用户名: 密码: 验证码:
含氟聚合物的合成及其作为生物防污涂层的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,含氟聚合物具有极低的表面自由能,优异的光学性能、电学性能、热稳定性和耐化学性,因此在织物整理、光纤涂层、微电子和防污剂等领域具有很好的应用前景。在海洋防污上,自从国际海事组织(IMO)在2003年开始禁用毒性的有机锡防污漆后,世界各国科学家都开始致力于研究和开发新型的环境友好型防污涂料或涂层作为替代品。其中含氟聚合物由于其较低的表面张力和环境友好性而倍受关注,但目前还没有性能很好的商品化的含氟产品出现。因此,找到能够提高海洋防污效果的技术和开发出具有潜在应用价值的含氟聚合物显得特别重要。
     在本论文中我们设计并合成了几种低表面能含氟共聚物,利用FT-IR、1H NMR、19F NMR、GPC、XPS等方法对聚合物的结构进行了表征,并在玻璃和金属表面制备了相应的涂层,最后对涂层表面进行了海洋防污性能测试。本论文我们先在实验室条件下对含氟涂层的抗菌性能(金黄色葡萄球菌和大肠杆菌)和抗藻性能(污损性硅藻)进行初步评价。之后,筛选出有潜在防污性能的聚合物来作为涂料用的功能性树脂,并将得到的涂料直接用于山东青岛海上的海上挂板实验。全文主要包括以下几个方面的工作。
     一、从苯乙烯和含氟烷基醇原料出发,通过三步反应合成了两种全氟烷烃取代的苯乙烯单体,再将此重要单体和甲基丙烯酸甲酯、甲基丙烯酸缩水甘油酯通过自由基溶液聚合反应得到含全氟烷烃取代的苯乙烯为侧链的预聚物,最后在紫外光照条件下,功能性环氧基团开环得到新型的交联的含全氟烷烃取代的苯乙烯为侧链的功能性聚合物。并采用自然界中普遍存在的金黄色葡萄球菌(革兰氏阳性)进行抑菌性测试和海洋中污损性较强的硅藻进行生物防污测试。
     二、合成了含全氟聚醚取代的疏水性苯乙烯单体,并设计合成含三乙二醇结构单元的亲水苯乙烯单体,再通过自由基聚合反应,得到一种新型含两亲性的聚合物,并对其性能进行探索性研究。我们采用自然界中普遍存在的大肠杆菌(革兰氏阴性)和金黄色葡萄球菌(革兰氏阳性)进行抑菌性测试。另外,采用室内挂板的方法研究新型功能性树脂的防生物附着性能。
     三、自组装技术在表面改性中的应用。我们利用自组装技术将含聚乙二醇和短链氟烷基单元的两亲性硫醇嫁接到铜片基底上,以期对金属表面进行改性,实现超薄防污膜的制备。我们用掠角红外反射光谱和X-射线光电子能谱(XPS)对硫醇自组装膜进行了表征,其结果证明两亲性自组装膜已被成功制备。最后用金黄色葡萄球菌和硅藻进行了生物测试,测试结果表明这类自组装膜都有很好的潜在防污性能。
     四、仿生聚合物的合成。我们结合了具有天然防污性能的磷酰胆碱(PC)和低表面能的全氟聚醚(PFPE)特点,通过乳液聚合合成了一系列新型的仿生聚合物。通过调节亲水性磷酰胆碱(PC)取代的丙烯酸酯单体和疏水性全氟聚醚取代的苯乙烯单体的比例,期望得到一种防污性能优异的仿生聚合物。通过分析常见菌的抑菌圈大小和硅藻吸附的细胞个数得出的结论是:聚合物8c、8d和8e防污性能较好。
     五、涂料配方的研究。以防污涂料中最核心的两部分:防污剂与成膜树脂为出发点,首先我们通过硫代、还原、酰胺化和氯化反应合成了异噻唑啉酮类化合物MI和CMI,并用它来代替被禁用的有机锡防污剂和有毒的氧化亚铜等无机重金属防污剂。然后在前面章节合成出的各类聚合物基础上,我们筛选出有潜在防污性能的聚合物4a-b以及8c-e作为主要成膜树脂。最后应用涂料知识,设计出以聚合物4a-b以及8c-e作为主要成膜树脂,以异噻唑啉酮类化合物MI和CMI为有机防污剂的涂料。并通过在青岛海上挂板测试,我们发现以聚合物4b为树脂的涂料AF-2和以聚合物8c为树脂的涂料AF-3的防污性能较好,有效期能达2个月以上。
Fluorinated polymers have an extremely low surface energy, excellent optical and electrical properties, thermal stability and chemical resistance, so these polymers can be used in the fields of textile finishing, optical fiber claddings, microelectronics as well as antifouling agents. In the area of marine antifouling, scientists around the world have been making their efforts to research and develop novel environmentally benign marine antifouling paints or coatings since antifouling materials containing organotin derivatives have been banned by the International Marine Organization in 2003. Fluorinated polymers have been attracted by researchers due to their low surface tension and environmentally benign property. However, there are not effective fluorinated materials which can be used as marine coatings or paints on the market up to now, so it is very important for us to research and develop some novel promising functional fluorinated polymers capable as antifouling materials.
     In this dissertation, several classes of low surface energy fluorinated copolymers were designed, synthesized and characterized by FT-IR、1HNMR、19FNMR、GPC and XPS measurements. Then surfaces of slides and metals were coated with these polymers and their marine antifouling properties were evaluated by laboratory assays employing the fouling diatom Nitzschia and bacteria Staphylococcus aurous and Escherichia coli. After the primary biofouling investigation, some promising antifouling polymers were selected to be further used as the functional resins in the paints which were applied directly in the plate assay in the ocean of the coastal city---Qingdao, Shangdong province. Our work in the dissertation includes the following five parts.
