用户名: 密码: 验证码:
K417高温合金真空熔铸凝固过程的电磁控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造高温合金大多采用双真空熔铸工艺,即将原材料先在真空感应炉内熔炼并铸造成母合金锭,再在真空感应炉内将母合金锭重熔并浇注成铸件。因此,最初的高温合金母合金锭的质量对高温合金铸件的质量有很大影响。目前采用传统的真空熔铸工艺得到的高温合金母合金锭存在晶粒粗大、元素偏析严重和缩孔较多等问题,从而影响了最终铸件的合格率。
     采用传统真空熔铸工艺得到的高温合金铸件的凝固组织一般都是粗大不均的,这就导致这类铸件在中低温的环境中工作时具有较差的低周疲劳性能和力学性能。晶粒细化是提高中低温工作条件下高温合金铸件低周疲劳寿命和力学性能的有效途径之一。
     随着电磁场技术的发展,材料的电磁加工技术已经成为材料科学和材料制备领域重要的研究方向。其中,电磁搅拌技术作为细化晶粒、增加等轴晶率、减轻中心缩孔和偏析、减少夹杂物的重要手段,对提高铸坯的质量具有显著作用。
     为了解决目前高温合金母合金锭存在的质量问题,本文提出了在高温合金母合金锭真空熔铸的凝固过程中施加旋转电磁场的高温合金母合金锭真空电磁铸造新技术。建立了工频单向旋转电磁场作用下高温合金母合金锭真空电磁铸造技术的试验装置,研究了工频单向旋转电磁场对K417高温合金母合金锭质量的影响。结果表明:在高温合金母合金锭真空熔铸的凝固过程中合理施加工频单向旋转电磁场,其在金属熔体中产生的旋转电磁搅拌作用能够使K417高温合金母合金锭的等轴晶组织得到明显细化、等轴晶率有所增加、夹杂物和中心缩孔的大小和分布得到明显改善、枝晶偏析大为减轻,从而使高温合金母合金锭的质量得到大幅提高。
     为了提高在旋转电磁场作用下容易产生负偏析带缺陷的一些高温合金母合金锭的质量,本文提出了在高温合金母合金锭真空熔铸的凝固过程中施加行波磁场的高温合金母合金锭真空电磁铸造新技术。建立了单侧向上的工频行波磁场作用下高温合金母合金锭真空电磁铸造技术的试验装置,研究了单侧向上的工频行波磁场对K417高温合金母合金锭质量的影响。结果表明:在高温合金母合金锭真空熔铸的凝固过程中合理施加单侧向上的工频行波电磁场,其在金属熔体中产生的线性电磁搅拌作用能够使K417高温合金母合金锭的质量得到大幅提高。
     为了得到优质高温合金细晶铸件,本文提出了通过将施加双向旋转电磁场和在模壳内壁的面层涂料中添加孕育剂相结合的方法获得高温合金细晶铸件的新技术,建立了工频双向旋转电磁场和孕育剂作用下高温合金细晶铸造技术试验装置,研究了工频双向旋转电磁场和孕育剂对K417高温合金铸件晶粒尺寸和断面等轴晶比例的影响,并系统研究了晶粒细化到95μm对K417高温合金铸件的枝晶组织、枝晶偏析、MC型碳化物、γ′相、(γ+γ′)共晶以及室温和650℃中温条件下拉伸性能和低周疲劳性能的影响。结果表明:
     (1)通过增加电磁搅拌强度或缩短金属液的静置时间并不能完全消除高温合金铸件表面的粗大柱状晶层。通过将浇注8秒后施加150A的工频双向旋转电磁场和在模壳内壁的面层涂料中添加孕育剂铝酸钴相结合的方法,可以得到晶粒细化至95μm、断面等轴晶比例达到100%的K417高温合金细晶铸件。
     (2)通过将施加工频双向旋转电磁场和在模壳内壁的面层涂料中添加孕育剂铝酸钴相结合的方法将晶粒细化到95μm,可以大幅减轻K417高温合金铸件的枝晶偏析,并能改善其枝晶、MC型碳化物、(γ+γ′)共晶和γ′相的形态和分布,这均有利于提高高温合金铸件的塑性、韧性和疲劳性能。
     (3)在室温和650℃的中温条件下,晶粒细化到95μm可以使K417高温合金铸件的强度、塑性和低周疲劳寿命明显提高。当温度从室温20℃升高到中温650℃时,K417高温合金的抗拉强度和屈服强度基本保持不变,但其延伸率和断面收缩率却有所降低。在0.3%的总应变控制量下,当试验温度从室温20℃升高到中温650℃时,K417高温合金粗晶试样和细晶试样的低周疲劳寿命都有较大幅度的降低,这主要是由温度升高导致氧化损伤和疲劳损伤的增加所引起,其中疲劳损伤起着主要作用。
The superalloy casting is usually manufactured by two-ply vacuum casting,i.e.the raw materials are melted and casting into a master alloy ingot in a vacuum induction furnace,then the master alloy ingot is re-melted and casting into foundry goods in a vacuum induction furnace,so the quality of the superalloy cast are greatly affected by the quality of the superalloy master alloy ingots.At the present time,the master alloy ingot made by vacuum casting usually have quality problems of coarse grain,more shrinkage porosity,and more serious segregation,which reduces the percent of pass of superalloy casting.
