用户名: 密码: 验证码:
高静水压诱导水稻变异的光合生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了高静水压对水稻种子萌发、幼苗生长及处理当代的生理特性的影响,比较了经高压处理诱导的几个突变株系和对照(未经高压处理的品种)在大田生长条件下光合作用、农艺性状和产量性状的差异。主要的研究结果如下:
     1 高静水压处理的水稻种子发芽率和成苗率都显著下降,叶绿素合成受阻。成活的幼苗在播种后25d之前生长明显受到抑制,其叶绿素含量、蛋白质含量和抗氧化能力也明显低于其对照(未处理),但大约35d左右幼苗生长赶上并超过对照,此时叶绿素含量、蛋白质含量和抗氧化能力也超过对照。
     2 经高静水压处理的水稻当代,其生物量和经济产量都有不同程度的提高。生物量和经济产量提高的主要生理原因可能是:剑叶的光合色素如叶绿素、类胡萝卜素等含量较对照增加,光合速率和表观量子效率也有所增加,固定CO_2能力增强;叶片光合功能衰老延缓,即叶片PSⅡ光化学效率(Fv/Fm)和光合放氧在衰老后期保持在较高水平,光合色素含量快速降解出现较迟。
     3 通过对已经筛选到的突变株系粤压一号、突变1、突变2及其对照粤香占的比较研究,结果表明,突变株系的株高、有效穗数、收获指数等性状与对照相比都存在明显差异,空秕粒率降低,理论产量提高。孕穗-灌浆期的净光合速率和表观量子效率的急剧增加可能成为突变株系增产的主要原因。
     4 高静水压处理后水稻所受光抑制减小,且在弱光下恢复较快,另外,也增强了水稻受热胁迫时的耐热性,提高了水稻对自然界冬季低温的抵抗能力。
     5 通过我们近几年的处理、筛选水稻突变株的连续试验和实践表明,高静水压诱导产生变异的方法简单易行,可操作性强,能够作为一种获得高产优质水稻新品种的育种途径。
The effects of high hydrostatic pressure on rice (Oryza sativa L.) seed germination, seedling growth and physiological characteristics were studied in this paper. The differences of photosynthesis, agronomic traits and yield traits between mutated strains induced by high hydrostatic pressure and the control (untreated) were compared. The results suggested that mutation induced by high hydrostatic pressure was possible to be a new method for breeding. The main results are as follows:
    1. The germination and seedling rate of rice seeds treated by high hydrostatic pressure was decreased remarkably. Synthesis of chlorophyll was restrained. The growth of survival seedlings was inhibited during 25 days after sowing and their chlorophyll content, protein content and antioxidant ability were lower than the control but after sowing 35 days the seedling growth could excess that of the control and their chlorophyll content, protein content and antioxidant ability were higher than their control as well.
    2. The total biomass and grain yield were increased to different extent in rice treated by high hydrostatic pressure. Photosynthetic pigments, net photosynthetic rate (Pn) and apparent quantum yield (AQY) in flag leaves of treated rice plants were increased in comparison with the control. The content of photosynthetic pigments, PS II photochemical efficiency (Fv/Fm) and photosynthetic O2 evolution maintained higher value in flag leaves of treated plants than that of the control.
    
    
    3. The agronomic traits and photosynthetic characteristics of three mutated strains, Mutant 1, Mutant 2 and Yueya I , were compared with the control variety (Yuexiangzhan). The results indicated that some agronomic traits including plant height, effective panicles, harvest index, and empty and shrink grain rate changed obviously. As compared with the control, the theoretical grain yield of the mutated strains was increased. The higher grain yield in mutated strains was mainly due to increasing the net photosynthetic rate and apparent quantum yield considerably at the stage from booting to filling.
    4. Photoinhibition at noon was decreased and could be recovered rapidly at evening in rice plant treated by high hydrostatic pressure. In addition, high hydrostatic pressure might improve the resistance to heat under heat stress and the resistance to low temperature (0 -5 ) in Winter.
