用户名: 密码: 验证码:
高聚物基连续流式PCR微流控芯片系统与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PCR(聚合酶链式反应)微流控芯片是一种单元反应界面为微米量级的微型化学反应系统,具有线性尺寸小、物理量梯度高、比表面积大和流动状态为低雷诺数层流等特点,可以实现柔性生产、规模放大,以及快速和高通量筛选等功能。PCR微流控芯片将PCR技术与微流控芯片技术有机地结合起来,实现了DNA的体外快速扩增,成为微机电系统(MEMS)技术发展的一个重要研究方向。与常规PCR热循环仪相比,PCR微流控芯片可以缩短反应时间,减少反应试剂消耗量,增强扩增特异性,而且便于与其他分析和检测设备进行集成。
     为了开发一套实用的PCR微流控芯片系统,本论文对以PMMA(聚甲基丙烯酸甲酯)为基底材料的连续流式PCR微流控芯片系统及其应用技术进行了研究。采用准分子激光和CO2激光直写刻蚀方法在PMMA材料基片表面加工微通道,通过对工艺参数进行分析与控制,分别加工出横截面形状为矩形、半圆形和高斯形的微通道,并利用热压键合方法制作出密闭的连续流式PCR微流控芯片。
     采用准分子激光直写刻蚀方法加工微通道时,因为准分子激光具有脉冲输出特性,所以在微通道底部存在由于光斑叠加而形成的周期性刻蚀波纹;采用CO_2激光直写刻蚀方法加工微通道时,由于在刻蚀过程中产生的熔融物质重新凝固后又附着在微通道壁上,所以会在微通道表面形成各种不规则的突起物。本论文利用准分子激光辐照的方法,对微通道表面进行抛光处理,提高了表面质量,使得流体能够在微通道中连续地流动,流动时没有气泡产生,显著提高了流动速度的稳定性。此外,准分子激光刻蚀与辐照方法还可以提高PMMA微通道与基片材料表面的亲水性,有利于其在PCR微流控芯片中的应用。
     为了分析微通道形状与流体在其内部流动状态之间的关系,以及温度变化的影响,本论文基于计算流体力学方法,对流体通过具有不同形状横截面的微通道时的流动状态进行了数值模拟研究。由于微通道尺度小,流速较低,所以流体在微通道内的流动呈层流状态,流速分布不均匀,在微通道中心处的流速最大,这种现象有利于PCR混合液在流动过程中的扩散与混合;微通道横截面形状的不同会导致流体速度场中不同速度的相对分布比例不同;温度变化导致的流体粘度改变,对流体流动状态的影响可以忽略不计;而流体在微通道中的压力降随着流速的增加而增大,随着温度的升高而减小;流体在微通道内的压力降会受到微通道横截面形状的影响,当水力学直径相同时,使用具有较大横截面面积的微通道(高斯形)更有利于降低流动的摩擦阻力,减小压力降,增强流体的流动性和稳定性。
     本论文对连续流式PCR微流控芯片系统的整体结构进行了改进与完善,设计了竖插式的进样接口,减少了接口处的死体积,减小了因通道尺寸变化造成的流速不稳定;采用新型接口密封形式提高了接口密封材料的使用寿命,延长了芯片的使用时间,稳定了实验条件;对温度控制系统进行参数优化,改善了芯片的温度分布特征,通过添加隔热挡板,增强了不同温区之间的隔热效果;搭建了一套适用于连续流式PCR微流控芯片的简易气动进样装置,该装置没有死体积,减少了样品用量,可以灵活控制PCR混合液在微通道中的流动速度,而且能够实现液滴式的多样品间断进样,有助于实现多样品的连续扩增。
     最后,本论文利用经过改进后的PMMA基连续流式PCR微流控芯片系统对长度为400bp的DNA模板进行扩增实验,并对扩增参数进行了优化。在扩增时,PCR混合液中应添加一定浓度的PVP(聚乙烯吡咯烷酮)溶液,对PMMA微通道表面进行动态钝化改性处理,以减少PCR混合液中聚合酶在微通道表面的吸附,从而确保扩增反应的顺利进行,但是在本论文中PVP溶液的浓度对钝化效果的影响并不显著;在进行PCR微流控芯片的微通道排布结构设计时,延长预变性通道以及增加变性通道和退火通道的长度,有利于DNA模板的充分变性和退火时引物与模板的完全复性,能够提高扩增效率;合理控制PCR混合液在微通道中的流动速度与温度循环次数,可以获得更好的扩增结果;由于高斯形横截面的微通道内流体速度场分布较差,造成PCR混合液在各阶段反应的时间存在微小差别,所以其扩增效果略差于微通道横截面为矩形和半圆形的PCR微流控芯片,但是扩增结果依然能够满足凝胶电泳的检测要求;使用准分子激光加工出的微通道,其表面的羧基基团数量在微通道刻蚀过程中可能有所增加,使得表面亲水性得到提高,因此与使用CO_2激光直写刻蚀方法加工出的微通道相比,其表面更有利于减少对PCR混合液中聚合酶的吸附,从而获得更好的扩增效果。
     连续流式PCR微流控芯片系统每次所需的PCR混合液最小用量约为8μL。利用多样品间断进样方法,能够实现多样品的连续扩增,扩增效率较高,结果稳定。该系统还对其它DNA模板(180bp的拟南芥DNA模板与990bp的假单胞菌种DNA模板)实现了扩增,进一步验证了该套系统的可行性与通用性。
     本论文搭建了一套比较完整的连续流式PCR微流控芯片系统,并对其应用技术进行了研究。将廉价的高聚物材料与快速简便的激光微加工方法应用于PCR微流控芯片的制备,同样能够实现良好的扩增效果,而且能够显著降低实验室的研发成本。该套系统的使用,对于今后PCR微流控芯片的商品化应用与集成化研究有一定的指导和借鉴意义。
The polymerase chain reaction (PCR) microfluidic chip is one kind of the micro chemical reaction system with micron-scalar unit reaction boundary. It has characteristics of small linear dimension, great gradient of physical quantity, high surface to volume ratio and laminar flow with low Reynolds number. It could carry out flexible production, scale-up, rapid and high-throughput screening. The PCR microfluidic chip organically combines the advantages of the PCR technology and the microfluidic chip technology. It could quickly realize the in vitro amplification of specific DNA and has become an important research field of the MEMS (Micro Electro Mechanical System) technology. Comparing to conventional PCR thermocycler, the main advantages of the PCR microfluidic chip are shorter reaction time, smaller size, lower reagent consumption, higher amplification specificity and conveniently integration with other analysis and detection instruments.