     PartⅠ. Two important monomers---fluorinated styrenes were synthesized through three steps from chloromethylstyrene and fluoroalkylalcohol. And then, the monomers reacted with methyl methacrylate, glycidyl methacrylate through a free radical polymerization reaction to form methyl methacrylate-co-glycidyl methacrylate-co-semifluoroalkyl substituted styrene terpolymers 4a and 4b, finally the prepolymers 4a and 4b were cross-linked under the ultraviolet irradiation from a mercury arc lamp in the presence of an organic photo acid generator WPAG 336. The antifouling properties of the cross-linkable terpolymers containing semifluoroalkyl substituted aromatic side chains were assayed using the fouling diatom Nitzschia and ubiquitous Staphylococcus aureous.
     PartⅡ. The hydrophobic perfluoropolyether substituted styrene monomer and other styrene containing hydrophilic oligo(ethylene glycol) units were designed and synthesized. And then a novel amphiphilic copolymer was prepared by a free radical polymerization between the two monomers. The bacterial attachment experiments were carried out by using Escherichia coli and Staphylococcus aureous. Additionally, the further investigation of its antifouling property was studied employing the fouling diatom Nitzschia.
     PartⅢ.The application of assembling technology on surfaces'modification was studied. A series of amphiphilic alkanethiols containing poly(ethylene glycol) and short fluoroalkyl chains were synthesized and grafted on the surface of the copper to form a thin film which was then evaluated as an antifouling coating. From the results of GA-FTIR and XPS measurements on the resultant self-assembled layers, it can be concluded that films were successfully formed on copper substrates. Finally, results of biofouling assays using bacterial Staphylococcus aureous and diatom Nitzschia indicated the good antifouling properties of these self-assembled films.
     PartⅣ. A class of biomimetic polymers was synthesized and studied. A series of biomimetic polymers containing natural antifouling phosphorylcholine groups (PC) and low surface energy perfluopolyether (PFPE) unit were synthesized by means of emulsion polymerization. By changing the proportion of hydrophilic PC groups grafted acrylate monomer and hydrophobic PFPE substituted styrene, we expect to find some promising biomimetic copolymers. The results of the number of adhesive cells of bacteria and diatom on the substrates indicated that polymers 8c,8d and 8e have the excellent antifouling properties.
     PartⅤ. Research on coating formula of the paint. It has been known that the most important parts of antifouling paints are antifoulant and the film-forming resin, so based on the knowledge above, we first prepared 2-Methyl-4-isothiazoline-3-one (MI) and 5-chloro-2-methyl-4-isothiazoline-3-one (CMI) via a four-step synthetic protocol including addition, reduction, amidation and chlorination reactions. These organic compounds were designed as non-toxic antifoulants in place of the banned organotin compounds and toxic cuprous oxide. Then we try to select promising antifouling polymers 4a-b and 8c-e which were synthesized on the previous chapters as film-forming resins. Finally, antifouling paints were designed by using CM and CMI as antifoulants and polymers 4a-b,8c-e as film-forming resins. By plate assay in the ocean of Qingdao, it can be found that paints named AF-2 and AF-3 composed of resins 4b and 8c, respectively, have the best antifouling performances and be of effect for at least two months.
引文
1. Chambers, L. D.; Stokes, K. R.; Walsh, F. C; Wood, R. J. K. Modern approaches to marine antifouling coatings, Surf. Coat. Technol,2006,201(6),3642-3652.
    2. 史航,王鲁民,海洋污损生物藤壶的附着机理及防除,广东农业科学,2006,(6),72-74。
    3. Townsin, R. L. The ship hull fouling penalty, Biofouling,2003,19(supplement), 9-15.
    4.周陈亮,舰船防污涂料的历史、现状及未来,中国涂料,1998,(6),9-10。
    5.尚同来,王玲,尚永春,船底附着海生物及防除,海洋技术,2002,21(2),49-50。
    6.颜东洲,贾成功,防污涂料的应用和技术进展,化工科技市场,2002,25(12),21-24。
    7.史航,王鲁民,海洋污损生物藤壶的附着机理及防除,广东农业科学,2006,(6),72-74。
    8.李长彦,张桂芳,付洪田,电解海水防污技术的发展及应用,材料开发与应用,1996,11(1),38-43。
    9.何耀春,电解海水防止船舶冷却水系统附着海洋生物,上海船舶运输科学研究所学报,1979,(2),79-91。
    10.张桂芳,电解海水防污技术,材料开发与应用,1989,(6),1-4。
    11.姚洪猛,李青,电解海水防污原理、应用及改进,山东电力技术,1999,(5),41-44。
    12.胡德仁;钱雷毅;电解海水防止海生物污损船舶的研究,上海船舶运输科学 研究所学报,1993,16(2),68-72。
    13.梁成浩,顾谦农,吴青镐,电解海水防污处理技术,东海海洋,1997,15(1),59-65。
    14. Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coat.,2004,50 (2),75-104.
    15.黄英,柯才焕,周时强,国外对藤壶幼体附着的研究进展,海岸科学,2001,25(3),30-32。
    16.何方岳,低VOC高性能防污涂料的研制,浙江树人大学学报,2003,3(2),70-73。
    17. Callow, M. E.; Callow, J. A.; Clare, A. S. Some new insights into marine biofouling, World Super Yacht,2003, (1),34-39.
    18. Patel, P.; Callow, M. E.; Joint, I.; Callow, J. A. Specificity in the settlement-modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha, Environ. Microbiol,2003,5 (5),338-349.
    19. Faimali, M.; Garaventa, F.; Terlizzi, A.; Chiantore, M.; Cattaneo-Vietti, R. The interplay of substrate nature and biofilm formation in regulating Balanus amphitrite Darwin,1854 larval settlement, J. Exp. Mar. Biol. Ecol.,2004,306 (1), 37-50.
    20. Costerton, J. W. Introduction to biofilm, Int. J. Antimicrob. Agents,1999,11 (3-4),217-221.
    21. Stamm, W. E; Costerton, J. W; Schaeffer, A. J. Panel discussion on biofilms in urinary tract infection-Discussion. Int. J. Antimicrob. Agents,1999,11 (3-4), 237-239.
    22. Brady, R. F. Clean hulls without poisons:Devising and testing nontoxic marine coatings, J. Coat. Technol.,2000,72 (900),44-56.
    23. Chambers, L. D.; Walsh, F. C.; Wood, R. J. K.; Stokes, K. R. World Maritime Technology Conference, ICMES Proceedings, The Institute of Marine Engineering, Science and Technology, March 2006.