     The main disadvantages of the conventional superalloys investment cast are coarseness and non-uniform of grain structures,which reduce the low cycle resistance and high tensile strength of the cast under the medium temperature.It has been demonstrated that the integral grain refinement is the effective method to improve the low cycle resistance and high tensile strength of the cast within the medium temperature ranges.
     The Electromagnetic Processing of Materials has become the important research field of the materials science.Therein,the electromagnetic stirring has advantages of refining the internal structures of the ingot,reducing the segregation and shrinkage cavity,and minimizing the inclusion.
     In order to improve the quality of superalloy master alloy ingots,the new technology of superalloy vacuum-electromagnetic casting,i.e.imposing rotating electromagnetic stirring to the solidification process of superalloy vacuum casting was developed,and the effect of rotating electromagnetic stirring on the quality of superalloy ingots was studied.The main conclusions can be listed as follow:Through imposing rational rotating electromagnetic stirring to the solidification process of superalloy vacuum casting,the equi-axed crystals in the superalloy ingots can be effectively refined and increased,and the central shrinkage porosity,the inclusion and the dendritic segregation of superalloy ingots are greatly reduced. The quality of superalloy ingots is obviously improved.
     In order to improve the quality of some superalloy master alloy ingots,which is easy to generate the negative segregated band under the action of the unidirection rotating electromagnetic stirring,the new technology of superalloy vacuum-electromagnetic casting, i.e.imposing linear electromagnetic stirring to the solidification process of superalloy vacuum casting was developed,and the effect of linear electromagnetic stirring on the quality of superalloy ingots was studied.The results indicate that the quality of superalloy ingots can be obviously improved through imposing rational linear electromagnetic stirring to the solidification process of superalloy vacuum casting.
     Furthermore,in order to obtain the good superalloy fine-grain casting,a new fine-grain casting technique of superalloy castings by applying reversible rotary magnetic fields and inoculants simultaneously was proposed,and effects of reversible rotary magnetic fields and inoculants on the crystal structure and performances of K417 superalloy cast were investigated.The main conclusions can be listed as follow:
     1.The coarse columnar grain surface can not be removed by increasing the current intensity or shortening the stewing time.By initiating the 50Hz and 150A reversible rotary electromagnetic stirring as soon as the molten metal was poured into the mould,which was coated with the inoculant CoAl_2O_4,the average equiaxed grain size of K417 superalloy cast can be refined to 95μm and the fraction of equiaxed grains can be increased to 100%.
     2.On condition that the average equiaxed grain size of K417 superalloy cast were refined to 95μm,the micro-segregation,the dendritic,the MC carbide,the(γ+γ') eutectic and theγ' phase in samples can be greatly improved,which is favorable to the increment of the K417 superalloy performances.
     3.Under 650℃,the strength,the plasticity and the low cycle fatigue lifes of K417 superalloy can be obviously increased by the grain refinement.When the test temperature is increased from 20℃to 650℃,the strength of K417 superalloy can kept invariable.However, the plasticity of K417 superalloy can be reduced.When the test temperature is increased from 20℃to 650℃,the low cycle fatigue lifes of K417 superalloy can be largely reduced.The reasons can be attributed to the increment of oxidized damage and fatigue damage.Therein, the increment of fatigue damage is the main factor.