    5. The effect of high hydrostatic pressure treatment was studied for several years and we have found this method is simple and easy to be operated, so it will be a possible new method serving breeding in the future.
引文
1. 陈芳远,蒋兴村,卢升安,等.高空环境对水稻遗传性的影响.中国水稻科学,1994,8(1):1-8.
    2. 陈贻竹,李晓萍,夏丽,郭俊彦.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,1995,3(4):79-86.
    3. 陈钊明,廖耀平,陈顺佳,等.高收获指数型优质籼稻新品种粤香占.中国水稻科学,1999,13(1):61.
    4. 杜维广,张桂茹,满为群,等.大豆高光效品种(种质)选育及高光效育种再探讨.大豆科学,2001,20(2):110-115.
    5. 顾继杰,陈富裕,郑荣梁.干旱诱导作物叶片膜损伤和膜质过氧化的关系.兰州大学学报(自然科学版),1996,32(2):90-94.
    6. 胡昌浩,董树亭,岳寿松,等.高产夏玉米群体光合速率与产量关系研究.作物学报,1993,19:63-69.
    7. 蒋兴村.863-2空间诱变育种进展及前景空间科学报,1996,16(增刊):77-82.
    8. 季本华,焦德茂.光抑制条件下水稻籼粳亚种及其正反交F_1杂种的光化学特性和CO_2交换特点.植物学报,1999,41(5):508-514.
    9. 李金国,王培生,张健,蒋兴村.中国农作物航空航天诱变育种的进展及其前景.航天医学与医学工程,1999,12(6):464-468.
    10. 李群,郭房庆,顾瑞琦.外空飞行后小麦根尖细胞的染色体畸变.植物生理学报,1997,23(3):274-278.
    11. 李少昆.关于光合速率与作物产量关系的讨论(综述).石河子大学学报(自然科学版),1998(增刊),117-125.
    12. 李源祥,蒋兴村,李金国,华育坚.水稻空间诱变性状变异及育种研究.江西农业学报,2000,12(2):17-23.
    13. 李庄,李荣耀,秦绪雄,等.激光诱变无核沙田柚研究.激光生物学,1994,3(1):386-389.
    14. 林世成,等.中国水稻品种及其系谱.上海:上海科学技术出版社,1991.
    15. 林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶及脂质过氧化作用的关系.植物学报,1984,26(6):605-615.
    16. 刘娥娥,宗会,郭振飞,黎用朝.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响.热带亚热带植物学报,2000,8(3):235-237.
    17. 刘录祥,程俊源.植物诱变育种新技术研究进展.核农学报,1997,18(4):187-190.
    18. 刘拥海,彭新湘,李明启.水稻叶片中过氧化氢与核酮糖-1,5-二磷酸羧化酶/加氧酶降解的关系.植物生理学报,2000,26(6):481-486.
    19. 刘治先.玉米育种新技术.玉米科学,1995,3(4):12.
    20. 刘祖祺,王洪春.植物耐寒性及防寒技术.北京:学术书刊出版社,1990,33-48.
    21. 陆兆新.日本辐射诱变育种的最新进展.核农学通报,1997,18(6):298-299.
    22. 潘家驹主编.作物育种学总论.北京:农业出版社.1994.107-122.
    
    
    23.潘瑞炽主编.水稻生理.北京:科学出版社,1979.27-28.
    24.彭长连,陈少薇,林植芳,林桂珠.用清除有机自由基DPPH法评价植物抗氧化能力.生物化学与生物物理进展,2000,27(6):658-661..
    25.任振川,梁国鲁,米四新,等.辐射诱发红橘少核的细胞遗传学.核农学报,1991,5(3):129-133.
    26.屠曾平,林秀珍,黄秋妹,等.水稻中的光抑制现象及其品种间差异.中国水稻科学,1988,2(1):1.
