouped into six genotype classes according to the positions of recombinant points and allelic composition. Multiple comparisons of the germination rate among the six genotypes and the control (ZS97B) narrowed qGR2down to a genomic region between RM12530and RM423, a segment about60-kb in length. The position of the QTL underlying germination rate was narrowed down even further to a10.4-kb length defined by markers MC04and RM423by analyzing more SNP markers in the interval. This small region is on a single bacterial artificial chromosome clone and contains three predicted genes, namely Loc_Os02g07410, Loc_Os02g07420, and Loc_Os02g07430(OsMADS29).
     4. Germination rate was significantly and positively correlated with protein content, but not with seed shape, amylose content, and1,000-grain weight in the143CSSL.
     5. Expression analysis by RT-PCR revealed different expression patterns of the gene OsMADS29in ZS97B and CSSL29during seed germination. These differences in the time of expression were highly consistent with that time taken for radicle protrusion in ZS97B and CSSL29.
     6. There were significant differences in amylose content, protein content, gel consistency, and grain chalkiness between ZS97B and Nipponpare. We detected36QTLs for six grain quality traits. Several major QTLs co-located with the known quality genes such as Wx, alk, of which Nipponbare alleles could improve the grain quality of ZS97B.
     7. Association analysis showed that the grain quality including protein content, gel consistency, grain chalkiness are associated with heading date in the143CSSLs, indicating that these grain quality traits in rice is highly influenced by environment.
     8. We have constructed seven CSSLs each containing at least one favorable gene from Nippobare for grain quality. The testcrossing hybrids between the CSSL and Minghui63, an elite restorer line, showed a remarkable improvement in grain quality, suggesting a potential way to improve the grain quality of ZS97B and its hybrids.
引文
1.包劲松,何平,李仕贵,夏英武,陈英,朱立煌.异地比较定位控制稻米蒸煮食用品质的数量性状基因.中国农业科学,2000,33(5):8-13
    2.曹雅君,江玲,王春明,刘世家,陈亮明,万建民.利用重组自交系群体检测水稻种子休眠性数量性状位点.南京农业大学学报,2003,26(3):110-112
    3.程方民,钟连进,舒庆尧,黄华宏,石春海,吴平.早籼水稻垩白部位淀粉的蒸煮食味品质特征.作物学报,2002,28;363-368
    4.陈业坚,舒庆尧,张增勤,程式华,孙宗修,吴平.稻米表观直链淀粉含量由两对非等位基因控制.中国水稻科学,2002,16(4):369-371
    5.高振宇,曾大力,崔霞,周奕华,颜美仙,黄大年,李家洋,钱前.水稻稻米糊化温度控制基因Alk的图位克隆及其序列分析.中国科学,2003,33:481-487
    6.黄祖六,谭学林,Tragoonrung S, Vanavichit A.稻米直链淀粉含量基因座位的标记定位.作物学报,2000,26(6):777-782
    7.江玲,侯名语,刘世家,陈亮明,刘喜,翟虎渠,万建民.水稻种子低温萌发生理机制的初步研究.中国农业科学,2005,38(3):480-485
    8.林鸿宣,闵绍楷,熊振民,钱惠荣,庄杰云,陆军,郑康乐,黄宁.应用RFLP图谱分析籼稻粒型数量性状座位.中国农业科学,1995,28:1-7
    9.莫惠栋,顾铭洪,谷类作物品质性状遗传研究进展.1990, pp.1-122
    10.莫惠栋.我国稻米品质的遗传.中国农业科学,1993,26(4):8-14
    11.莫惠栋.谷类作物胚乳性状遗传控制的鉴别.遗传学报,1995,22(2):126-132
    12.宋松泉,程红焱,姜孝成.种子生物学.北京:科学出版社,2008,p95-228
    13.汤圣祥,Khush GS.籼稻胶稠度的遗传.作物学报,1993,19:119-124
    14.王松凤,贾育红,江玲,翟虎渠,万建民.控制水稻种子休眠和抽穗期的数量基因位点.南京农业大学学报,2006,29(1):1-6
    15.谢华安.汕优63选育理论与实践.北京:中国农业出版社,2005,2-3
    16.邢永忠,谈移芳,徐才国,华金平,孙新立.利用水稻重组自交系定位谷类外观性状的数量性状基因.植物学报,2001,43(8):840-845
    17.徐辰武,莫惠栋.籼稻米糊化温度的质量-数量遗传分析.作物学报,1996,22(4):384-391
    18.严长杰,徐辰武,裔传灯,梁国华,朱立煌,顾铭洪,利用SSR标记定位水稻糊化温度的QTLs.遗传学报,2001,28(11):1006-1011
    19.沈金雄,易斌,傅廷栋,杨光圣.植物数量性状基因定位研究概述[J].植物学通报,2003,20(3):257-263
    20.张文绪,汤圣祥.我国水稻品种蒸煮品质的初步研究.中国农业科学,1981,5:32-39
    21.赵明富,黄招德,吴春珠,车容会,施碧红,方珊如,孙永建,赵志民.水稻谷粒粒长显性主效QTL的遗传分析与定位.分子植物育种,2008,6(6):1057-1060
    22.中华人民共和国国家标准.优质稻谷GB/T17891-1999.北京:中国标准出版社,1999
    23.周红菊.籼粳亚种间染色体片段代换系的构建及其产量性状杂种优势效应研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    24. Akihiro T, Mizuno K, Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol,2005,46:937-946
    25. Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn VH, Koornneef M. Analysis of natural allelic variation at seed dormancy LOCi of Arabidopsis thaliana. Genetics,2003,164:711-729