    24.张占平,齐育红,刘述锡,马永庆,刘红,船舶防污涂料与防污剂的研究进展,大连水产学院学报,2006,121(12),175-179。
    25. Chambers, L. D.; Stokes, K. R.; Walsh, F. C.; Wood, R. J. K. Modern approaches to marine antifouling coatings, Surf. Coat. Technol.,2006,201 (6),3642-3652.
    26. Milne, A.; Hails, G. GB Patent (1976), International Paint,1,457,590.
    27. Milne, A.; Hails, G. GB Patent (1977) International Paint,1,470,465.
    28.张凯,程永清,吕晓燕,低毒自抛光防污涂料发展现状,涂料技术与文摘,2008,(1),4-7。
    29. Kiil, S.; Weinell, C. E.; Pedersen, M. S.; Dam-Johansen, K. Analysis of self-polishing antifouling paints using rotary experiments and mathematical modeling, Ind. Eng. Chem. Res.,2001,40 (18),3906-3920.
    30. Strand, J.; Jacobsen, J. A. Accumulation and trophic transfer of organotins in a marine food web from the danish coastal waters, Sci. Total Environ.,2005,350 (1-3),72-85.
    31. Champ, M. A. A review of organotin regulatory strategies, pending actions, related costs and benefits, Sci. Total Environ.,2000,258 (1-2),21-71.
    32. Champ M. A. Published in the Proceedings of the 24th UJNR. (US/Japan) Marine facilities panel meeting in Hawaii, November 7-8,2001.
    33.赵晓燕,海洋天然产物防污研究进展,材料开发与应用,2001,16(4),34-37。
    34.柯跃虎,杨卓如,生物学功能涂料的发展及动向,合成材料老化与应用,2002,16(3),16-18。
    35.洪峰,赵中华,桂泰江,仿生防污涂料的发展概况,现代涂料与涂装,2002,(5),7-11。
    36.郑群锁,低表面能防污涂料的进展,材料开发与应用,2001,16(1),51-53。
    37.边蕴静,低表面能防污涂料的防污特性理论分析,中国涂料,2000,(5),36-39。
    38.田军,薛群基,低表面能涂层材料降低海洋生物污损的研究,环境科学,1997,18(2),40-42。
    39.黄英,柯才焕,周时强,国外对藤壶幼体附着的研究进展,海洋科学,2001,25(3),30-32。
    40.国际油漆公司的无锡防污漆产品,国际船艇,2002,(1),37。
    41. Katranitsas, A.; Castritsi-Catharios, J.; Persoone, G. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism Marine Pollution Bulletin,2003,46(11),1491-1494.
    42.吴始栋,舰船防污和环境保护,船舶,2002,(2),56-59。
    43.王华进,刘登良,王贤明,无毒硅酸盐防污剂及其制备方法,中国,CN1218818[P],2001。
    44.王华进,王贤明,管朝祥,刘登良,海洋防污涂料的发展,涂料工业,2000,(3),35-39。
    45.王华进,王贤明,管朝祥,刘登新,金钢,硅酸盐复合防污涂料,中国,CN1248599[P],2003。
    46.瑞典研制新型船体防污涂料,航海,2002,(6),43。
    47.美研制出新型舰船防污涂料,航海,2003,(4),43。
    48.张奇志,陈荣发,无毒船用防污涂料将进入产业化开发,环境导报,2002,(2),33。
    49.陈光宇,沈培康,低表面能、驱避型防污涂料及其使用方法,中国,CN1296044A[P],2001。
    50.王钧宇,仿生无毒舰船防污涂料及其制法,中国,CN1392208[P],2003。
    51. Fukushima, M.; Ozaki, N.; Ikeda, H.; Furihata, K.; Hayakawa, Y.; Sakuda, S. Isolation and characterization of 2-nitroimidazole produced by Streptomyces species as an inhibitor of both carbonic anhydrase and shell formation in the barnacle Balanus amphitrite, Mar. Biotechnol.,2002,4 (2),103-110.
    52. Holm, E. R.; Cannon, G.; Roberts. D.; Schmidt. A. R.; Sutherland, J. P.; Rittschof, D. The influence of initial surface chemistry on development of the fouling community at Beaufort, North Carolina, J. Exp. Mar. Biol. Ecol.,1997,215 (2), 189-203.
    53.郑群锁,低表面能防污涂料的进展,材料开发与应用,2001,16(1),51-53。
    54.边蕴静,低表面能防污涂料的防污特性理论分析,中国涂料,2000,(5),36-39。
    55.田军,薛群基,低表面能涂层材料降低海洋生物污损的研究,环境科学,1997, 18(2),40-42。
    56. Clarkson, N.; Evans, L. V. Raft trial experiments to investigate the antifouling potential of silicone elastomer polymers with added biocide, Biofouling,1995,9 (2),129-143.
    57. Terlizzi, A.; Conte, E.; Zupo, V.; Mazzella, L. Biological succession on silicone fouling-release surfaces:Long-term exposure tests in the harbour of Ischia, Italy, Biofouling,2000,15 (4),327-342.
    58. Graham, P. D.; Jont, I.; Nevell, T. G. Fluoropolymer films:surface energy characteristics and marine antifouling performance,10th International congress on marine corrosion and fouling. Australia:University of Melbourne,1999, 29-36.
    59.阿尔库克(Allcock,H.R.),兰普(Lampe,F.W.),马克(Mark, J.E.)著,张其锦译,当代聚合物化学(原著第三版),2006年,化学工业出版社,116-117。
    60.韩磊,张秋禹,低表面能防污涂料的最新研究进展,材料保护,2006,39(2),37-42。
    61.田军,辜志俊,李克恭,薛群基,低表面能材料上海洋生物附着的研究,涂料工业,1998,(1),11-14。
    62. Kobayashi, H.; Owen, M. J. Surface-properties of fluorosilicones, Trends Polym. Sci,1995,3 (10),330-335.
    63. Thorpe, A. A.; Nevell, T. G.; Young, S. A.; Tsibouklis, J. Surface energy characteristics of poly(methylpropenoxyfluoroalkylsiloxane) film structures, Appl. Surf. Sci.,1998,136 (1-2),99-104.