    27.屠曾平.水稻光合特性研究与高光效育种.中国农业科学,1997,30(3):28-35.
    28.王宝山.植物自由基与植物膜伤害.植物生理学通讯,1988(2):12-16.
    29.王崇桃,李少昆,赵明.主要增产措施对玉米光合特性与产量的影响.玉米科学,1997,5(2):58.
    30.王琳清.作物诱变育研究与进展.见:刘后利等编著.作物育种研究与进展(第2卷).南京:东南大学出版社,1994,1-16.
    31.王培英,王连铮,朴德万.诱发大豆脂肪酸组优良突变的研究.见:王琳清主编.诱发突变与作物改良.北京:原子能出版社,1995,253-258.
    32.吴殿星,舒庆尧,夏英武.浙江大学水稻诱变育种回顾与研究动态.核农学报,2000,14(4):251-254.
    33.吴关庭.我国小麦诱变育种的研究进展.国外农学----麦类作物,1995,1:31-34.
    34.吴兰荣,李正超,邱庆树,苗华荣.我国花生诱变育种技术应用研究概况.核农学报,2002,16(5):334-336.
    35.夏英武,舒庆尧.水稻辐射育种及浙辐802的选育.见:王琳清主编.诱发突变与作物改良.北京:原子能出版社,1995,20-23.
    36.徐冠仁主编.植物诱变育种学.北京:中国农业出版社.1996.
    37.徐世平,廖耀平,翁克难,等.水稻压致变异和高压对水稻生长发育的影响.高压物理学报,2001,15(4):241-248.
    38.徐世平,廖耀平,肖万生,等.高压对水稻生长发育的影响.高压物理学报,1999,13(增刊):58-62.
    39.许大全,沈允钢,王书锦,等.大豆——根瘤菌共生体系光合与固氮关系研究.植物学报,1989,31:103-109.
    40.许大全.光合速率、光合效率与作物产量.生物学通报,1999,34(8):8-10.
    41.许大全,徐宝基,沈允钢.C3植物光合效率的日变化.植物生理学报,1990,16:1-5.
    42.许大全著.光合作用效率.上海科学技术出版社,2002.
    43.杨垂绪,梅曼彤著.太空放射生物学.1995.
    44.阳惠琴.国内外水稻诱变育种的主要成就.广西农业科学,1995,1:14-15.
    45.杨今后,杨新华.桑树人工三倍体育种的研究.蚕业科学,1984,10(1):9-12.
    46.余叔文,汤章城.植物生理与分子生物学.北京:科学出版社,1999.
    47.曾千春,周开达,朱祯,罗琼.中国水稻杂种优势利用现状.中国水稻科学,2000,14(4):243-246.
    
    
    48.张荣铣,戴新宾,许晓明,等.叶片光合功能期与作物光合生产潜力.南京师大学报(自然科学版),1999,22(3):376-386.
    49.张旺锋,勾玲,李蒙春,等.北疆高产棉田群体光合速率及与产量关系的研究.棉花学报,1999,11(4):185-190.
    50.张贤则,马占锋.大豆群体的光合速率.大豆科学,1984,3:127-132.
    51.赵军,王以柔,李美茹,等.低温锻炼对水稻幼苗叶片中Rubisco的影响.植物生理学报,1997,23(2):123-129.
    52.赵永亮,宋同明.利用花粉化学诱变快速创造特种玉米新种质.作物学报,1999,25(2):157-161.
    53.赵正宜,迟道才,刘宗琦,苏丹丹.水分胁迫对水稻生长发育影响的研究.沈阳农业大学学报,2000-04,31(2):214-217.
    54.朱保葛,柏惠侠,张艳,等.大豆叶片净光合速率、转化酶活性与子粒产量的关系.大豆科学,2000,19(4):346-350.
    55. Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. Ann Rev Plant Physiol. Plant Mol Biol, 1999, 50:601-639.
