用户名: 密码: 验证码:
木结构墙体隔声和楼板减振设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木结构建筑在我国历史悠久,由于各种原因建国后未得到很好的发展。近年来,国外现代木结构建筑进入我国,引起人们的广泛关注。现代木结构建筑以其独特的性能在我国有着广阔的发展前景,但不可否认地是一些现代木结构建筑存在有墙体隔声差和楼板振动大等问题,这些情况不一定与建筑技术和材料有关,有时是由设计规范、设计方法而造成的,改善这些方面的性能正是本论文的研究目的。
     木结构隔声性能是木结构建筑一项重要性能。以统计能量分析方法为基础,首先给出了单层墙板隔声性能表达式,进而提出了双层墙板隔声性能的计算方法。通过分析了声桥和吸声层对墙体隔声性能的影响对双层墙体隔声表达式进行了修正,提出了木结构墙体隔声性能的计算式。
     通过实测值与计算值比较,证明二者有比较好的一致性,实测计权隔声量与理论计权隔声量相差在3dB以内。计算表达式是用简单函数表达,式中所涉及的参数赋值都是易于实测、查阅资料或简单计算得到,具有较强工程适用性。在此基础上,结合木结构建筑的特点,我们又对木结构墙体隔声表达式进行了扩展,给出了带门窗等构件组合墙体的隔声量预测公式。
     在木结构墙体实验室测量中,发现影响木结构墙体隔声性能的因素有墙板的面密度、墙骨的规格和间距、吸声层材料的容重和厚度。在木结构墙体的设计和建造中,可以不考虑墙板放置方式。墙骨间距对共振频率影响明显,第一共振频率(f_0)计算表达式不仅要考虑了墙体两墙面板的面密度和空气层的厚度,而且还要考虑木墙骨的间距。在结构安全的情况下,建议木结构墙体采用木墙骨间距为400mm或600mm,优先使用600mm。
     通过分析玻璃棉(GFB)对墙体隔声的影响,认为GFB附加隔声量不能简单地以5dB以上来计算,必须要考虑GFB的容重和厚度计算附加隔声量。不加保温层的木结构墙体计权隔声量基本上在40dB以下,而加保温层的木结构墙体计权隔声量基本上在40dB以上。按照我国住宅隔声标准评定,本次试验木结构外墙隔声性能达到三级,基本上能满足普通住宅要求。
     木结构墙体的f_0一般都在100Hz以上,大约在125Hz左右,声桥频率f_B大约在150Hz左右,墙体限定频率·f_l大约在630Hz左右。在测试频率范围内木结构隔声曲线变化的特征是:在f_0和f_B之间,隔声量按每倍频大约18dB增加;在f_B和f_l之间,隔声量按照每倍频大约10dB增加;在f_l和2000Hz左右,隔声量按照每倍频低于10dB增加;2000Hz以上到临界频率,隔声量递减。在实测结果的基础上,初步提出了线连接木墙骨的内墙体隔声量R_w的表达式。
     木结构楼板振动性能是木结构建筑又一项重要性能。在国外研究者的成果和经验的
Wood frame buildings have a long history in China. Due to many reasons there was no more development. Recently Foreign modern wood frame buildings come to China and people pay great attention. By special performances modern wood frame construction will have a great future, however undeniably there exist problems of low sound insulation of walls and poor vibration of floors in some buildings. Sometimes these situations are not related to building technology and materials while caused by design codes and methods. The role of the paper is to improve these performances.
    Sound insulation of wood structure walls is one of important properties. Based on the SEA method, the expression of the sound insulation of a single panel wall was given and the calculation method of the sound insulation of a double panel wall was obtained. By analyzing the influence of sound bridge and absorption layer on the sound insulation of a wall, the calculation expression of a double panel wall was revised and the formula of the sound insulation of a wood structure wall was put forward.
    The comparison between measured values and calculated values proved the serviceability of the calculation expression. The difference between measured weighted sound insulation and the calculation weighted sound insulation was less than 3dB. The parameters in the calculation expression are easy to reach by measurement, handbook or simple calculation. According to the practical situation the forecast formula of an assembled wall with doors or windows was given.
    In laboratory measurement, it was found that factors influencing the sound insulation of a wood structure wall were the surface density of wall panels, the size and the space of wood studs, the density and the thickness of sound absorption materials. The layout of wall panels is considered in the design and construction of wood structure walls. The space between wood studs has an obvious influence on the resonance frequency. In the calculation of the resonance frequency the surface density and the air thickness of wall panels is not only considered, the space between wood studs is also considered. Under the consideration of the structure safety,
引文
1.江泽慧主编.中国林业工程.济南:济南出版社,2002.
    2.江泽慧.中国林产品发展的现状与前景.木材工业,2006,(2):1-4.
    3.任海青,江泽慧,费本华等.中国现代木结构住宅未来发展之路.木材工业,2006,(2):45-47.
    4.周海宾,费本华,任海青.中国木结构的发展历程.山西建筑,2005,(21):10-11.