    64. Perutz, S.; Wang, J.; Kramer, E. J.; Ober, C. K.; Ellis, K. Synthesis and surface energy measurement of semi-fluorinated, low-energy surfaces, Macromolecules, 1998,31 (13),4272-4276.
    65. Genzer, J.; Sivaniah, E.; Kramer, E. J.; Wang, J.; Korner, H.; Xiang, M.; Char, K.; Ober, C. K.; Dekoven, B.; Bubeck, R. A.; Chaudhury, M. K.; Fischer, D. A. Orientation of single semi-fluorinated chains on the surfaces of semi-fluorinated polymer films studied using NEXAFS, Macromolecules,2000,33 (5),1882-1887.
    66. Mao, G.; Wang, J.; Clingman, S. R.; Ober, C. K.; Thomas, E. L.; Chen, J. T. Molecular design, synthesis and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups, Macromolecules,1997,30 (9), 2556-2567.
    67. Xiang, M.; Li, X.; Ober, C. K.; Char, K.; Genzer, J.; Sivaniah, E.; Kramer, E. J.; Fischer, D. A. Surface stability in iiquid-crystalline block copolymers with semifluorinated monodendron side groups, Macromolecules,2000,33 (16), 6106-6119.
    68. Busch, P.; Krishnan, S.; Paik, M.; Toombes, G. E. S.; Smilgies, D. M.; Gruner, S. M.; Ober, C. K. Surface induced tilt propagation in thin films of semifluorinated liquid-crystalline side-chain block copolymers, Macromolecules,2007,40 (1), 81-89.
    69. Krishnan, S.; Wang, N.; Ober, C. K.; Finlay, J.; Callow, M. E.; Callow, J. A.; Hexemer, A.; Kramer, E. J.; Fischer, D. A. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces:attachment strength of the diatom Navicula and the green Alga Ulva, Biomacromolecules,2006,7 (5),1449-1462.
    70. Wang, J.; Mao, G.; Ober, C. K.; Kramer, E. J. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces; synthesis, LC structure and critical surface tension, Macromolecules,1997,30 (7),1906-1914.
    71. Li, X.; Andruzzi, L.; Chiellini, E.; Galli, G.; Ober, C. K.; Hexemer, A.; Kramer, E. J.; Fischer, D. A. Semifluorinated aromatic side-group polystyrene-based block copolymers:bulk structure and surface orientation studies, Macromolecules,2002, 35 (21),8078-8087.
    72. Andruzzi, L.; Chiellini, E.; Galli, G.; Li, X.; Kang, S.; Ober, C. K. Engineering low surface energy polymers through molecular design:synthetic routes to fluorinated polystyrene-based block copolymers, J. Mater. Chem.,2002,12 (6), 1684-1692.
    73. Andruzzi, L.; Hexemer, A.; Li, X.; Ober, C. K.; Kramer, E. J.; Galli, G.; Chiellini, E.; Fischer, D. A. Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization, Langmuir,2004, 20(24),10498-10506.
    74. Schmidt, D. L.; Brady, R. F., Lam, K.; Schmidt, D. C.; Chaudhury, M. K. Contact angle hysteresis, adhesion, and marine biofouling, Langmuir 2004,20 (7), 2830-2836.
    75. Krishnan, S.; Wang, N.; Ober, C. K.; Finlay, J. A.; Callow, M. E.; Callow, J. A.; Hexemer, A.; Sohn, K. E.; Kramer, E. J.; Fischer, D. A. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces:attachment strength of the diatom navicula and the green algaulva, Biomacromolecules,2006,7 (5),1449-1462.
    76. Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J.; Sohn, K.; Perry, R.; Ober, C. K.; Kramer, E. J.; Callow, M. E.; Callow, J. A.; Fischer, D. Anti-biofouling properties of comb-like block copolymer with amphiphilic side-chains, Langmuir,2006,22 (11),5075-5086.
    77. Brady, R. F. Properties which influence marine fouling resistance in polymers containing silicon and fluorine, Prog. Org. Coat.,1999,35 (1-4),31-35.
    1. Strand, J.; Jacobsen, J. A. Accumulation and trophic transfer of organotins in a marine food web from the Danish coastal waters, Sci. Total Environ.,2005,350 (1-3),72-85.
    2. Evans, S. M.; Leksono, T.; McKinnell, P. D. Tributyltin pollution:a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints, Mar. Pollut. Bull,1995,30 (1),14-21.
    3. Omae, I. General aspects of tin-free antifouling paints, Chem. Rev.,2003,103 (9), 3431-3448.
    4. Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coat.,2004,50 (2),75-104.
    5. Omae, I. Organotin antifouling paints and their alternatives, Appl. Organomet. Chem.,2003,17(2),81-105.
    6. Zhang, H.; Lamb, R.; Lewis, J. Engineering nanoscale roughness on hydrophobic surface-preliminary assessment of fouling behaviour,Sci. Technol. Adv. Mater., 2005,6 (3-4),236-239.
    7. Brady Jr, R. F. A fracture mechanical analysis of fouling release from nontoxic antifouling coatings, Prog. Org. Coat.,2001,43 (1-3),188-192.
    8. Brady Jr, R. F.; Singer, I. L. Mechanical factors favoring release from fouling release coatings, Biofouling,2000,15 (1-3),73-81.
    9. Lin, Q.; Krishnan, S.; Paik, M.; Peter, B.; Ober, C. K.; Hexemer, A.; Sohn, K. E.; Kramer, E. J.; Kowalke, G. L.; Wendt, D. E. Semifluorinated triblock copolymers as surface active componenets for multilayer marine antifouling coatings, Polym. Prepr.,2005,46 (2),635-636.
    10. Wang, J.; Mao, G.; Ober, C. K.; Kramer, E. J. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces:synthesis, liquid crystalline structure, and critical surface tension, Macromolecules,1997,30 (7), 1906-1914.