    56. Asaka M, Hayashi R. Activation of polyphenol oxidase in pear fruits by high pressure treatment. Agric Biol Chem, 1991, 55(9): 2439-440.
    57. Baker N R, Ort D R. Light and crop photosynthesis performance. In: Baker N R, Thomas H (eds). Crop Photosynthesis: Spatial and Temporal Determinants. Amsterdam: Elsevier Science Publishers, 1992, 289-312.
    58. Berry J A, Fork D C, Garrison S. Mechanistic studies of thermal damage to leaves. Carnegie Inst Yb, 1975, 74: 751.
    59. Bilger H W, Schreiber U. Energy-dependent quenching of dark level chlorophyll fluorescence in intact leaves. Photosynthesis Res, 1986, 10: 303.
    60. Biscoe P V, Scott R K, Monteith J L. Barley and its environment, Ⅲ. Carbon budget of the stand.J Appl Ecol, 1975, 12: 269.
    61. Bradford M M. A rapid and sentive method for the quantitation of microgram quantities of protein utilizing the protein-dye binding. Analytic biochemistry, 1976, 72: 248-254.
    62. Buttery B R, Buzzell R I, Findlay W I. Relationships among photosynthetic rate, bean yield and other characters in field of field-grown cultivars of soybean. Can J Plant Sci, 1981, 61-191.
    63. Cano M P, Hernandez A, Ancos B. High Pressure and Temperature Effects on Enzyme Inactivation in Strawberry and Orange Products. J Food Sci, 1997, 62(1): 85.
    64. Cao S-Q, Zhai H-Q, Yang T-N, et al. Studies on photosynthetic rate and function duration of rice germplasm resources. Chin J Rice Sci, 2001, 15(1): 29-34.
    65. Chandra, Badu R, Srinivasan P S, Natarajaratnam N, et al. Relationship between leaf photosynthetic rate and yield in blankgram [Vigna mungo(L.) Hepper]genotypes. Photosynthetica,1985, 19-159.
    66. Cheftel J C, Culioli J. Effect of high pressure on meat: A review. Meat Science, 1997, 46(3):
    
    211-236.
    67. Cheftel J C, Dumay E. Effects of high pressure on dairy proteins: A review. In: Hayashi R and Balny C (ed.). High pressure bioscience and bio/technology. Elsevier Science B V, New York, 1996,299-308.
    68. Chiaki K, Lina L, Yuichi N. Extremely barophilic bacteria isolated from the mariana trench, challenger deep, at a depth of 11,000 meters . Appl Environ Microbiol, 1998, 64: 1510-1513.
    69. Demmig-Adams B, Adams Ⅲ W W. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 1996, 198: 460-470.
    70. Dring, G J. Some aspects of the effects of hydrostatic pressure on microorganisms. In: Skinner S A, Hugo V. Inhibition and Inactivation of Vegetative Microbes . New York.: Academic Press Inc, 1976.
    71. El-Sharkawy M A, Cock J K, Lynam J K, et al. Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown cassava. Field Crop Sci, 1990, 25: 183-201.
    72. Erijman L, Clegg R M. Reversible Stalling of Transcription Elongation Complexes by High Pressure, 1998, J. Biophys, 75, 453-462.
    73. Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat. Aust J Biol Sci, 1970, 23: 725-741.
    74. Evans L T. From leaf photosynthesis to crop productivity. In: Murata N (ed). Research in photosynthesis Vol IV. Dordrecht: Kluwer Academic Publishers, 1992, 587-594.
    75. Ezaki S, Hayashi R. High pressure effects on starch: structural change and retrogradation. In: Hayashi R, Heremans K, Masson P. High Pressure and Biotechnology , Colloque INSERM John Libbey Eurotext Ltd, 1992, 224: 163.