     To develop a practical PCR microfluidic chip system, the polymethyl methacrylate (PMMA) based continuous-flow PCR microfluidic chip system and its application technology was researched in this thesis. Excimer laser and CO2 laser direct-writing ablation techniques were both used to fabricate the microchannels on the PMMA substrate. The microchannels with rectangular, semicircular and Gaussian cross-sectional shapes were separately fabricated with appropriate laser working parameters. The PMMA substrate ablated with serpentine microchannels was bonded together with other plain PMMA cover sheet to form a closed PCR microfluidic chip by means of the hot-press bonding technique.
     The bottom surface of the microchannel fabricated with excimer laser direct-writing ablation technique has periodic ripples because of the pulse output character of the excimer laser. When CO_2 laser direct-writing ablation technique was used to fabricate the microchannel, some small bumps of resolidified material were attached to its surface. The excimer laser irradiation technique was utilized in this paper to polish the microchannel and improve its surface quality. The fluid could continuously and smoothly flow in the polished microchannel without generation of bubbles. Moreover, the surface hydrophilicities of PMMA microchannel and substrate were modified using excimer laser ablation and irradiation techniques. These phenomenons are useful in the application of the PCR microfluidic chip.
     Numerical simulations based on Computational Fluid Dynamics (CFD) method were made to analyze the characteristics flow through the microchannels with different cross-sectional shapes. Laminar flow was still valid because of the small dimension of the microchannel and the low flow rate. The velocity distributions were all non-uniform and the fastest velocity was at the center of the microchannel. This phenomenon is useful for diffusion and confusion of the PCR mixture in the microchannel. The outlet velocity distribution relative proportions in the microchannels with different cross-sectional shapes were distinct. The influence of the change in the viscosity caused by the temperature could be ignored in this paper. The pressure drop across the microchannels is proportional to the flow rate and inverse proportional to the temperature. When hydraulic diameters are same, the microchannel with Gaussian cross-section has larger area. It is more propitious to decrease friction, reduce pressure drop and enhance fluidic flowability and stability.
     The overall structure of the continuous-flow PCR microfluidic chip system was improved in this paper. The top-plug sampling interface was designed to reduce the dead volume of the interface and the instability of flow rate caused by the size transition between different channels. New double-sealing method was developed to increase the sealing effect and prolong the service life. The temperature distribution characteristic on the PCR microfluidic chip was meliorated with parameters optimization of temperature control system and addition of the heat insulation baffles. The heat insulation effect between different temperature zones was strengthened. An air-operated sampling device for the continuous-flow PCR microfluidic chip was developed. It could reduce reagent consumption and flexibly control the flow rate of PCR mixture in the microchannel without dead volume. Meanwhile, the sampling device could realize serially sampling and it is helpful to the multi-samples amplification in sequence.