    11. Mao, G.; Wang, J.; Clingman, S. R; Ober, C. K.; Chen, J. T.; Thomas, E. L. Molecular design, synthesis, and characterization of liquid crystal coil diblock copolymers with azobenzene side groups, Macromolecules,1997,30 (9), 2556-2567.
    12. Xiang, M.; Li, X.; Ober, C. K.; Char, K.; Genzer, J.; Sivaniah, E.; Kramer, E. J. Surface stability in liquid crystalline block copolymers with semi fluorinated monodendron side groups, Macromolecules 2000,33 (16),6106-6119.
    13. Krishnan, S.; Wang, N.; Ober, C. K.; Finlay, J. A.; Callow, M. E.; Callow, J. A.; Hexemer, A.; Sohn, K. E.; Kramer, E. J.; Fischer, D. A. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces:attachment strength of the diatom navicula and the green alga ulva, Biomacromolecules,2006,7 (5),1449-1462.
    14. Yarbrough, J. C.; Rolland, J. P.; Desimone, J. M.; Callow, M. E.; Finlay, J. A.; Callow, J. A. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers, Macromolecules,2006,39 (7),2521-2528.
    15.黄宪,王彦广,陈振初,新编有机合成化学,2002,化学工业出版社,北京。
    16. Shue, Y. K.; Carrzra, G.M. Amide bond surrogates:a general synthetic route to trans carbon-carbon double bond isosteres, Tetrahedron Lett.,1987,28 (28), 3225-3228.
    17.许岩,何德良,曾凌三,紫外光固化涂料的发展与应用,电镀与涂饰,2000,19(1),47-52。
    18.张占平,刘红,齐育红,刘德良,含PTFE氟碳涂层表面形貌对底栖硅藻附着的影响,高分子材料与科学工程,2006,22(6),122-125。
    19. Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coat.,2004,50 (2),75-104.
    20. Chambers, L. D.; Stokes, K. R.; Walsh, F. C.; Wood, R. J. K. Modern approaches to marine antifouling coatings, Surf. Coat. Technol.,2006,201 (6),3642-3652.
    21. Brace, N. O. Some approaches to the synthesis of fluorinated alcohols and esters. Ⅱ Use of fluoroalkyl iodides for the synthesis of fluoroalkyl alkanols, J. Fluorine Chem.,20 (3),1982,313-327.
    22. Vincent, J. M.; Rabion, A.; Yachandra, V. K.; Fish, R. H. Fluorous biphasic catalysis:complexation of 1,4,7-[C8F17(CH2)3]3-1,4,7-triazacyclononane with [M(C8F17(CH2)2CO2)2](M=Mn, Co) to provide perfluoroheptane soluble catalysts for alkane and alkene functionalization in the presence of t-BuOOH and O2, Angew. Chem. Int. Ed. Engl.,1997,36 (21),2346-2349.
    1. Townsin, R. L. The ship hull fouling penalty, Biofouling,2003,19 (suppl.),9-15.
    2. Strand, J.; Jacobsen, J. A. Accumulation and trophic transfer of organotins in a marine food web from the Danish coastal waters, Sci. Total Environ.,2005,350 (1-3),72-85.
    3. Clarkson, N.; Evans, L. V. Raft trial experiments to investigate the antifouling potential of silicone elastomer polymers with added biocide, Biofouling,1995,9 (2),129-143.
    4. Terlizzi, A.; Conte, E.; Zupo, V.; Mazzella, L. Biological succession on silicone fouling-release surfaces:Long-term exposure tests in the harbour of Ischia, Italy, Biofouling,2000,15 (4),327-342.
    5. Prime, K. L.; Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide):a model system using self-assembled monolayers, J. Am. Chem. Soc.,1993,115 (23),10714-10721.
    6. Israels, R.; Leermakers, F. A. M.; Fleer, G. J. Adsorption of charged block copolymers:Effect on colloidal stability, Macromolecules,1995,28 (5), 1626-1634.
    7. McPherson, T.; Kidane, A.; Szleifer, I.; Park, K. Prevention of protein adsorption by tethered poly(ethylene oxide) layers:Experiments and single-chain mean-field analysis, Langmuir,1998,14(1),176-186.
    8. Harris, J. M. Poly(ethylene glycol) chemistry:Biotechnical and biomedical applications, Plenum Press:New York,1992.
    9. Sharma, S.; Johnson, R. W.; Desai, T. A. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors, Biosens. Bioelectron., 2004,20 (2),227-239.
    10. Lee, S. W.; Laibinis, P. E. Protein-resistant coatings for glass and metal oxide surfaces derived from oligo(ethylene glycol)-terminated alkyltrichlorosilanes, Biomaterials,1998,19 (18),1669-1675.
    11. Gudipati, C. S; Finlay, J. A.; Callow, J. A.; Callow, M. E.; Wooley, K. L. The antifouling and fouling-release performance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva, Langmuir,2005,21 (7), 3044-3053.
    12. Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J. A.; Sohn, K. E.; Perry, R.; Ober, C. K.; Kramer, E. J.; Callow, M. E.; Callow, J. A.; Fischer, D. A. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains, Langmuir, 2006,22(11),5075-5086.
    13. Giesy, G. P.; Kannan, K. Environ. Global distribution of perfluorooctane sulfonate in wildlife, Sci. Technol.,2001,35 (7),1339-1342.
    14. Ellis, D. A.; Mabury, S. A.; Martin, J. W.; Muir, D. C. G. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment, Nature,2001,412 (6844),321-324.
    15. Martin, J. W.; Whittle, D. M.; Muir, D. C. G.; Mabury, S. A. Perfluoroalkyl contaminants in a food web from lake on tario, Environ. Sci. Technol.,2004,38 (20),5379-5385.
    16. Yarbrough, J. C.; Rolland, J. P.; DeSimone, J. M.; Callow, M. E.; Finlay, J. A.; Callow, J. A. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-Linkable, random perfluoropolyether-based graft terpolymers, Macromolecules,2006,39 (7),2521-2528.
    17. Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Muller-Steinhagen, H. Effect of surface free energy on the adhesion of biofouling and crystalline fouling, Chem. Eng. Sci., 2005,60 (17),4858-4865.
    18. Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers, J. Appl. Polym. Sci.1969,13 (8),1741-1746.