    76. Farr D. High pressure technology in the food industry. Trends Food Sci Technol, 1990, 1, 14-16.
    77. Fischer R A, Bidinger F, Syme J R, et al. Leaf photosynthesis, leaf permeability, crop growth, and yield of short spring wheat genotypes under irrigation. Crop Sci, 1981, 21-367.
    78. Foyes C H, Furbank R, Harbinson J. The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res, 1990, 25: 83-100.
    79. Gardner F P, Pearce R B, Mitchell R L. Physiology of crop plants. Ames: Iowa State University Press, 1985, 3-30.
    80. Geiger D R, Servaites J C, Shieh W J. Balance in the source-sink system: a factor in crop productivity. In: Baker N R, Thomas H (eds). Crop Photosynthesis: Spatial and Temporal Determinants. Amsterdam: Elsecier Science Publishers, 1992, 155-176.
    81. Giannopolities C N, Ries S K. Superoxide dismutase Ⅱ. Purfication and quantitative relationship with water-soluble protein in seedings. Plant Physiol, 1977, 59: 315-318.
    82. Gordon W N, Christopher A M, Bernard M M. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiol, 1999, 145,419-425.
    83. Halstead T W, Dutcher F R. Plant in space. Ann Rev Plant Physiol, 1987, 38: 317-345.
    
    
    84. Hanson W D. Selection for differential productivity among maize plant associated photosynthetic rate and leaf area changes. Crop Sci, 1975, 11: 334.
    85. Hara A, Nagahama G, Ohbayashi A, et al. Effects of high pressure on inactivation of enzymes and microorganisms in nonpasteurized rice wine (namazake) . Nippon Nogeik Kaishi, 1990, 64(5) : 1025-1030.
    86. Hauben K J, Bartlett D H, Soontjens C C, et al. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl. Envir. Microbiol. 1997 63: 945-950.
    87. Heremans K. High Pressure Effects on Biomolecules. Ledward D A, Johnston D E, Earnshaw R G,et al. High Pressure Processing of Foods . Leicestershire: Nottingham University Press, Nottingham, 1995,208.
    88. Hobbs S L A. Relationship between carbon dioxide exchange rate, photosynthetic area and biomass in pea. Can J Plant Sci, 1986, 66: 465-472.
    89. Hoover D. Minimally processed fruits and vegetables: reducing microbial load by nonthermal physical treatment. Food Technol, 1997, 51, 66-71.
    90. Jannasch H W, Taylor C D. Deep-sea microbiology. Annu Rev Microbiol, 1984, 38, 487-514.
    91. Johnson D E. High pressure-a new dimension to food processing. Chem Ind, 1994, 13, 499-501.
    92. Johnson F H, Flagler E A. Hydrostatic pressure reversal of narcosis tadpoles. Science, 1950, 112: 91-92.
    93. Kayo C, Smorawinaka M, Li L, et al Comparison of the gene expression of aspartate bate-D-smialdehyde dehydrogenase at elevated hydrostatic pressure in deep-sea. Bacteria J Biochem, 1997, 121(4) : 717-723.
    94. Kramer P J. Carbon dioxide concentration, photosynthesis, and dry matter production,. BioScience, 1981,31:29-33.
    95. Krause G H, Weis E. Chlorophyll fluorescence as a fool in plant physiology, Ⅱ . Interpretation of fluorescence signals. Photosyn Res, 1984, 5: 139-157.
    96. Kumar P, Dube S D, Chauhan V S. Relationship among yield and some physiological traits in wheat. Indian J Plant Physiol, 1998, 3: 229-230.
    97. Landau J. Induction transcription and translation in Escherichia coli: a hydrostatic pressure study. Biochim Biophys Acta, 1967, 149, 506-512.
    98. Lellis F B, David L W. Strutural change in lipid bilayers and biological membrane caused by hydrostatic pressure. Biochemistry, 1986, 25: 7484-7488.