     Finally, the amplification experiments of 400 bp DNA template were made to optimize the working parameters of the PMMA based continuous-flow PCR microfluidic chips system. During the amplification, the addition of polyvinylpyrrolidone (PVP) solution into the PCR mixture could make surface dynamic passivation to reduce undesired adsorption of polymerase enzyme onto inner surface of the microchannel. It could ensure realization of the amplification process. However, the concentration of the PVP solution has no obvious influence on the passivation effect in this paper. Length extensions of the pre-denaturation, the denaturation and the annealing microchannels are favorable for sufficient denaturation of DNA template and completely renaturation between the template and the primers. Proper flow rate of the PCR mixture in the microchannel and appropriate amplification cycle numbers are needed to obtain an optimal amplification result. The amplification result using the chip with the microchannel having Gaussian cross-section was worse than others, because of the minor time difference between various reaction steps of PCR mixture, caused by the non-uniform velocity distribution. Nevertheless, its amplification result also could fulfill the requirement of product gel electrophoresis detection. The surface of the microchannels ablated with excimer laser may has more carboxyl groups generated during ablation process, and its hydrophilicity was improved, so this is also propitious to reduce adsorption of the polymerase enzyme onto the surface of the microchannel and enhances the amplification effect. The minimum volume of PCR mixture is 8μL for per amplification process. Multi samples amplification could be carried out with high efficiency and steady effect utilizing this system. The amplifications of other DNA templates (180 bp DNA template of Arabidopsis thaliana and 990 bp DNA template of Pseudomonas) were successfully made to further testify the feasibility and versatility of this system.
     A PMMA based continuous-flow PCR microfluidic chip system was successfully developed and its amplification parameters were investigated, in this paper. The combinational use of the low-cost polymer material and flexible laser micromachining technique not only successfully realizes amplification but also remarkably reduces the fabrication cost of the PCR microfluidic chip, especially at the step of laboratory research. The use of this system could offer a little of instructions and references for further commercial use and the functional integration research of the PCR microfluidic chip.
引文
1 N. Kockmann, T. Kiefer, M. Engler and P. Woias. Convective Mixing and Chemical Reactions in Microchannels with High Flow Rates. Sensors and Actuators B. 2006, 117 (2): 495~508
    2 T. M. F. Smith, J. P. Golden, P. B. Howell and F. S. Ligler. Characterization of Passive Microfluidic Mixers Fabricated using Soft Lithography. Microfluidics and Nanofluidics. 2006, 2 (2): 180~183
    3 H. H. Bau, J. H. Zhong and M. Q. Yi. A Minute Magneto Hydro Dynamic (MHD) Mixer. Sensors and Actuators B. 2001, 79 (2-3): 207~215
    4 L. H. Lu, K. S. Ryu and C. Liu. A Magnetic Microstirrer and Array for Microfluidic Mixing. Journal of Microelectromechanical Systems. 2002, 11 (5): 462~469
    5 A. Obubuafo. Poly (methyl methacrylate) Microchip Affinity Capillary Gel Electrophoresis of Aptamer-Protein Complexes for the Analysis of Thrombin in Plasma. Electrophoresis. 2008, 29 (16): 3436~3445
    6 W. R. Yurong. Microchip Capillary Electrophoresis with Amperometric Detection. Progress in Chemistry. 2009, 21 (1): 200~209
    7 K. B. Mullis and F. A. Faloona. Specific Synthesis of DNA in Vitro via a Polymerase-Catalyzed Chain Reaction. Methods in Enzymology. 1987, 155: 335~350