    19. Kaelble, D. H. Dispersion-polar surface tension properties of organic solid, J. Adhes.1970,2,66-81.
    20.张占平,刘红,齐育红,刘德良,含PTFE氟碳涂层表面形貌对底栖硅藻附着的影响,高分子材料与科学工程,2006,22(6),122-125。
    21. Yebra, D. M.; Kiil S.; Dam-Johansen K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coat.,2004,50 (2),75-104.
    22. Chambers, L. D.; Stokes, K. R.; Walsh, F. C.; Wood, R. J. K. Modern approaches to marine antifouling coatings, Surf. Coat. Technol.,2006,201 (6),3642-3652.
    23. Chapman, R. G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L; Whitesides, G. M. Surveying for surfaces that resist the adsorption of proteins, J. Am. Chem. Soc.,2000,122 (34),8303-8304.
    24. Ostuni, E.; Chapman, R. G.; Liang, M. N.; Meluleni, G.; Pier, G.; Ingber, D. E.; Whitesides, G. M. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir,2001,17 (20),6336-6343.
    25. Shimomura, O.; Lee, B. S.; Meth, S.; Suzuki, H.; Mahajan, S.; Nomura, R.; Janda, K. D. Synthesis and application of polytetrahydrofuran-grafted polystyrene (PS-PTHF) resin supports for organic synthesis. Tetrahedron,2005,61 (51), 12160-12167.
    26. Wilson, M. E.; Paech, K.; Zhou, W. J.; Kurth, M. J. Solvent and reagent accessibility within oligo(ethylene glycol) ether [PEG] cross-linked polystyrene beads, J. Org. Chem.,1998,63 (15),5094-5099.
    1. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures, Science, 1991,254(5036),1312-1319.
    2. Yuan, Q. H.; Wan, L. J.; Jude, H.; Peter, J. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au(Ⅲ) Surfaces, J. Am. Chem. Soc,2005,127 (46),16279-16286.
    3.王俊,曾百肇,周性尧,自组装膜技术在电分析化学中的应用,分析科学学报,2000,16(3),253-258。
    4. Ulman, A. Formation and structure of self-sssembled monolayers, Chem. Rev., 1996,96 (4),1533-1554.
    5. Green, J. B.; Mcdermott, M. T.; Porte, M. D.; Siperko, L. M. Molecular ordering and gold migration observed in butanethiol self-assembled monolayers using scanning tunneling microscopy, J. Phys. Chem.1995,99 (27),10960-10965.
    6. Deng, K.; Collins, R. J.; Mehregany, M.; Sukenik, C. N. Performance impact of monolayer coating of polysilicon micromotors, J. Electrochem. Soc.1995,142 (4),1278-1285.
    7. Jennings, G. K.; Munro, J. C; Yong, T. H.; Laibinis, P. E. Effect of chain length on the protection of copper by n-Alkanethiols, Langmuir 1998,14 (21), 6130-6139.
    8. Flink, S.; Veggel, F.C.J.M.; Reinhoudt, D. N. Sensor functionalities in self-assembled monolayers, Adv. Mater.2000,12 (18),1315-1328.
    9. Pale-Grosdemange, C; Simon, E. S.; Prime, K. L.; Whitesides, G. M. Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(OCH2CH2)mOH on gold, J. Am. Chem. Soc.1991, 113(1),12-20.
    10. Prime, K. L.; Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide):a model system using self-assembled monolayers, J. Am. Chem. Soc.1993,115 (23),10714-10721.
    11. Chang, Y.; Liao, S. C; Higuchi, A.; Ruaan, R. C; Chu, C. W.; Chen, W. Y. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion, Langmuir 2008,24 (10), 5453-5458.
    12. Ederth, T.; Nygren, P.; Pettitt, M. E.; Ostblom, M.; Du, C. X.; Broo, K.; Callow, M. E.; Callow, J.; Liedberg, B. Anomalous settlement behavior of Ulva linza zoospores on cationic oligopeptide surfaces, Biofouling 2008,24 (4),303-312.
    13. Ostuni, E.; Chapman, R. G.; Liang, M. N.; Meluleni, G.; Pier, G.; Ingber, D. E.; Whitesides, G. M. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir 2001,17 (20),6336-6343.
    14. Chapman, R.G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L.; Whitesides, G. M. Surveying for Surfaces that Resist the Adsorption of Proteins. J. Am.Chem.Soc.2000,122 (34),8303-8304.
    15. Van Alsten, J. G.; Self-assembled monolayers on engineering metals:structure, derivatization, and utility, Langmuir,1999,15 (22),7605-7614.
    16.李景虹,程广金,董绍俊,一种新型有序超薄有机膜,化学通报,1995,(10),11-18.
    17. Yamamoto, Y.; Nishihara, H.; Aramakik, J. Self-assembled layers of alkanethiols on copper for protection against corrosion, Electrochem.Soc.,1993,140 (2), 436-443.
    18. Amato, C.; Calas, P. Synthesis of amino terminated semifluorinated long-chain alkanethiols, J. Fluorine Chem.,2003,124 (2),169-175.
    19. Graupe, M.; Koini, T.; Wang, V. Y.; Nassif, G. M.; Colorado, R.; Villazana, R. J.; Dong, H.; Miura, Y. F.; Shmakova, O. E.; Lee, T. R. Terminally perfluorinated long-chain alkanethiols. J. Fluorine Chem.,1999,93 (2),107-115.
    20. Mureau, N.; Guittard, F.; Geribaldi, S. Convenient synthesis of thiols and disulfides in the polyfluorinated series incorporating a butyric spacer, Tetrahedron Lett.,2000,41 (16),2885-2889.
    21. Naud, C.; Calas, P.; Blancou, H.; Commeyras, A. Synthesis of terminally perfluorinated long-chain alkanethiols, sulfides and disulfides from the corresponding halides, J. Fluorine Chem.,2000,104 (2),173-183.
    22. Ramharack, R.; Nguyen, T. H. Fluoropolymers of Very Low Surface Energies, J. Polymer Sci., Part C,1987,25 (3),93-98.
    23. Morita, M.; Ogisu, H.; Kubo, M. Surface Properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers,J. Appl. Polym. Sci.,1999,73 (9), 1741-1749.