引文
[1]刘佰操。铸造非铁合金。北京:机械工业出版社,2003:520
    [2]Sims C T,et al.Superalloys Π.New York:Wiley,1987:1-2
    [3]陈荣章,王罗宝,李建华。铸造高温合金发展的回顾与展望。航空材料学报,2000,20(1):55-61
    [4]骞西昌,孙传棋。关于提高铸造高温合金品质及推广应用的探讨。材料工程,2005,4:40-42
    [5]殷克勤。提高铸造高温合金及其精铸件纯净度的途径。材料工程,1999,7:47-49
    [6]张毅。高温合金的发展方向。上海钢研,2000,4:45-46
    [7]刘发信,袁文明,汤鑫,等。高温合金细晶铸造技术的发展和应用。材料工程,1995,5:7-11
    [8]郑建邦,刘林。高温合金晶粒细化技术的进展。航空工程与维修,1999,2:21-23
    [9]涡轴8用高温合金标准汇编。中国南方航空动力机械公司、航空工业总公司和航空材料热工艺标准化归口单位,1994
    [10]K.Harris,et al.USP 4721540,1988
    [11]B.B.谢多洛夫。俄国镍基铸造高温合金的理论和实践。北京航空材料研究院译,1997
    [12]美国Teledyne Picco公司合金锭标准,1986
    [13]英国DONCASTERS公司IN713LC合金锭技术条件,2000
    [14]张行安。硅酸铝耐火纤维保温帽对铸造合金铸锭质量的改进。材料工程,1982,3:17-19
    [15]俄罗斯航空材料标准译文集。航空材料热工艺标准化归口单位,1996:3
    [16]桂忠楼,吴昌新,孙传棋,等。航空用优质高温合金锭制造技术的研究。材料工程,2002,3:20-23
    [17]J.Morris,L.Strom.Reduced Oxide Formation by Reducing the Reynolds Number with Reticulated Ceraics.43~(rd) Annual Technical Meeting of the Investment Casting Institute,1995
    [18]冯东候。母合金质量的控制。材料工程,1981,5:45
    [19]黄德才,徐金璋。旋转铸锭法减少钢及高温合金中非金属夹杂物。上海金属,1996,18(2):44-46
    [20]陈瑞润,丁宏升,毕维生,等。电磁冷坩埚技术及其应用。稀有金属材料与工程,2005,34(4):510-514
    [21]蒋炳玉。冷坩埚真空感应熔炼。稀有金属材料与工程,1999,28(2):105-109
    [22]EI-KADDAHN.A new induction melting process for reactive metals.In Electric Furnace Conference Proceedings,1991:89-95
    [23]R.J.Roberts.Larger-scale cold crucible melting of titanium and its alloys.Transactions of the American Foundrymen's Society,1996,104:523-528
    [24]G.H.Schinppereit,A.F.Leatherman,D.Evers.Cold crucible induction melting of reactive metals.JOM,1991,13(2):140-143
    [25]袁文明,汤鑫,刘发信,等。细晶铸造对K418B合金显微组织及力学性能的影响。特种铸造及有色合金,1997,3:4-6
    [26]袁文明,汤鑫,陈荣章。高温合金细晶铸造工艺及其应用。铸造,1996,6:39-41
    [27]Michael Woulds,et al.Superalloys 1984.A Publication of the Metallurgical Society of AIME in 1984:3
    [28]D.E.Macha.Proceedings of symposium sponsored by AIME,held at the Fall Meetings of AIME,1982,10:25-26
    [29]J.M.Lane.Microcast-X fine Grained Casting for Aerospace Industry.AeroMat93,1993,6:56-74
    [30]袁文明,汤鑫,刘发信。铸型搅动法整体涡轮细晶铸造工艺的研究。铸造,1997,2:24-28
    [31]A.F.Denzine et al.Advanced casting technology.1982,325(12):1-9
    [32]L.Lin,R.Zhang,L.D.Wang et al.A new method of fine grained casting for nickel-base superalloys.Journal of Materials Processing Technology,77(1998) 300-304
    [33]J.P.Dennison.Grain Refinement by the Introduction to the Melt of Oxide Particles Pre-dispersed in Melt Strip.The Metallurgical Society of AIME,1983,pp:139-149
    [34]W.R.Freeman.Investment Casting.Superalloy Π-High Temperature Materials for Aerospace and Industrial Power,1987,pp:411-439
    [35]W.Rerf,A.Banerji.Search,1991,1-4
    [36]L.Liu,T.W.Huang,Y.H.Xiong,et al.Grain refinement of superalloy K4169 by addition of refiner:cast structure and refinement mechanisms.Mater.Sci.Eng.A 394(2005):1-8.