    99. Li J G, Wang P S, Han D, Chen F Y, Deng L P, Guo Y H. Mutation effect of high altitude balloon flight on rice and green pepper seeds. Space Medicine and Medical Engineering, 1997, 10(2) : 79-83.
    100. Lloyd C W. The plant cytoskeleton: The impact of fluorescence microscopy. Ann Rev Plant Physiol, 1987,38,119-139.
    101. Lu C-M, Lu Q-T, Zhang J-H, et al. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat
    
    plants grown in the field. J ExpBot, 2001, 52(362) : 1805-1810.
    102. Malone A S, Shellhammer T H and Courtney P D. Effects of high pressure on the viability, morphology, lysis, and Cell Wall hydrolase activity of lactococcus lactis subsp. Cremoris, Appl. Envir. Microbiol., 2002, 68(9) : 4357-4363.
    103. Maluszynsk M. Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica, 1995, 85: 303-315.
    104. Morishima I. Current Perspectives in High Pressure Biology. London: Academic Press, 1987. 17-272.
    105. Mozhaev V V, Heremans K, Frank J, et al. High pressure effects on protein structure and function. Proteins Struct Funct Genet, 1996: 24: 81-91.
    106. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxide in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867-880.
    107. Oquist G. Stress and adaptation in photosynthesis. In: Doulas R H, Moan J, Dall Acqua eds. Light in biology and medicine, Vol 1, Planum Press, New York London, 1988,433.
    108. Oren-Shanir, Pick U, Avron M. Plasma membrane potential of the alga Dunaltella and its relation to osmoregulation. Plant Physiol, 1990, 93: 403-408.
    109. Pallitt K E, Young A J, Carotenoid, Alsener R G, Hess J I. Antioxidants in higher plant. Boca Raton: CRC Press, 1992, 59-60.
    110. Panick G and Winter R. "Pressure-induced unfolding/refolding of ribonuclease A-a static and kinetik fourier-transform infrared spectroscopy study", Biochemistry, 2000, 39: 1862-1869.
    111. Patterson M. High-pressure treatment of food. In: Robertson R K, Batt C A, Patel P D (ed.). The encyclopedia of food microbiology. Academic Press, London, United Kingdom, 1999, 1059-1065.
    112. Peet M M, Bravo A, Wallace D H, et al. Photosynthesis, stomatal resistance, and enzyme activities in relation to yield of field-growth dry bean varieties. Crop Sci, 1977,17: 287.
    113. Peng S, Krieg D R, Girma F S. Leaf photosynthesis rate is correlated with biomass and grain production in grain sorghum lines. Photosyn Res, 1991, 28: 1.
    114. Poskuta J W, Nelson C J. Role of photosynthesis and photorespiration and of leaf area in determining yield of tall fescue genotypes. Photosynthetica, 1986, 20: 94-101.
    115. Powles S B. Photoinhibition of photosynthesis induced by visible light. Ann Rev plant physiol, 1984,35: 15-44.
    116. Puckridge D W, Photosynthesis of wheat under field conditions, III. Seasonal trends in carbon dioxide uptake of crop communities. Aust J Agric Res, 1971, 22: 1.
    117. Raul W, Burkey K O. Acclimation of barly to changes in light intensity: chlorophyll organization. Photosynth Res, 1990,24: 117-125.
    118. Reynolds M P, Balota M, Delgado M I B, Amani I, Fischer R A. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol, 1994, 21:717-730.
    119. Ritz M., Tholozan J. L., Federighi M., et al. Morphological and Physiological Characterization of
    
    Listeria monocytogenes Subjected to High Hydrostatic Pressure. Appl and Envir Microbiol, 2001, 67: 2240-2247.
    120. Robey M, Benito A, Roger H, et al. Variation in Resistance to High Hydrostatic Pressure and rpoS Heterogeneity in Natural Isolates of Escherichia coli O157:H7. Appl Environ Microbiol. 2001, 67 (10) : 490 1-4907.