    26. Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK and Kapoor S. MADS-box gene family in rice:genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007,8:242
    27. Arssen C, Zagorski S, Kepczynski J, Groot S. Key role for endogenous gibberellins in the control of seed germination. Ann Bot,1989,63:71-80
    28. Ayahiko S, Takeshi I, Kaworu E, Takeshi E, Hiromi K, Saeko K, Masahiro Y. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet,2008,40(8):1023-1028
    29. Bai XF, Luo LJ, Yan WH, Kovi MR, Zhan W, Xing YZ. Genetic dissection of grain shape using a recombination inbred population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics,2010,11:16
    30. Becker A, Saedler H, Theiβen G. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol, 2003,213:567-572
    31. Bentsink L, Jowett J, Hanhart CJ, Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci,2006, 103:17042-17047
    32. Bewley JD. Seed germination and dormancy. Plant Cell,1997,9:1055-1066
    33. Bewley JD, Black M Seeds:Physiology of Development and Germination. Plenum Press, New York,1985
    34. Burger BT, Cross JM, Shaw JR, Caren JR, Greene TW, Okita TW, Hannah LC. Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophosphorylases in the absence and presence of 3-phosphoglyceric acid. Planta,2003,217:449-456
    35. Burton RA, Jenner H, Carrangis L, Fahy B, Fincher GB, Hylton C, Laurie DA, Parker M, Waite D, Wegen S, Verhoeven T, Denyer K. Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J, 2002,31:97-112
    36. Cai HW, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet,2002,100:840-846
    37. Carpita NC, Nabors MW, Ross CW, Petretic NL. Growth physics and water relations of red-light-induced germination in lettuce seed. Ⅲ. Changes in the osmotic and pressure potential in the embryonic axes of red- and far-red-treated seeds. Planta,1919,144:217-224
    38. Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ. Gene expression profiling reveals defined functions of the ATP-Binding Cassette Transporter COMATOSE late in phase II of germination. Plant Physiol,2007,143:1669-1679
    39. Chen F, Nonogaki H, Bradford KJ. A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. J Exp Bot,2002,53:215-223
    40. Chiang George CK, Baruaa D, Kramera EM, Amasinob RM, Donohuea K. Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci,2009,106:11661-11666
    41. Copeland LO, McDonald MF. Principles of Seed Science and Technology.3rd. edition. Maxwell MacMillan International, New York,1995
    42. Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q. Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet,2002, 105:745-753
    43. Delwiche SR, Mckenzie KS, Webb BD. Quality characteristics in rice by near-infrared reflectance analysis of whole-grain milled samples. Cereal Chem, 1996,73:257-263
    44. Denyer K, Waite D, Edwards A, Martin C, Smith A M. Interaction with amylopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides. Biochem J,1999,342:647-653
    45. Dian WM, Jiang HW, Chen QS, Liu FY, Wu P. Cloning and characterization of the granule-bound starch synthase II gene in rice:gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta,2003a,218:261-268
    46. Dian WM, Jiang HW, Wu P. Evolution and expression analysis of starch synthase III and IV in rice. J Exp Bot,2005,56:623-632
    47. Dingkuhn M, Schnier HF, Javellana C, Pamplona R, De Datta SK. Effect of late season nitrogen application on canopy photosynthesis and yield of transplanted and direct seeded tropical lowland rice. Ⅱ. Canopy stratification at flowering stage. Field Crops Res,1992,28:235-49
    48. Domon E, Saito A, Takeda K. Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst,2002,77:351-359