    [37]Asai S.Matall.Appl.Magnetohydrodynamic.Proceedings of A IUTAM Symposium,The Metal Society,1984,224
    [38]Asai S.Proceeding of the 6~(th) International Iron and Steel Congress,Nagoya,ISIJ,1990,370
    [39]The 1~(th) International Symposium on Electromagnetic Processing of Materials,ISIJ International.Oct.1994,Nagoya,Japan
    [40]The 2~(th) International Symposium on Electromagnetic Processing of Materials,ISIJ International.Oct.1997,Pads,France
    [41]The 3~(th) International Symposium on Electromagnetic Processing of Materials,ISIJ International.Oct.2000,Nagoya,Japan
    [42]The 4~(th) International Symposium on Electromagnetic Processing of Materials,ISIJ International.Oct.2003,LYON,France
    [43]The 5~(th) International Symposium on Electromagnetic Processing of Materials,ISIJ International.Oct.2006,Sendai,Japan
    [44]李廷举,温斌,张志峰等。电磁场作用下材料加工新技术。大连理工大学学报,2000,40(s):61-64
    [45]李廷举,金俊泽。改进铸坯表面质量的电磁连续铸造研究进展。大连理工大学学报,2000,40(1):80-82
    [46]J.P.Birat,J.Chone.Electromagnetic stirring on billet,bloom and slab continuous casters:state of the art in 1982.Ironmaking and Steelmaking,1983,10:67-73
    [47]贾光霖,庞维成.电磁冶金原理与工艺.沈阳:东北大学出版社,2003:143-165.
    [48]A.A.Tzavaras.Solidification control by electromagnetic stirring-state of the art.Steelmaking Conference,1983,66:89-107.
    [49]T.Fijii.State of Art Electromagnetic Processing in Japanese Iron and Steel Industry.The 3~(rd)International Symposium on Electromagnetic Processing of Materials,ISIJ International.Oct.2000,Nagoya,Japan
    [50]徐国兴,张琪渔。电磁搅拌技术在连铸上的应用及对铸坯质量的影响。武钢科技,1997,(1):5
    [51]#12
    [52]Fujisaki K.In-mold electromagnetic stirring in continuous casting.IEEE Transactions on Industry Applications.2001,37(4):1098-1104.
    [53]Oh K S,Chang Y W.Macro-segregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring.ISIJ International.1995,35(7):866-875.
    [54]陈崇峰。一种新型的连铸电磁搅拌技术。钢铁研究,1997,3:53-56.
    [55]Ayata K,Mori H,Tanigunchik,et al.Low superheat teeming with eletromagnetic stirring.ISIJ International.1995,35(6):680-685.
    [56]朱兴元。连铸电磁搅拌工艺在取向硅钢生产中的应用研究。钢铁,1994,29(4):19-23
    [57]李开煜,杨焕祥。电磁工艺参数的研究与应用。炼钢,1994,3:47-52
    [58]李开煜。EMS和轧制参数对含磷钢低温韧性的影响。钢铁研究,1991,5:6-9
    [59]李开煜.。电磁搅拌工艺对无取向W钢质量的影响。钢铁研究,1990,3:21-25
    [60]纪振双,姚留枋,唐仲和。电磁搅拌作用下铸坯宏观偏析的研究。钢铁研究学报(增刊),1992,4:9-14
    [61]纪振双,姚留枋,唐仲和,等。连铸过程采用电磁搅拌时的负偏析带的形成机理。钢铁研究学报,1993,5(2):9-16
    [62]赵航,李铮。连铸钢坯上白亮带的形成机制。钢铁研究学报,2000,12(1):71-72
    [63]吴夜明,姚留枋。电磁搅拌对铸坯化学成分偏析影响机理[J]。特殊钢,1999,20(3):13-16
    [64]赵爱民,毛卫民,崔成林,等。电磁搅拌对弹簧钢60Si2Mn凝固组织的影响。北京科技大学学报,2000,22(2):134-137
    [65]周德光,傅杰,王平。工艺参数对连铸轴承钢坯碳偏析的影响。钢铁,1999,34(6):22-26
    [66]毛卫民,赵爱民,钟雪友。非枝晶半固态Zl101合金的电磁搅拌及触变成形研究,铸造,1999,2:5-8
    [67]李树索,王德仁,毛卫民,等。Al-37%Si合金磷变质及电磁搅拌显微组织的研究。机械工程材料,1998,22(5):14-16
    [68]胡汉起,郑日琪。电磁搅拌对低硫钢枝晶组织及机械性能的影响。金属学报,1990,26(4):A313-A315
    [69]李治,金俊泽,曹志强。电磁搅拌作用下TM颗粒—Al红外功能复合材料的研究。大连理工大学学报,1999,39(4):523-526
    [70]金俊泽,曹志强,郑贤淑。电磁搅拌作用下形成分离共晶的研究。金属学报,1995,31(8):B374-B378
    [71]李丘林,李新涛,李廷举,等。水平电磁连铸空心铜管坯组织和性能的研究。稀有金属材料与工程,2006,35(7):1126-1128
    [72]Li Xintao,Guo Zhaoxiang,Zhao Xiangwei,et al.Continuous casting of copper tube billets under rotating field.Materials Science and Engineering A 460-461(7):648-651