    8 K. B. Mullis, F. Ferréand R. A. Gibbs. The Polymerase Chain Reaction. Springer Science & Business, Boston, 1994: 1~4
    9黄留玉. PCR最新技术原理、方法及应用.化学工业出版社现代生物技术与医药科技出版中心, 2005: 1~8
    10王廷华,景强, P. Dubus. PCR理论与技术.科学出版社, 2005: 3~5
    11林炳承,秦建华.微流控芯片实验室.科学出版社. 2006: 123~137
    12 A. Gerlach, G.Knebel, A. E. Guber, M. Heckele, D. Herrmann, A. Muslija and T. H. Sshaller. Microfabrication of Single-Use Plastic Microfluidic Devices for High-Throughput Screening and DNA Analysis. Microsystem Technologies. 2002, 7 (5-6): 265~268
    13 M. Hashimoto, P. C. Chen, M. W. Mitchell, D. E. Nikitopoulos, S. A. Soper and M. C. Murphy. Rapid PCR in a Continuous Flow Device. Lab on a Chip. 2004, 4 (6): 638~645
    14陆振华,许宝建,金庆辉,赵建龙.用于PDMS微芯片塑性成型的SU-8模具制作工艺的优化.功能材料与器件学报. 2008年14卷3期: 639~644
    15 O. Rotting, W. Ropke, H. Becker and C. G?rtner. Polymer Microfabrication Technologies. Microsystem Technologies. 2002, 8 (1): 32~36
    16 A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore and C. E. Webb. Laser Ablation of Polymeric Materials at 157 nm. Journal of Applied Physics. 1995, 77 (6): 2343~2350
    17 S. Poser, T. Schulz, U. Dillner, V. Baier, J. M. K?hler, D. Schimkat, G. Mayer and A. Siebert. Chip Elements for Fast Thermocycling. Sensors and Actuators A. 1997, 62 (1-3): 672~675
    18 E. T. Lagally, P. C. Simpson and R. A. Mathies. Monolithic Integrated Microfluidic DNA Amplification and Capillary Electrophoresis Analysis System. Sensors and Actuators B. 2000, 63 (3): 138~146
    19 M. A. Northrup, B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards and P. Stratton. A Miniature Analytical Instrument for Nucleic Based on Micromachined Silicon Reaction Chambers. Analytical Chemistry. 1998, 70 (5): 918~922
    20 Y. C. Lin, C. C. Yang and M. Y. Huang. Simulation and Experimental Validation of Micro Polymerase Chain Reaction Chips. Sensors and Actuators B. 2000, 71 (1-2): 127~133
    21 A. I. K. Lao, T. M. H. Lee, I-M. Hsing and N. Y. Ip. Precise Temperature Control of Microfluidic Chamber for Gas and Liquid Phase Reactions. Sensors and Actuators A. 2000, 84 (1-2): 11~17
    22 B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer and J. P. Landers. Polymerase Chain Reaction in Polymeric Microchips: DNA Amplification in Less Than 240 Seconds. Analytical Biochemistry. 2001, 291 (1): 124~132
    23 M. G. Roper, C. J. Easley, L. A. Legendre, J. A. C. Humphrey and J. P. Landers. Infrared Temperature Control System for a Completely Noncontact Polymerase Chain Reaction in Microfluidic Chips. Analytical Chemistry. 2007, 79 (4): 1294~1300
    24 Y. C. Lin, M. Y. Huang and K. C. Young. A Rapid Micro-Polymerase Chain Reaction System for Hepatitis C Virus Amplification. Sensors and Actuators B. 2000, 1 (1-2): 2~8
    25 Q. Xiang, B. Xu, R. Fu and D. Li. Real Time PCR on a Disposable Chip with a Miniaturized Thermal Cycler. Biomedical Microdevices. 2005, 7 (4): 273~279
    26赵燕青,崔大付.集成型PCR芯片的研究.传感器与微系统. 2006年第25卷第8期: 38~42
    27 H. Nakano, K. Matsuda, M. Yohda, T. Nagamune, I. Endo and T. Yamane. HighSpeed Polymerase Chain Reaction in Constant Flow. Bioscience, Biotechnology and Biochemistry. 1994, 58 (2): 349~352
    28 M. U. Kopp, A. J. De Mello and A. Manz. Chemical Amplification: Continuous-Flow PCR on a Chip. Science. 1998, 280 (5366): 1046~1048
    29 I. Schneega?, R. Br?utigam and J. M. K?hler. Miniaturized Flow-Through PCR with Different Template Types in a Silicon Chip Thermocycler. Lab on a Chip. 2001, 1 (1): 42~49
    30 P. J. Obeid and T. K. Christopoulos. Continuous-Flow DNA and RNA Amplification Chip Combined with Laser-Induced Fluorescence Detection. Analytica Chimica Acta. 2003, 494 (1): 1~9