    49. Dunnett. CA multiple comparisons procedure for comparing several treatments with a control. JAm Stat ASSOC,1955,50:1096-1121
    50. Dutt M. Geneve R.Time to radicle protrusion does not correlate with early seedling growth in individual seeds of impatiens and petunia. JAmer Soc Hort Sci,2007,132:283-436
    51. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171
    52. Footitt S, Marquez J, Schmuths H, Baker A, Theodoulou FL, Holdsworth M. Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot,2006,57: 2805-2814.
    53. Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci,2008, 105:127623-12628
    54. Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M. Mapping of quantitative trait Loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet,2004,108:794-799
    55. Fujita N, Kubo A, Suh D S, Wong K S, Jane JL, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol,2003,44:607-618
    56. Fulton DC, Edwards A, Pilling E, Robinson HL, Fahy B, Seale R, Kato L, Donald AM, Geigenberger P, Martin C, Smith AM. Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. JBiol Chem,2002,277:10834-10841
    57. Giroux MJ, Hannah LC. ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet,1994,243:400-408
    58. Gu XY, Kianian SF, Foley ME. Multiple LOCi and epistases control genetic variation for seed dormancy in weedy rice(Oryza sativa). Genetics,2004, 166:1503-1516
    59. Guo T, Liu XL, Wan XY, Weng JF, Liu SJ, Liu X, Chen MJ, Li JJ, Su N, Wu FQ, Cheng ZJ, Guo XP, Lei CL, Wang JL, Jiang L, Wan JM. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol,2011,53(8):598-607
    60. Han B and Xue Y. Genome-wide intraspecific DNA-sequence variations in rice. Curr Opinion Plant Mol Biol,2003,6:134-138.
    61. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics,1998,148:479-494
    62. He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH. Genetic analysis of rice grain quality. Theor Appl Genet,1999,98:502-508
    63. Hirose T, Ideue T, Nagai M, Hagiwara M, Shu M D, Steitz JA. A spliceosomal intron binding protein, IBP 160, links position-dependent assembly of intron-encoded boxC/Dsno RNA to pre-mRNA splicing. Mol Cell,2006, 23:673-684
    64. Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, afterripening, dormancy and germination. New Phytol,2008,179:33-54
    65. Hou MY, Wang CM, Jiang L, Wan JM, Hideshi Yi, Yoshimura A. Inheritance and QTL mapping of low temperature germinability in Rice (Oryza sativa L). Acta Genetica Sinica,2004,31(7):701-706
    66. Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usade B, Millar AH, Whelan J. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol,2009,149:961-980
    67. Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu J, Subudhi P, Angeles E R,Khush GS. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breeding,1997,3:105-113
    68. Ikehashi H, Khush GS. Methodology of assessing appearance of the rice grain, including chalkiness and whiteness, pp:223-229 in:Workshop on chemical aspects of rice grain quality. IRRI,1979
    69. Inukai T, Sako A, Hirano H Y, Sano Y. Analysis of intragenic recombination at wx in rice:correlation between the molecular and genetic maps within the locus. Genome,2000,43:589-596
    70. Isshiki M, Tsumoto A, Shimamoto K. The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. Plant Cell,2006,18:146-158
    71. Jacobsen SE, Olszewski NE. Mutations at the SPINDLY Locus of Arabidopsis alter gibberellin signal transduction. Plant Cell,1993,5:887-896
    72. Jennings PR, Coffman WR, Kauffman HE. Rice improvement. Philippines:IRRI, 1979
    73. Jiang GH, Hong XY, Xu CG, Li XH, He YQ. Identification of quantitative trait loci for grain appearance and milling quality using a doubled-haploid rice population. Journal of Integrative Plant Biol,2005,47 (11):1391-1403.