    [73]回春华,李廷举,金文中,等。锡磷青铜带坯的水平电磁连铸技术研究。稀有金属材料与工程,2008,37(4):721-724
    [74]徐国兴,张琪渔。电磁搅拌技术在连铸机上的应用及其对铸坯质量的改善。上海金属,1997,19(3):28-33
    [75]黄尊贤,朱祖民。电磁搅拌在板坯连铸机上的应用。宝钢技术,1994,3:51-55
    [76]国旭民,钱百年,薛小怀,等。电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响。金属学报,2000,36(2):177-180
    [77]冷海燕,韩维新,杨柯,等。电磁搅拌对离心铸造耐热不锈钢空心管坯组织和加工性能的影响。钢铁研究学报,2000,12(3):18-21
    [78]毛斌,王世郁,童立荣,等。舞钢板坯连铸机二冷区电磁搅拌器的参数及其性能。重型机械,1999,6:4-8
    [79]韩维新,杨柯,李殿中,等。电磁搅拌对离心铸造0Cr17Mn14Mo2N管坯组织和性能的影响。铸造,1998,12:7-10
    [80]焦育宁,刘清民,杨院生,等。电磁流体流动对Al-Al_2Cu共晶形态的影响。金属学报,1994,30(6):A286-A288
    [81]上原彰夫,藤崎敬介,清濑明人。连续铸造における铸型内电磁搅拌方法。特开平10-180426
    [82]#12
    [83]渡边省三,瑕名 清,青木松秀,等。连续铸造方法。平3-254338
    [84]Takeuchi H.et al.Trans.ISIJ,1981,21:109
    [85]Suzuki K.et al.Trans.ISIJ,1984,24:940
    [86]Takehiko TOH,Eiichi TAKEUCHI,Masatake HOJO,et al.Electromagnetic control of initial solidification in continuous casting of steel by low frequency alternating magnetic field.ISIJ International,1997,37(11):11-12
    [87]山本裕则,松村千史,森健太郎。连续铸造方法及びその装置。特开平4-220149
    [88]Beitelman LEN.Flow control in the meniscus of continuous casting mold with an auxiliary a.c.magnetic field.ISEPM,1994,235-241
    [89]Beitelman L,Mulcahy J A.Continuous casting of steel billets with an in-mold dual-coil electromagnetic stirring system.ISEPM,1997,335-341
    [90]S.Kunstreich,M.C.Nove,D.Yves.In-mold double stirring system in continuous casting:effect of two counter rotating magnetic fields.ISEPM,1997,355-365.
    [91]藤村俊生,北冈英就。连续铸造片の中心偏析防止方法。特开昭63-157748
    [92]徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的影响。武钢科技,1997(1):5
    [93]Getselev Z N.Method of semicontinuous casting of metals and plant for same.U.S.Pat:3467166.1969.
    [94]Getselev Z N.Casting in an electromagnetic field.Joural of Metals.1971,23(10):38-40
    [95]Getselev Z N.Production of continuously cast shapes using electromagnetic forming.British Foundryman,1973,66(2):56-57.
    [96]Vives C.Electromagnetic refining of aluminium alloys by the CREM process:part Ⅰ working principle and metallurgical results.Metallurgical Transactions B.1989,20B(10):623-629
    [97]Vives C.Electromagnetic refining of aluminium alloys by the CREM process:part Ⅱ Specific practical problems and their solutions.Metallurgical Transactions B.1989,20B(10):631-643
    [98]李双明,张丰收,郝启堂,等。高温合金叶片类铸件电磁软接触成形过程研究。稀有金属材料与工程,2003,32(6):443-446
    [99]Shijie Guo,Jianzhong Cui,Qichi Le,et al.The effect of alternating magnetic field on the process of semi-continuous casting for AZ91 billets.Materials Letters,2005,59:1841-1844
    [100]Alemany A,Argous J P,Barbet J,et al.Procedes dispositifs electromagnetique de separation condinued inclusions solidesou liquides contenues dans un metal liquide.France patent:804004430,1980
    [101]杨长贺,高钦。有色金属净化。大连:大连理工大学出版社,1989
    [102]LI Tian-xiao,XU Zheng-ming,SUN Bao-de,et al.Electromagnetic Separation of Nonmetallic Inclusions from Aluminum Alloy Melt.The 5~(rd) IUMRS International Conference on Advanced Materials.Beijing,China,1999.