    31 J. A. Kim, J. Y. Lee , S. Seong, S. H. Cha, S. H. Lee, J. J. Kim and T. H. Park. Fabrication and Characterization of a PDMS-Glass Hybrid Continuous-Flow PCR Chip. Biochemical Engineering Journal. 2006, 29 (1-2): 91~97
    32 K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo and H. Misawa. A Heater-Integrated Transparent Microchannel Chip for Continuous-Flow PCR. Sensors and Actuators B. 2002, 84 (2-3): 283~289
    33 T. Fukuba, T. Yamamotoa, T. Naganuma and T. Fuji. Microfabricated Flow-Through Device for DNA Amplification-Towards in Situ Gene Analysis. Chemical Engineering Journal. 2004, 101 (1-3): 151~156
    34 C. G?rtner, R. Klemm and H. Becker. Methods and Instruments for Continuous-Flow PCR on a Chip. Proceeding of SPIE on Microfluidics, Biomems, and Medical Microsystems. 2007, 6465: 646502
    35 N. Crews, C. Wittwer and B. Gale. Continuous-Flow Thermal Gradient PCR. Biomedical Microdevices. 2008, 10 (2): 187~195
    36刘金华,殷学锋,徐光明,方肇伦,陈怀增.流动型微流控PCR扩增芯片的研究.高等学校化学学报. 2003年第24卷第2期: 232~235
    37 C. Y. Yu, W. S. Liang, I. Kuan, C. H. Wei and W. G. Gu. Fabrication and Characterization of a Flow-Through PCR Device with Integrated Chromium Resistive Heaters. Journal of the Chinese Institute of Chemical Engineers. 2007, 38 (3-4): 333~339
    38 Q. T. Zhang, W. H. Wang, H. S. Zhang and Y. L. Wang. Temperature Analysis of Continuous-Flow Micro-PCR Based on FEA. Sensors and Actuators B. 2002, 82 (1): 75~81
    39贾晓宇,牛志强,陈文元,张卫平.微通道式PCR芯片温度的研究.微细加工技术. 2004年第4期: 69~73
    40张瑜. PMMA基PCR生物芯片的准分子激光微加工、键合、封装技术研究.北京工业大学工学硕士学位论文. 2004年: 18~43
    41朱效立.准分子激光微细加工工艺和加工机理研究.北京工业大学理学硕士学位论文. 2005年: 18~65
    42荆涛.准分子激光微加工光路系统研究.北京工业大学工学硕士学位论文. 2002年: 10~41
    43殷伯华.准分子激光微加工控制系统研究.北京工业大学工学硕士学位论文. 2003年: 11~71
    44杜国军.准分子激光微加工光学系统研究.北京工业大学工学硕士学位论文. 2005年: 12~451
    45王桐.准分子激光光阑法加工微透镜的工艺研究.北京工业大学理学硕士学位论文. 2007年: 21~52
    46 Z. Q. Liu, Y. Feng and X. S. Yi. Coupling Effects of the Number of Pulses, Pulses Repetition Rate and Fluence during Laser PMMA Ablation. Applied Surface Science. 2000, 165 (4): 303~308
    47 T. Klotzbücher, T. Braune, S. Sigloch, J. Ho?feld, M. Neumeie, H. D. Bauer and W. Ehrfeld. Polymer Microsystems by Excimer Laser Ablation: From Rapid Prototyping to Large Number Fabrication. Proceedings of SPIE: Laser Applications in Microelectronic and Optoelectronic Manufacturing VI. 2001, 4274: 307~315
    48 E. A. Wadddell, L. E. Locascio and G. W. Kramer. UV Laser Micromachining of Polymers for Microfluidic Applications. Journal of the Association for Laboratory Automation. 2002, 7 (1): 78~82
    49 W. Pfleging, J. B?hm, S. Finke, E. Gaganidze, Th. Hanemann, R. Heidinger and K. Litfin. Direct Laser-Assisted Processing of Polymers for Micro-Fluidic and Microoptical Applications. Proceedings of SPIE: Photon Processing in Microelectronics and Photonics II. 2003, 4977: 346~356
    50 V. Srinivasan, M. A. Smrtic and S. V. Bahu. Excimer Laser Etching of Polymers. Journal of Applied Physics. 1986, 59 (11): 3861~3867
    51朱贵云,杨景和.激光光谱分析法(第二版).科学出版社, 1989: 299~352
    52 H. Klank, J. P. Kutter and O. Geschke. CO2-Laser Micromachining and Back-End Processing for Rapid Production of PMMA-Based Microfluidic Systems. Lab on a Chip. 2002, 2 (4): 242~246
    53 M. F. Jensen, M. Noerholm, L. H. Christensen and O. Geschke. MicrostructureFabrication with a CO2 Laser System: Characterization and Fabrication of Cavities Produced by Raster Scanning of the Laser Beam. Lab on a Chip. 2003, 3 (4): 302~307
    54 C. K. Chung, Y. C. L In and G. R. Huang. Bulge Formation and Improvement of the Polymer in CO2 Laser Micromachining. Journal of Micromechanics and Microengineering. 2005, 15 (10): 1878 ~1884