    24.胡晓莉,雒建斌,温诗铸,磁头表面氟代硅烷自组装膜的制备和表征,清华大学学报(自然科学版),2006,46(5),621-624。
    25.谷国团,张治军,党鸿辛,二甲基-γ-全氟辛酰氧丙基硅烷自组装膜的制备及其摩擦学性能研究,摩擦学学报,2002,22(3),170-174。
    26.莫宇飞,白明武,全氟羧酸自组装分子润滑膜的纳米摩擦学性能的研究,润滑与密封,2007,32(11),18-21。
    27. Cho, W. K.; Park, S.; Jon, S.; Choi, I. S. Water-repellent coating:formation of polymeric self-assembled monolayers on nanostructured surfaces, Nanotechnology,2007,18 (39),395602/1-395602/7.
    28. Jennings, G. K.; Munro, J. C.; Yong, T. H.; Laibinis, P. E. Effect of chain length on the protection of copper by n-alkanethiols, Langmuir,1998,14 (21), 6130-6139.
    29. Svedhem, S.; Hollande, C. A.; Shi, J.; Konradsson, P.; Liedberg, B.; Svensson, S. C. T. Synthesis of a series of oligo(ethylene glycol)-terminated alkanethiol amides designed to address structure and stability of biosensing interfaces, J. Org. Chem.,2001,66 (13),4494-4503.
    30. Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J. A.; Sohn, K. E.; Perry, R.; Ober, C. K.; Kramer, E. J.; Callow, M. E.; Callow, J. A.; Fischer, D. A. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains, Langmuir, 2006,22(11),5075-5086.
    31. Bouzide, S. G. Highly selective silver(Ⅰ) oxide mediated monoprotection of symmetrical diols, Tetrahedron Lett.,1997,38 (34),5945-5948.
    1. Strand, J.; Jacobsen, J. A. Accumulation and trophic transfer of organotins in a marine food web from the danish coastal waters, Sci. Total Environ.,2005,350 (1-3),72-85.
    2. Evans, S. M.; Leksono, T.; McKinnell, P. D. Tributyltin pollution:a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints, Mar. Pollut. Bull.,1995,30 (1),14-21.
    3. Omae, I. General aspects of tin-free antifouling paints, Chem. Rev.,2003,103 (9), 3431-3448.
    4. Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coat.,2004,50 (2),75-104.
    5. Omae, I. Organotin antifouling paints and their alternatives, Appl. Organomet. Chem.,2003,17(2),81-105.
    6. Kassis, C. M.; Steehler, J. K.; Betts, D. E.; Guan, Z.; Romack, T. J.; Desimone, J. M.; Linton, R. W. XPS studies of fluorinated acrylate polymers and block copolymer with polystyrene, Macromolecules,1996,29 (9),3247-3254.
    7. Brady, R. F.; Singer, I. L. Mechanical factors favoring release from fouling release coatings, Biofouling,2000,15 (1-3),73-81.
    8. Brady Jr., R. F. A fracture mechanical analysis of fouling release from nontoxic antifouling coatings, Prog. Org. Coat.,2001,43 (1-3),188-192.
    9. Andruzzi, L.; Senaratne, W.; Hexemer, A. Sheets, E. D.; Ilic, B.; Kramer, E. J.; Baird, B.; Ober, C. K. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces, Langmuir,2005,21 (6),2495-2504.
    10. Senaratne, W.; Andruzzi, L.; Ober, C. K. Self-assembled monolayers and polymer brushes in Biotechnology:current applications and future perspectives, Biomacromolecules,2005,6 (5),2427-2448.
    11. Gudipati, C. S; Finlay, J. A.; Callow, J. A.; Callow, M. E.; Wooley, K. L. The antifouling and fouling-release performance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva, Langmuir,2005,21 (7), 3044-3053.
    12. Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J. A.; Sohn, K. E.; Perry, R.; Ober, C. K.; Kramer, E. J.; Callow, M. E.; Callow, J. A.; Fischer, D. A. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains, Langmuir, 2006,22 (11),5075-5086.
    13. Prime, K. L.; Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide):a model system using self-assembled monolayers, J.Am.Chem.Soc.,1993,115(23),10714-10721.
    14. Israels, R.; Leermakers, F. A. M.; Fleer, G. J. Adsorption of charged block copolymers:effect on colloidal stability, Macromolecules,1995,28 (5), 1626-1634.
    15. McPherson, T.; Kidane, A.; Szleifer, I.; Park, K. Prevention of protein adsorption by tethered poly(ethylene oxide) layers:experiments and single-chain mean-field analysis, Langmuir,1998,14(1),176-186.
    16. Harris, J. M. Poly(ethylene glycol) chemistry:biotechnical and biomedical applications, Plenum Press:New York,1992.
    17. Sharma, S.; Johnson, R.W.; Desai, T. A. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors, Biosens. Bioelectron., 2004,20 (2),227-239.
    18. Lee, S. W.; Laibinis, P. E. Protein-resistant coatings for glass and metal oxide surfaces derived from oligo(ethylene glycol)-terminated alkyltrichlorosilanes, Biomaterials,1998,19(18),1669-1675.
    19. Navarro-Villoslada, F.; Orellana, G.; Moreno-Bondi, M. C; Vick, T.; Driver, M.; Hildebrand, G.; Liefeith, K. Fiber-optic luminescent sensors with composite oxygen-sensitive layers and anti-biofouling coatings, Anal. Chem.2001,73 (21), 5150-5156.
    20. Bi, H. Y.; Zhong, W.; Meng, V.; Kong, J. L.; Yang, P. Y.; Liu, B. H. Construction of a biomimetic surface on micro fluidic chips for biofouling resistance, Anal. Chem.,2006,78 (10),3399-3405.
    21. Lewis, A. L. Phosphorylcholine-based polymers and their use in the prevention of biofouling, Colloids Surf., B,2000,18 (3,4),261-275.
    22. Ruiz, L.; Hilborn, J. G.; Leonard, V.; Mathieu, H. J. Synthesis, structure and surface dynamics of phosphorylcholine functional biomimicking polymers, Biomaterials,1998,19 (11-12),987-998.