    [103]Joon-Pyou Park,Atusi Morihira,Kensuke Sassa,et al.Elimination of Non-metallic Inclusions Using Electromagnetic Force.Tetsu-to-Hagane,1994,80(5):389-394.
    [104]LI Tianxiao,XU Zhenming,SUN Baode,et al.Electromagnetic Separation of Primary Iron-rich Phases from Aluminum-silicon Melt.Transactions of Nonferrous Metals Society of China.2003,13(1):121-125.
    [105]Yukihiro Kubota,Noboru Yoshikawa,Shoji Taniguchi.Electromagnetic Migration Force Acting on Two Non-conducting Particles in DC Electromagnetic Force Field.Tetsu-to-Hagane,2001,87(3):113-120.
    [106]Taniguchi S,Brimacombe J K.Application of Pinch Force to the Separation of Inclusion Particles from Liquid Steel.ISIJ International,1994,34(9):722-731.
    [107]Yamao F,Sassa K,Iwai K,et al.Separation of Inclusions in Liquid Metal Using Fixed Alternating Magnetic Field.Tetsu-to-Hagane,1997,83(1):30-35.
    [108]张磊,姚广春,焦万丽。交变磁场分离铝熔体中Fe、Si的金属间化合物。轻合金及其加工,2006(1):53-56.
    [109]陈禄政,彭征。交变磁场涡电流分离回收固废中有色金属资源研究。环境污染治理技术与设备。2004,5(1):76-79.
    [110]钟云波,任忠鸣,邓康,等。行波磁场连续净化铝合金液试验。中国有色金属学报,2001,11(2):167-171
    [111]Tanaka Y,Sassa K,Iwai K,et al.Separation of Nonmetallic Inclusions from Molten Metal Using Traveling Magnetic Field.Tetsu-to-Hagane.1995.81(12):1120-1125.
    [112]袁庆波,李新华,钟云波,等。行波磁场净化铝熔体中的感生电流分布。云南冶金,2003,32(4):18-21.
    [113]钟云波,任忠鸣,邓康,等。行波磁场净化液态金属时矩形管及三角形管内夹杂物去除效率的理论分析。金属学报,1999,35(5):503-508.
    [114]钟云波,任忠鸣,邓康,等。行波磁场净化液态金属时金属流动控制的初步探讨。上海大学学报,1999,5(1):43-45.
    [115]翟秀静,符岩,李鸿斌,等。旋转磁场用于原铝净化的研究。东北大学学报,2002,23(11):1083-1085.
    [116]高海潮,朱伦才,颜根发。钢包电磁搅拌生产洁净钢的几个工艺理论问题.钢铁研究,2000,(3):14-18.
    [117]肖英龙.利用离心式中间包提高钢液纯净度.宽厚板。2001,7(4):39-41.
    [118]Norihisa Waki,Kensuke Sassa,Shigeo Asai.Magnetic Separation of Inclusions in Molten Metal Using High Magnetic Field.Tetsu-to-Hagane,2000,86(6):363-369.
    [119]Koichi Takahashi,Shoji Taniguchi.Electromagnetic Separation of Nonmetallic Inclusion from Liquid Metal by High Frequency Magnetic Field.ISIJ International,2003,43(6):820-827.
    [120]李克,孙宝德,李天晓,等。利用高频磁场分离Al熔体中的非金属夹杂。金属学报,2001,37(4):405-410.
    [121]Shu Da,Sun Baode,Li Ke,et al.Continuous Separation of Non-metallic Inclusions from Aluminum Melt Using Alternating Magnetic Field.Materials Letters,2002,55:322-326.