    121. Saltveit M E. Effect of high pressure gas atmospheres and anaesthetics on chilling injury of plants. J Exp Bot, 1993,44(265) : 1361-1368.
    122. Sasahara T. Influence of genome on leaf anatomy of Triticum and Aegilops. Ann Bot, 1982, 50-491.
    123. Schreiber U, Armond P A. Heat-induced changes of chlorophyll fluorescence in isolated chloroplaste and related heat-damage at the pigment level. Biochem Biophys Acta, 1978, 502: 138-151.
    124. Schreiber U, Schliwa U and Rilger W. Continues recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosyn.Res, 1986, 10: 51-62
    125. Schwartz J R, Landau J V. Inhibition of cell-free protein synthesis by hydrostatic pressure. J Bacteriol, 1972, 112: 1222-1227.
    126. Shantha D S, Doulas M C, Ana J, Jiri J. High resolution NMR study of the pressure-induced unfolding of lysozyme, Biochem.,1992(31) : 7773-7778.
    127. Sharkey D. Thomas, Francesco loreto, Terry L. vassey. Effects of stress on photosynthesis current research in photosynthesis, 1990, Vol iv. 549-556.
    128. Sharma A K, Singh B B, Singh S D. Relationships among net assimilation rate, leaf area index and yield in soybean Glycine max (L.) Merrill genotypes. Photosynthetica, 1982, 16-115.
    129. Sharma A, James H S, George D C, et al. Microbial activity at gigapasscal pressures. Science, 2002, 295: 1514-1516.
    130. Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membrabes. Science, 1972,175:720-731.
    131. Smith W, Pope D, Landau J V. Role of bacterial ribosome subunits in barotolerance. J Bacteriol, 1975, 124: 582-584.
    132. Stoskopf N C. Understanding Crop Production. Reston, Virginia: Reston Publishing Company, 1981, 1-12.
    133. Thakur B R, Nelson P E. High pressure processing and preservation of food. Food Rev. Int. 1998, 14:427-447.
    134. Ulmer H M, Herberhold H, Fahsel S, et al. Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in lactobacillus plantarum, Applied and Environmental Microbiology, 2002, (68) 3: 1088-1095.
    135. Vidaver W. Effect of pressure on the metabolic processes of plant. In: Hill G. ed. The effect of pressure on organisms. Symposia of the Society for Experimental Biology No. 26. New York:
    
    Academic Press. 1972.
    136. Watanable N. Photosynthetic adaption to sun and shadeenvironments in Oryza eichingeri and Oryza offcianalis. Photoinhibition, photoprotection & crop productivity. China-U.S. symposium. Proceedings, 1995, 117-125.
    137. Welch T J, Farewell A, Neidhardt F C, Bartiett D H. Stress response of Escherichia coli. To elevated hydrostatic pressure. J Bacteriol, 1993, 175: 7170-7177.
    138. Wells R, Meredith Jr, W. R, Williford J R. Canopy photosynthesis and its relationship to plant productivity in near-isogenic cotton lines differing in leaf morphology. Plant Physiol, 1986, 82: 635.
    139. Winter R. "High Pressure Effects in Molecular Biophysics", Proceedings International School of Physics "Enrico Fermi" on High Pressure Phenomena, Varenna, 2001.
    140. Xu J L, Lin Y Z, Xi Y G, Jiang X C, Li J G. Mutation of rice after exposure to high attitude environment. Space Medicine and Medical Engineering, 1995, 8(3) : 206-211.
    141. Yasui T, et al. Waxy endosperm mutants of bread wheat (Triticum aestivum L.) and their starch properties. Breeding Science, 1997, 47: 161-163.
    142. Yayanos A A. microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol, 1995, 49: 777-805.
    143. Yuan L P. Hybrid rice in China. Chin J. Rice Sci. 1986, 1(1) : 8-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700