    74. Jiang L, Liu SJ, Hou MY, Tang JY, Chen LM, Zhai HQ, Wan JM. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Research,2006,98:68-75
    75. Juliano BO. Rice chemistry and technology.2nd American Association of Cereal Chemists, Inc, St. Paul, Minn,1985
    76. Kanako K, Shigeru K, Katsuyuki O, Yuki A, Tsuyu A, Izumi K, Masahiro Y, Hidemi K, Yukimoto I. A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol,2010,51(8):1315-1329
    77. Kang H G, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J,2005,42:901-911
    78. Kim KN, Guiltinan MJ. Identification of cis-acting elements important for expression of the starch-branching enzyme I gene in maize endosperm. Plant Physiol,1999,121:225-236
    79. Kumar, Khush. Inheritance of amylose content in rice (Oryza sativa L). Euphytica,1988,38:261-269
    80. Limami AM, Rouillon C, Glevarec G, Gallais A, Hirel B. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiol,2002:1860-1870
    81. Li J, Thomson M, McCouch SR. Fine mapping of a grain-weight quantitative trait locus in the pericentrometric region of rice chromosome 3. Genetics,2004, 168:2187-2195
    82. Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CG, Li XH, Xiao JH, He YQ, Zhang QF. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet,2011,43(12):1266-1269
    83. Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge,1992.
    84. Little RR, Hilder GB and Dawson EH. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem,1958,35:111-126
    85. Liu X, Wang Y, and Wang SW. QTL analysis of percentage of grains with chalkiness in Japonica rice(Oryza sativa L). Genetics and Molecular Research, 2012,11(1):717-724
    86. Mao HL, Sun SY, Yao JL, Wang CR, Yu SB, Xu CG, Li XH, Zhang QF. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci,2010,107(45):19579-19584
    87. Martin C, Smith A M. Starch biosynthesis. Plant Cell,1995,7:971-985
    88. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Zing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L). DNA Res,2002,9:199-207
    89. McDonald FD, Preiss J. Partial purification and characterization of granulebound starch synthase from normal and Waxy maize. Plant Physiol,1985,78:849-852
    90. Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano HY, Suzuki Y, Yano Y. Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet,2008,116:979-989
    91. Miura K, Lin SY, Yano M, Nagamine T. Mapping quantitative trait Loci controlling low temperature germinability in rice(Oryza sativa L). Breeding Sci, 2001,51:293-299
    92. Morohashi Y. Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J Exp Bot,2002,53:1643-1650
    93. Muller-Rober BT, Kossmann J, Hannah L C, Willmitzer L. One of two different ADP glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet,1990,224:136-146
    94. Nakamura T, Vrinten P, Hayakawa K, Ikeda J. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol,1998,118:451-459
    95. Nakamura Y, Yamanouchi H. Nucleotide sequence of a cDNA encoding starch-branching enzyme, or Q-enzyme I, from rice endosperm. Plant Physiol, 1992,99:1265-1266
    96. Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:Rice endosperm as a model tissue. Plant Cell Physiol,2002,43:718-725
    97. Nakata PA, Greene TW, Anderson JM, Smith-White BJ, Okita TW, Preiss J. Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Mol Biol,1991,17:1089-1093
    98. Nonogaki H, Gee OH, Bradford KJ. A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol, 2000,123:1235-1245
    99. Nonogaki H. Seed germination-The biochemical and molecular mechanisms. Breeding Sci,2006,56:93-105
    100.Ohdan T, Francisco PBJ, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. JExp Bot,2005,56:3229-3244