    55叶嘉明,张维,张玉龙,周勇亮. CO2激光直写加工PMMA微流控芯片.中国机械工程. 2005年第16卷增刊: 102~105
    56祝连义,刘冲,李经民. CO2激光辅助加工PMMA微流控芯片中的重铸物现象.功能材料与器件学报. 2008年第14卷第2期: 534~538
    57 D. Snakenborg, H. Klank and J. P. Kutter. Microstructure Fabrication with a CO2 Laser System. Journal of Micromechanics and Microengineering. 2004, 14 (2): 182~189
    58傅建中,相恒富,陈子辰. CO2激光直写加工聚合物微流体芯片的建模研究.高等学校化学学报. 2004年第25期第Z1期: 54~56
    59相恒富,傅建中,陈子辰.三维瞬态激光烧蚀聚合物微流道动态界面研究.浙江大学学报(工学版). 2007年第41卷第11期: 1908~1911
    60 D. J. Yuan and D. Suman. Experimental and Theoretical Analysis of Direct-Write Laser Micromachining of Polymethyl Methacrylate by CO2 Laser Ablation. Journal of Applied Physics. 2007, 101 (2): 024901
    61郭世斌,曲杨,吕反修,唐伟忠,佟玉梅,宋建华.大面积金刚石自支撑膜机械抛光的优化工艺研究.功能材料. 2007年第7卷第38期: 1173~1175
    62 S. Hegde, U. B. Patri and S. V. Babu. Chemical-Mechanical Polishing of Copper Using Molybdenum Dioxide Slurry. Journal of Materials Research. 2005, 20 (9): 2553~2561
    63宋晓岚,李宇焜,江楠,屈一新,邱冠周.化学机械抛光技术研究进展.化工进展. 2008年第27期第1卷: 26~31
    64李军,左敦稳,朱永伟,孙玉利,王军.无磨料化学机械抛光的研究进展.机械制造与自动化. 2008年第37卷第6期: 5~8
    65 A. M. Zaitsev, G. Kosaca, B. Richarz, V. Raiko, R. Job, T. Fries and W. R. Fahrner. Thermochemical Polishing of CVD Diamond Films. Diamond and Related Materials. 1998, 7 (8): 1108~1117
    66蒋中伟,张竟敏,黄文浩.金刚石热化学抛光的机理研究.光学精密工程. 2002年第10卷第1期: 50~55
    67 H. A. Naseem, G. M. R. Sirineni, A. P. Malshe and W. D. Brown. Reactive Ion Etching of Diamond as a Means of Enhancing Chemically-Assisted Mechanical Polishing Efficiency. Diamond and Related Materials. 1997, 6 (8): 952~958
    68王家富,王波,张巨帆,董申.用于SiC超光滑表面加工的大气等离子体抛光系统设计.航空精密制造技术. 2008年第44卷第4期: 11~14
    69江超,王又青,胡少六.激光抛光技术的发展与展望.激光技术. 2002年第26卷第6期: 1~4
    70 T. A. Maia and G. C. Lim. Micromelting and Its Effects on Surface Topography and Properties in Laser Polishing of Stainless Steel. Journal of Laser Applications. 2004, 16 (4): 221~228
    71 B. Bertussi, J. Y. Natoli and M. Commandre. Effect of Polishing Process on Silica Surface Laser-Induced Damage Threshold at 355 nm. Optics Communications. 2004, 242 (1-3): 227~231
    72 K. Hélène, G. Lauren, C. Mireille, G. B. Catherine, T. Didier and L. Guy. Influence of Polishing and Cleaning on the Laser-Induced Damage Threshold of Substrates and Coatings at 1064 nm. Optical Engineering. 2007, 46 (2): 023402
    73 K. M. Nowak, H. J. Bake and D. R. Hall. Pulsed Laser Machining and Polishing of Silica Micro-optical Components using a CO2 Laser and an Acousto-Optic Modulator. Proceedings of SPIE. Laser Micromachining for Optoelectronic Device Fabrication. 2003, 4941: 107~111
    74 A. Lamikiz, J. A. Sánchez, L. N. López De Lacalle and J. L. Arana. Laser Polishing of Parts Built Up by Selective Laser Sintering. International Journal of Machine Tools & Manufacture. 2007, 47 (12-13): 2040~2050
    75 M. Murahara. Excimer Laser-Induced Photochemical Polishing of SiC Mirror. Proceedings of SPIE. Laser-Induced Damage in Optical Materials. 2002, 4679: 69~74
    76陈林,杨永强.激光抛光机理及应用.表面技术. 2003年第32卷第5期: 49~52
    77 E. Stenzel, S. Gogoll, J. Sils, M. Huisinga, H. Johansen, G. K?stner, M. Reichling and E. Matthias. Laser Damage of Alkaline-Earth Fluorides at 248 nm and the Influence of Polishing Grades. Applied Surface Science. 1997, 109-110: 162~167
    78 A. J. Pedraza. Interaction of UV Laser Light with Wide Band Gap Materials: Mechanisms and Effects. Nuclear Instruments Methods in Physics Research B. 1998, 141 (1-4): 709~718
    79马友光,付涛涛,朱春英.微通道内气液两相流行为研究进展.化工进展. 2007年第26卷第8期: 1068~1074
    80 J. Liu, T. Pan, A. T. Woolley and M. L. Lee. Surface-Modified Poly (methyl methacrylate) Capillary Electrophoresis Microchips for Protein and Peptide Analysis. Analytical Chemistry. 2004, 76 (23): 6948~6955