    [122]Li T J,Xintao Li,Zhifeng Zhang,et al.Effect of multielectromagnetic field on meniscus shape andquality of continuously cast metals.Iromaking & Steelmaking,2006,33(1):57-60
    [123]王哲峰,崔建忠,朴凤贤。空心管坯的异相位电磁连铸。中国有色金属学报,2006,16(3):500-504
    [124]LI T J,CAO Z H,JIN J Z,et al.Control of solidified structure of cast metal by imposing electromagnetic field.Mater Trans,2001,42(2):281-285.
    [125]Cao Zhiqiang,Jia Fei,Zhang Xingguo et al.Microstructure and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys.Materials Science and Engineering,A327(2002) 133-137.
    [126]Beijiang Zhang,Jianzhong Cui,Guimin Lu.Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy.Materials Science and Engineering,A355(2003) 325-330.
    [127]赵凯华,陈熙谋。电磁学。高等教育出版社,1998:763-766
    [128]Spitzer K.H,Reiter G,Schwerdtfeger K.Volume force designs in liquids by mutifrequency electromagnetic stirring[C].International symposium on electro-magnetic processing of materials.Nagoya:ISIJ.1994.178-182.
    [129]冯慈璋。电磁场。高等教育出版社,1983:278
    [130]王晓东。电磁力对金属熔体驱动与运动形态控制的研究。博士论文,大连理工大学,2002:20-21
    [131]Joseph A.Mulcahy,Leonid Beitelman.Rotary electromagnetic stirring for continuous casting of billets and blooms.Iron and Steel Engineer,1984,(7):49-57.
    [132]《高温合金金相图谱》编写组。高温合金金相图谱。冶金工业出版社,1979:181-184
    [133]李爱武。电机子分离型电磁搅拌器特点浅析。第二届全国连铸电磁搅拌技术研讨会论文集,1998:26-34
    [134]黄乾尧,李汉康。高温合金。冶金工业出版社,2000:179-181
    [135]王晓东,李廷举,金俊泽,等。电磁驱动力对金属铸坯凝固的影响。材料工程,2001,6:13-16
    [136]J.T.berry,R D.Pehlke,P.v.Desai.The place of Computer Simulation of Solidification in Casting Production Interdisciplinary Issues in Materials Processing and Manufacture.ASME.233-250,1987.
    [137]王喜军。铸件充型及凝固过程数值模拟集成软件系统的研究。哈尔滨工业大学博士学位论文,1997.
    [138]J.Q.Wang,S.F.Hansen,P.N.Hansen.3-D Modeling and Simulation of Mold Filling Use Pc's,Molding and Casting and Welding Process Ⅳ ED by AF.Giamei and G.J.Abbaschian.TMS,741-754,1988
    [139]徐雪华,苏士芳,李殿中,等。复杂铸件的三维造型及自动剖分。铸造,1995,8:15-19.
    [140]康进武。铸钢件凝固过程热应力数值模拟研究。清华大学博士学位论文,1997.
    [141]陈瑶,柳百成。铸造过程应力场数值模拟技术的研究进展。中国机械工程,1996,7(4):50-53.
    [142]杨秉俭,J.A.Dantzig。灰铸铁的应力屈服面及三维热弹塑性应力分析。西安交通大学学报,1992,26(4):31-42.
    [143]B.J.Yang,WT Liu,J.Y.Su.Numerical Modeling on the Temperature Fluctuation and Thermo-stress Development of the Continuously Cast Steel Thin-slab.Conference on Modeling of Casting,Welding andAdvanced Solidification ProcessesⅦ,The Minerals,Metals & Materials Society,1995.
    [144]韩志强。球墨铸铁凝固过程的三维数值模拟研究。西安交通大学博士学位论文,1997.
    [145]刘瑞祥,陈立亮,魏华胜,等。铸件凝固过程数值模拟的生产应用。现代铸铁,2003,4:34-36.
    [146]曹广军,陈立亮。基于FDM/FEM联合的铸件凝固过程热应力数值模拟的研究。铸造技术,2007,8(7):987-990.
    [147]ANSYS技术报告。ANSYS Inc.,1998:1-6.
    [148]周建新,刘瑞祥,陈立亮,等。凝固过程数值模拟中潜热处理方法。铸造,2001,50(7):404-407.
    [149]金属平均晶粒尺寸测定法。GB6394-86。中华人民共和国标准,1986:716-730
    [150]上海市机械制造工艺研究所主编。金相分析技术。上海科学技术文献出版社,1987:791-806
    [151]安阁英。铸件形成理论。机械工业出版社,1990:131-141
    [152]周尧和,胡壮麒,介万奇。凝固技术。机械工业出版社,1998:464-465
    [153]熊玉华,李培杰,杨爱民,等。铸造工艺参数和细化剂对K4169高温合金铸态组织的影响。金属学报,2002,(5):534-538.