    101.Panaud O, Chen X, McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L). Mol Gen Genet,1996,252:597-607
    102.Pooni HS, Kumar 1, Khush GS. Genetical control of amylose content in selected crosses of indica rice. Heredity,1993,70:269-280
    103.Qin Y, Kim SM, Sohn JK. Genetic analysis and QTL mapping for grain chalkiness characteristics of brown rice (Oryza sativa L.). Genes Genom,2009, 31(2):155-164
    104.Qiu XJ, Gong R, Tan YB, Yu SB. Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds. Theor Appl Genet,2012,125:1717-1726
    105.Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D. The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol,2004, 134:1598-1613
    106.Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet,1998,96:957-963
    107.Rogers SO, Bendich AJ. Extraction of DNA from plant tissues. In:Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual,1988, pp A6:1-10. Boston, MA:Kluwer Academic Publishers.
    108.Saito M, Konda M, Vrinten P, Nakamura K, Nakamura T. Molecular comparison of waxy null alleles in common wheat and identification of a unique null allele. Theor Appl Genet,2004,108:1205-1211
    109.Sano Y, Katsumata M, Okuno K. Genetic studies of speciation in cultivated rices. 5'Inter- and intra-specific differentiation in the waxy gene expression in rice. Euphytica,1986,35:1-9
    110.Schmuths H, Bachmann K, Weber E, Horres R, Hoffinann M. Effects of preconditioning and temperature during germination of 73 natural accessions of Arabidopsis thaliana. Annals of Botany,2006,97:623-634
    111.Shao SN, Tang SQ, Luo J, Jiao GA, Wei XJ, Tang A, Wu JL, Zhuang JY, Hu PS. Mapping of qGL7-2, a grain length QTL on chromosome7 of rice. J. Genet Genomics,2010,27:523-531
    112.She K, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURYENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell,2010,22:3280-3294
    113.Shuhei S, Izumi K, Tsuyu A, Masahiro Y, Hidemi K, Kotaro M, Yukimoto I. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice,2012,5:4
    114.Shure M, Wessler and Federoff S. Molecular identification and isolation of the Waxy gene in maize. Cell,1983,35:225-233
    115.Smith AM, Denyer K, Martin C. The synthesis of the starch granule. Annu Rev Plant Physioi Plant Mol Biol,1997,48:67-87
    116.Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39(5):623-630
    117.Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U. Barley grain maturation and germination:metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol, 2008,146:1738-1758
    118.StatSoft (1999) Statistica. StatSoft Incorporated, Tusla
    119.Steber CM, McCourt P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol,2001,125:763-769
    120.Su Y, Rao YC, Hu SK, Yang YL, Gao ZY, Zhang GH, Liu J, Hu J, Yan MX, Dong GJ, Zhu L, Guo LB, Qian Q, Zeng DL. Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L). Theor Appl Genet,2011,123:859-867
    121.Takamure I, Kinoshita T. Linkage analysis in chromosomes 3 and 6. Rice Genet Newslett,1991,8:98-100
    122.Takeba G. Accumulation of free amino acids in the tips of nonthermodormant embryonic axes accounts for the increase in growth potential of New York lettuce seeds. Plant Cell Physiol,1980,21:1639-1644
    123.Tanaka K, Ohnishi S, Kishimoto N, Kawasaki T, Baba T. Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase. Plant Physiol,1995,108:677-683
    124.Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet,1999,99:642-648
    125.Tan YF, Xing X, Li JX, Yu SB, Xu CG, Zhang QF. Genetic bases of appearance quality of rice grains in Shanyou 63. An elite rice hybrid. Theor Appl Genet,2000, 101:823-829