    81 K. L. Prime and G. M. Whitesides. Self-Assembled Organic Monolayers: Model Systems for Studying Adsorption of Proteins at Surfaces. Science. 1991, 252 (5009): 1164~1167
    82 A. Hozumi, T. Masuda, K. Hayashi, H. Sugimura, O. Takai and T. Kameyama. Spatially Defined Surface Modification of Poly (methyl methacrylate) using 172 nm Vacuum Ultraviolet Light. Langmuir. 2002, 18 (23): 9022~9027
    83 J. J. Shah, J. Geist, L. E. Locascio, M. Gaitan, M. V. Rao and W. N. Vreeland. Surface Modification of Poly (methyl methacrylate) for Improved Adsorption of Wall Coating Polymers for Microchip Electrophoresis. Electrophoresis. 2006, 27 (19): 3788~3796
    84 T. M. Long, S. Prakash, M. A. Shannon and J. S. Moore. Water-Vapor Plasma-Based Surface Activation for Trichlorosilane Modification of PMMA. Langmuir. 2006, 22 (9): 4104~4109
    85 A. Hiratsuka, H. Muguruma, K. H. Lee and I. Karube. Organic Plasma Process for Simple and Substrate-Independent Surface Modification of Polymeric BioMEMS Devices. Biosensors and Bioelectronics. 2004, 9 (12): 1667~1672
    86 A. C. Henry, T. J. Tutt, M. Galloway. Y. Y. Davidson, C. S. Mcwhorter, S. A. Soper and R. L. McCarley. Surface Modification of Poly (methyl methacrylate) used in the Fabrication of Microanalytical Devices. Analytical Chemistry. 2000, 72 (21): 5331~5337
    87 C. Wochnowski, S. Metev and G. Sepold. UV-Laser-Assisted Modification of the Optical Properties of PMMA. Applied Surface Science. 2000, 154~155: 706~711
    88 C. Wochnowski, M. A. S. Eldin and S. Metev. UV-Laser-Assisted Degradation of Poly (methyl methacrylate). Polymer Degradation and Stability. 2005, 89 (2): 252~264
    89 J. Lawrence and L. Li. Modification of the Wettability Characteristics of Polymethyl Methacrylate (PMMA) by Means of CO2, Nd: YAG, Excimer and High Power Diode Laser Radiation. Materials Science and Engineering A. 2001, 303 (1-2): 142~149
    90 T. J. Johnson, E. A. Waddell, G. W. Kramer and L. E. Locascio. Chemical Mapping of Hot-Embossed and UV-Laser-Ablated Microchannels in Poly (methyl methacrylate) using Carboxylate Specific Fluorescent Probes. Applied Surface Science. 2001, 181 (1): 149~159
    91 T. J. Johnson, D. Ross, M. Gaitan and L. E. Locascio. Laser Modification of Preformed Polymer Microchannels Application to Reduce Band Broadening Around Turns Subject to Electrokinetic Flow. Analytical Chemistry. 2001, 73 (15): 3656~3661
    92黄峰,楼祺洪,徐剑秋,董景星,魏运荣.高分子材料的准分子激光表面处理.中国激光. 1999年第26卷第8期: 746~748
    93朱敏,周翔.准分子激光对聚合物材料的表面改性处理.纺织学报. 2004年第25卷第1期: 7~9
    94 R. N. Wenzel. Resistance of Solid Surfaces to Wetting by Water. Industrial and Engineering Chemistry. 1936, 28 (8): 988~994
    95 A. B. D. Cassie and S. Baxter. Wettability of Porous Surfaces. Transactions of the Faraday Society. 1944, 40: 546~551
    96 R. L. McCarley, B. Vaidya, S. Y. Wei, A. F. Smith, A. B. Patel, J. Feng, M. C. Murphy and S. A. Soper. Resist-free Patterning of Surface Architectures in Polymer-Based Microanalytical Devices. Journal of the American Chemical Society. 2005, 127 (3): 842~843
    97 A. G. Feng, B. J. McCoy, Z. A. Munir and D. Cagliostro. Wettability of Transition Metal Oxide Surfaces. Materials Science and Engineering A. 1998, 242 (1-2): 50~56
    98王洪喜,康春霞,贾建援.一种测试微通道性能参数的循环换热实验系统.电子机械工程. 2005年第21卷第1期: 10~13
    99 H. Y. Wu and P. Cheng. Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios. International Journal of Heat and Mass Transfer. 2003, 46 (14): 2519~2525
    100蒋洁,郝英立,施明恒.矩形微通道中流体流动阻力和换热特性实验研究.热科学与技术. 2006年第5卷第3期: 189~194
    101 W. L. Qu, M. Gh. Mohiuddin and D. Q. Li. Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels. International Journal of Heat and Mass Transfer. 2000, 43 (3): 353~364
    102侯亚丽,王秀春,张承武,刘志刚.矩形微通道中流动阻力特性的实验研究.河北工业大学学报. 2007年第36卷第6期: 13~17