    [154]朱丽娟,王冬,张鸿剑,等。铸造合金凝固过程补缩机理的探讨与应用。特种铸造及有色合金,1997,(6):34-38.
    [155]Y.Miki,H.Kitaoka,T.Sakuraya,T.Fujii.Mechanism for Separating Inclusions from Molten Steel Stirred with a Rotating Electromagnetic Field.ISIJ International,1992,32(1):142-149
    [156]刘忠元,薛玉芳,罗甘澍,等。真空熔铸高温合金铸件中非金属夹杂物的研究。特种铸造及有色合金,1987,4:1-3
    [157]贾光霖,庞维成.电磁冶金原理与工艺.沈阳:东北大学出版社,2003:179-183.
    [158]叶云岳。直线电机原理与应用。机械工业出版社,2000:11-13
    [159]汤蕴缪。电机内的电磁场。科学出版社,1998:237-240
    [160]Dubke M,Spitzer K H,Schwerdtfeger K.Spatial distribution of magnetic field of linear inductors used for electromagnetic stirring in continuous casting.Ironmaking and Steelmaking.1991,18(5):347-353
    [161]张琦。复合电磁场对连铸空心管坯质量的影响。大连理工大学博士论文,2007:36-37
    [162]张宏丽。线性电磁搅拌在钢液凝固过程中的作用规律。东北大学博士论文,2002:5-17,55-57
    [163]杨树人,汪志明,何光渝,等。工程流体力学。石油工业出版社,1988:78-79
    [164]马世魁。型壳表面孕育剂的脱落及解决措施。特种铸造及有色合金,1990,3:57-59
    [165]J.D.Hunt.Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic.Materials Science and Engineering,1984,(65):75.
    [166]方建,于彬。高温合金铸件表面晶粒细化的研究。金属学报,1982,(3):255-263.
    [167]B.Yao,D.J.Li,A.M.Wang,et al.Preparation of Cu-Si bulk nanometer alloy under high pressure.Physica B 212(1995):61-66.
    [168]Flemings M C.Metali Trans A,1991,22:957
    [169]Vogel A,Dohkety R D,Cantor B.Proceeding of international conference on solidification.London:University of Sheffield,1979:518-524.
    [170]Hallawell A.the 4~(th) International conference on Semi-Solid Processing of Alloy and Compositions.Sheffield,UK:The University of Sheffield,1996:60
    [171]Charles Vives.Crystallization of semi-solid magnesium alloys and composites in the presence of magnetohydrodynamic shear flows.Journal of Crystal Growth,1994,137(3-4):653-662.
    [172]张勤,路贵民,崔建忠,等。CREM法半连续铸造Al合金非枝晶组织的形成机制。金属学报,2001,(8):873.
    [173]黄乾尧,张绍津,甄宝林。镍基铸造高温合金中元素对一次碳化物MC的组成及其形态的影响。钢铁,1981,16(12):41-47
    [174]黄荣芳,唐亚俊,胡壮麒。K17铸造涡轮叶片的冶金质量。机械工程材料,1986,(4):19.
    [175]Sims C T,et al.Superalloys Π.New York:Wiley,1987:80-81
    [176]胡庚祥,钱苗根。金属学。上海科学技术出版社,1980:50-60
    [177]黄乾尧,李汉康。高温合金。冶金工业出版社,2000:57-58
    [178]袁超,郭建亭,杨洪才。铸造镍基高温合金的蠕变阻力。金属学报,2002,38(11):1149-1156.
    [179]J.P.Dennison,P.D.Holmes,B.Wilshire.Mater Sci Eng,1978,33(1):35-47
    [180]Sims C T,et al.Superalloys Π.New York:Wiley,1987:50-51
    [181]陈国良。高温合金学。冶金工业出版社,1988:90-91
    [182]黄乾尧,李汉康。高温合金。冶金工业出版社,2000:47-48
    [183]杨爱民。K4169高温合金组织细化及性能优化研究。西北工业大学博士学位论文,2002:101
    [184]陈立佳,王中光,姚戈,等。铸造镍基高温合金K417的高温低周疲劳行为。金属学报,1999,35(11):1144-1150.
    [185]黄志伟,袁福河,王中光,等。M38镍基高温合金高温低周疲劳性能及断裂机制。金属学报,2007,43(10):1025-1030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700