    126.Terada R, Nakajima M, Isshiki M, Okagaki R J, Wessler S R, Shimamoto K. Antisense Waxy genes with highly active promoters effectively suppress Waxy gene expression in transgenic rice. Plant Cell Physiol,2000,41:881-888
    127.Tian ZX, QianQ, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci,2009,106(51):21760-21765
    128.Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet,2002,104:1-8
    129. Wan JM, Cao YJ, Wang CM, Ikehashi H. Quantitative trait loci associated with seed dormancy in rice. Crop Sci,2005,45:712-716
    130. Wan J, Nakazaki T, Kawaura K, Ikehashi H. Identification of marker loci for seed dormancy in rice (Oryza sativa L.). Crop Sci,1997,37:1759-1763
    131.Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet,2008, 40(11):1370-1374
    132.Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J,2010,61:752-766
    133.Wang LQ, Zhong M, Li XH, Yuan DJ, Xu YB, Liu HF, He YQ, Luo LJ, Zhang Q. The QTL controlling amino acid content in grains of rice (Oryza sativa) are co-LOCalized with the regions involved in the amino acid metabolism pathway. Mol Breeding,2008,21:127-137
    134. Wang JK, Wan XK, Crossa J, Crouch J, Weng J F, Zhai HQ, Wan JM. QTL mapping of grain length in rice(Oryza sativa L) using chromosome segment substitution lines. Genet Res,2006,88:93-104
    135.Wang SC, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.,2007 http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
    136. Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSOL16 in rice. Nat Genet,2012,44(8):950-954
    137.Wang Y, Ren Y, Liu X, Jiang L, Chen L, Han X, Jin M, Liu S, Liu F, Lv J, Zhou K, Su N, Bao Y, Wan J. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J,2010,64:812-824
    138.Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, Hong MM. Nucleotide sequence of rice waxy gene. Nucleic Acids Res,1990,18:5898
    139.Wang ZY, Zhen FQ, Shen GZ, Gao JP, Snustad P, Li MG, Zhang JL, Hong MM. The amylose content in rice endospermis related to the post-transcriptional regulation of the waxy gene. Plant J,1995,7:613-622
    140.Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res,2008,18:1199-1209
    141.Wong KS, Kubo A, Jane JL, Harada K, Satoh H, Nakamura Y. Structures and properties of arnylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice. J Cereal Sci,2003,37:139-149
    142.Woo M, Ham T, Ji H, Choi M, Jiang W, Chu S, Piao R, Chin J, Kim J, Park B, Seo H, Jwa N, McCouch S, Koh H. Inactivation of the UGPasel gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J, 2008,54:190-204
    143.Wu CT, Leubner-Metzger G, Meins F, Bradford KJ. Class Ⅰ β-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol,2001,126:1299-1313
    144.Yuki A, Keiko M, Tsuyu A, Izumi K, Masahiro Y, Hidemi K, Yukimoto I. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed grain in rice. Genes Genet,2010,85:327-339
    145.Zeng DL, Yan MX, Wang YH, Liu XF, Qian Q, Li JY. Dul, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Mol Biol,2007,65:501-509
    146.Zhang GY, Cheng ZJ, Zhang X, Guo XP, Su N, Jiang L, Mao L, Wan JM. Double repression of soluble starch synthase genes SSⅡa and SSⅢa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch. Genome,2011,54(6):448-459
    147.Zhou LJ, Chen LM, Jiang L, Zhang WW, Liu LL, Liu X, Zhao ZG, Liu SJ, Zhang LJ, Wang JK, Wan JM. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L). Thero Appl Genet,2009,118:581-590
    148.Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet,2003,106:326-331
    149.Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z. Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics,2010,184:343-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700