    103 S. G. Kandlikar, D. Schmitt, A. L. Carrano and J. B. Taylor. Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Microchannels. Physics of Fluids. 2005, 17 (10): 100606
    104 Z. Li, W. Q. Tao and Y. L. He. A Numerical Study of Laminar Convective HeatTransfer in Microchannel with Non-Circular Cross-Section. International Journal of Thermal Sciences. 2006, 45 (12): 1140~1148
    105 A. S. Rawool, S. K. Mitra and S. G. Kandlikar. Numerical Simulation of Flow through Microchannels with Designed Roughness. Microfluidics and Nanofluidics. 2006, 2 (3): 215~221
    106陆向迅,徐斌,吴建,王洋,薛宏.矩形微通道内液体流动与传热的数值模拟研究.节能技术. 2008年第26卷第2期: 103~106
    107 G. Perozziello, F. Bundgaard and O. Geschke. Fluidic Interconnections for Microfluidic Systems: A New Integrated Fluidic Interconnection Allowing Plug‘n’Play Functionality. Sensors and Actuators B. 2008, 130 (2): 947~953
    108 B. L. Gray, D. Jaeggi, N. J. Mourlas, B. P. Van Drie?nhuizen, K. R. Williams, N. I. Maluf and G. T. A. Kovacs. Novel Interconnection Technologies for Integrated Microfluidic Systems. Sensors and Actuators A. 1999, 77 (1): 57~65
    109 P. Belgrader, C. J. Elkin, S. B. Brown, S. N. Nasarabadi, F. P. Milanovich, B. W. Colston and G. D. Marshall. A Reusable Flow-Through Polymerase Chain Reaction Instrument for the Continuous Monitoring of Infectious Biological Agents. Analytical Chemistry. 2003, 75 (14): 3446~3450
    110刘金华,殷学锋,方肇伦.螺旋通道微流控PCR芯片连续自动扩增DNA片段的研究.高等学校化学学报. 2004年第25卷第1期: 30~34
    111 N. Park, S. Kim and J. H. Hahn. Cylindrical Compact Thermal-cycling Device for Continuous-Flow Polymerase Chain Reaction. Analytical Chemistry. 2003, 75 (21): 6029~6033
    112 C. S. Zhang, J. L. Xu, W. L. Ma and W. L. Zheng. PCR Microfluidic Devices for DNA Amplification. Biotechnology Advances. 2006, 24 (3): 243~284
    113章春笋,徐进良.连续流动式PCR芯片相关技术研究进展.分析测试学报. 2004年第23卷第6期: 114~118
    114 S. Hjerten. High-Performance Electrophoresis: Elimination of Electroendosmosis and Solute Adsorption. Journal of Chromatography. 1985, 347 (22): 191~198
    115 P. J. Obeid, T. K. Christopoulos, H. J. Crabtree and C. J. Backhouse. Microfabricated Device for DNA and RNA Amplification by Continuous-Flow Polymerase Chain Reaction and Reverse Transcription Polymerase Chain Reaction with Cycle Number Selection. Analytical Chemistry. 2003, 75 (2): 288~295
    116 J. Felbel, A. Reichert, M. Kielpinski, M. Urban, T. Henkel, N. H?fner, M. Dürst and J. Weber. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) inFlow-Through Micro-Reactors: Thermal and Fluidic Concepts. Chemical Engineering Journal. 2008, 135 (S1): S298~S302
    117 R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline and J. P. Landers. Infrared-Mediated Thermocycling for Ultrafast Polymerase Chain Reaction Amplification of DNA. Analytical Chemistry. 1998, 70 (20): 4361~4368
    118 B. C. Giordano, E. R. Copeland and J. P. Landers. Towards Dynamic Coating of Glass Microchip Chambers for Amplifying DNA Via the Polymerase Chain Reaction. Electrophoresis. 2001, 22 (2): 334~340
    119 J. Yang, Y. Liu, C. B. Rauch, R. L. Stevens, R. H. Liu, R. Lenigk and P. Grodzinski. High Sensitivity PCR Assay in Plastic Micro Reactors. Lab on a Chip. 2002, 2 (4): 179~187
    120 N. J. Panaro, X. J. Lou, P. Fortina, L. J. Kricka and P. Wilding. Surface Effects on PCR Reactions in Multichip Microfluidic Platforms. Biomedical Microdevices. 2004, 6 (1): 75~80
    121 X. M. Zhou, D. Y. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei and B. C. Lin. Determination of SARS-Coronavirus by a Microfluidic Chip System. Electrophoresis. 2004, 25 (17): 3032~3039
    122章春笋.毛细管基连续流动式PCR微流控装置及微通道内动力学钝化的研究.中国科技大学博士学位论文. 2006: 99~101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700