    23.沈萍,范秀容,李广武,微生物实验,2001,第3版,高等教育出版社,北京,92-95。
    24.张蕊雪,周钰明,含氟丙烯酸酯织物整理剂的合成,东南大学研究生学报,2004,1(1),148-151。
    25.余樟清,李伯耿,潘祖仁,MBHD四元共聚物乳液的合成与表征,高分子材料科学与工程2000,16(4),46-49。
    26.孙尧,许国志,乳液合成配方设计原理,塑料制造,2007,(3),60-62。
    27.王国建,刘琳,建筑涂料与涂装,中国轻工业出版社,北京,2002,33-38。
    28.章杰,APEO的限用和对我国纺织助剂的影响,纺织导报,2005,(12),79-82。
    29.陈荣圻,2002年欧洲议会建议禁用25种有害物质,全国染整行业技术改造研讨会论文集,2002,199-200。
    30.王宏,沈英娃,烷基酚聚氧乙烯醚类物质的环境雌激素效应,中国环境科学,1999,19(5),427-431。
    31.金鲜花,APEO的禁用与环保替代,纺织导报,2006,(5),77-80。
    32. Yarbrough, J. C.; Rolland, J. P.; Desimone, J. M.; Callow, M. E.; Finlay, J. A.; Callow, J. A. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers, Macromolecules,2006,39 (7),2521-2528.
    33.徐秀娟,胡玉群,磷系阻燃聚酯纤维的物理性能研究,研究与技术,2005,(8),34-35。
    34.徐浩,有机氧化磷类阻燃剂在聚酯合成中的应用工艺探讨,合成纤维,2006,(7),15-18。
    35.李淑娟,刘吉平,ABS的无卤含磷阻燃复配体系研究,塑料,2005,34(1),48-52。
    36. Umeda, T.; Nakaya, T.; Imoto Makromol, M. The convenient preparation of a vinyl monomer containing a phospholipid analog, Chem., Rapid Commun.,1982, 3 (7),457-459.
    1. 颜东洲,贾成功,防污涂料的应用和技术进展,化工科技市场,2002,25(12),21-24。
    2.周陈亮,舰船防污涂料的历史、现状及未来,中国涂料,1998,(6),9-10。
    3.于良民,姜晓辉,董磊,徐焕志,异噻唑啉酮类化合物及其在海洋防污涂料中的应用,涂料工业,2004,34(5),43-47。
    4. Brady, R. F. Clean hulls without poisons:Devising and testing nontoxic marine coatings, J. Coat. Technol.,2000,72 (906),44-56.
    5.于良民,李霞,王利,黄磊,吲哚类防污剂及其在海洋防污涂料中的应用,化工新型材料,2007,35(S1),131-133。
    6. Olguin-Uribe, G.; Abou-Mansour, E.; Boulander, A.; Debard, H.; Francisco, C.; Combaut, G.6-Bromoindole-3-Carbaldehyde, from an Acinetobacter Sp. Bacterium Associated with the Ascidian Stomozoa murrayi. J. Chem. Ecol.,1997, 23 (11),2507-2521.
    7. Mohammad-Reza, Z.; Elaheh M. Effects of GABAergic system on naloxone-induced jumping in morphine-dependent mice. Eur. J. Pharmacol., 1999,381(2/3),129-133.
    8. Wael, E. H.; Marcel J. Isolation of marine natural products. Nat. Prod. Rep.,2005, 20,353-390.
    9. 吴红菱,2-甲基-3(2H)-异噻唑酮和5-氯衍生物的合成,中国医药工业杂志,1994,25(8),97-99。
    10. Lewis, S. N.; Miller, G. A.; Hausman, M.; Szamborski, E. C. Isothioazoles. I. 4-Isothiazolin-3-ones. General synthesis from 3,3'-dithiodipropionamides, J. Heterocycl. Chem.,1971,8 (4),571-580.
    11.于良民,魏长峰,姜晓辉,王宝娟,王立群,4,5-二氯-2-甲氧丙基-4-异噻唑啉-3-酮的合成及杀藻性能研究,涂料工业,2008,38(6),1-4。
    12.于良民,丛巍巍,姜晓辉,李芳菲,张春燕,N,N-二丁氧基丙基二硫代二丙酰胺的合成、生物毒性与防污性能,精细化工,2009,26(4),412-416。
    13.李淑琏,谭小青,新型工业杀菌剂异噻唑啉酮类包合物的合成研究,精细化工,1999,16(1),4-6。
    14.王向辉,贺永宁,盘茂东,杨建新,林强,异噻唑啉酮类衍生物的合成及应用研究进展,海南大学学报自然科学版,2008,26(4),372-376。
    15. Faulkner, D. J. Marine Natural Products, Nat. Prod. Rep.,1999,16,155-198.
    16.于良民,李霞,闫雪峰,于良志,3-(1-吲哚基)丙酸及其衍生物的合成,中国海洋大学学报,2009,39(1),109-114。
    17. Carmellino, M. L.; Pagani, G.; Pregnolato, M.; Terreni, M.; Pastoni, F. Antimicrobial activity of fluorinated 1,2-benzisothiazol-3(2H)ones and 2,2'-dithilbis(benzamides), Eur. J. Med. Chem.,1994,29 (10),743-751.
    18. Morley, J. Q.; Oliver, A. J.; Charlton, M. H. Theoretical studies on the biocidal activity of 5-chloro-3-isothiazolone, J. Mol. Struct.,1998,429 (1),103-110.
    19. Kaqano, H.; Goda, H.; Yoshida, K.; Yamamoto, M.; Sakaue, S. Method for producing 1,2-benzisothiazol-3-ones. U. S. Pat.5773626,1968.
    20. Lewis, S. N.; Miller, G. A.; Law, A. B. Certain 2-carbamoyl-3-isothiazolenes, U. S.Pat.3523121,1970.
    21.徐卫国,陈勇,2-甲基-4-异噻唑啉-3-酮及其衍生物5-氯-2-甲基-4-异噻唑啉-3- 酮的合成,浙江化工,2001,32(2),55-57。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700