    5.任海青,周海宾,费本华等.现代木结构在中国的发展机遇和挑战.木材加工机械,2006,(1):28-31.
    6.费本华,周海宾,傅峰.一幢梁柱式木结构示范住宅的建造实例.山西建筑,2006,(6):15-16.
    7.费本华,周海宾.现代框架式木结构住宅.世界林业研究,2006,(2):51-54.
    8.周海宾,任海青,费本华.现代框架式木结构住宅建造技术.建造技术及设计,2006,(3):94-97.
    9.樊承谋.木结构在我国建筑中应用的前景.木材工业,2003,(3):4-6.
    10.周海宾,任海青,费本华.颇具独特优势的现代木结构住宅.建设科技,2006,(1):78-79.
    11.范宏,陈成意.木结构房屋的发展状况及问题.青岛建筑工程学院学报,2004,(5):29-32.
    12.费本华,王戈,任海青等.我国发展木结构房屋的前景分析.木材工业,2002,(5):6-9.
    13.秦佑国,王炳麟编著.建筑声环境.北京:清华大学出版社,1999.
    14.C.M.哈里斯,C.E.克瑞德主编.冲击和振动手册.北京:科学出版社,1990.
    15.王季卿.建筑声学发辰的10年回顾.第六届建筑物理学术会议论文集.北京:中国科学技术出版社,1993.
    16. L. L. Beranek. Noise Reduction. McGraw-Hill Book, 1960.
    17. L. L. Beranek. Noise and Vibration Control. McGraw-Hill Book, 1971.
    18.赵松岭.噪声的降低和隔离.上海:同济大学出版社,1989.
    19. T. Shuk-u, K. Ishihara. The analysis of acoustic field in irregularly shaped by the finite element method. Journal of sound and vibration, 1973, (2): 67-76.
    20. M. J. Croker, A. J. Price. Sound transmission using statistical energy analysis. Joumal of sound and vibration, 1969, (3): 469-486.
    21. W. Whole, A. Elmallawany. Generalized model of application of statistical energy analysis for the sound propagation in a complicated structure. Journal of sound and vibration, 1969,??(2):233-241.
    22.姚德源,王其攻.统计能量分析原理及其应用.北京:北京理工大学出版社,1995.
    23. R.J.M.Craik. Sound transmission through building using statistical energy analysis. Gower Publishing Limited UK, 1996.
    24.秦佑国.统计能量分析应用于墙隔声研究.声学学报,1982,(4):251-262.
    25.黄险峰,吴硕贤.应用统计能量分析计算墙体隔声的初探.重庆建筑大学学报,2002,(6):5-9.
    26. R.Y.Vinokur. Evaluating sound transmission effects in multi-layers partitions. Journal of sound and vibration, 1996, (7):24-28.
    27. C.Bao,J.Pan. Experimental study of different approaches for active control of sound transmission through double walls. Journal of the society of American, 1997, (3): 1664-1670.
    28.王季卿.上海地区住宅隔声品质研究.上海市建设技术发展基金会项目,1999.
    29.冬利.上海地区住宅声环境研究.同济大学硕士学位论文,1991.
    30.车世光,张三明,秦佑国等.城市住宅声环境的改善.清华大学建筑学院建筑技术研究所,1988.
    31.柳孝图.噪声评价与住宅隔声研究进展.噪声与振动控制,1992,(4):5-6。
    32.柳孝图.城市住宅声环境分析.噪声与振动控制,1987,(4):56-58.
    33.秦佑国.墙隔声的统计能量计算法.第十六届国际噪声控制工程学术会议论文集,1987.
    34.吕如榆,高严良.低频噪声的影响和控制.第十六届国际噪声控制工程学术会议论文集,1987.
    35.钟祥璋,罗小华.石膏砌块墙体的隔声.住宅科技,1997,(11):36-37.
    36.钟祥璋.菱镁加气混凝土砌块墙体的隔声特性.声学技术,1993,(4):17-19.
    37.杜功焕等.声学基础.上海:上海科学技术出版社,1981.
    38.马大道,沈壕.声学手册.北京:科学出版社,1983.
    39.吴大胜等.建筑声学设计手册.北京:中国建筑工业出版社,1987.
    40.建筑隔声测量规范(GBJ75-84),1985.
    41. National Building Code of Canada (NBCC). Commentary A: Serviceability criterion for deflections and vibrations. 1985,NBCC. Ottawa: National Council of Canada.
    42. Federal Housing Administration(FHA). Minimum property standards for one and two living units. FHANo. 300, 1964. Washington, DC: FHA.
    43. Onysko DM & Bellosillo SB. Performance criteria for residential floors. Central Mortgage and Housing Corporation Report Grant No.120-74, 1978. Ottawa: Eastern Forest Products Laboratory.44. Onysko DM. Development of performance criteria for residential floors. Canadian Forestry Service Report 8, 1982. Ottawa: Forintek Canada Corporation.
    
    45. Onysko DM. Deflection serviceability criteria for residential floors. Canadian Forestry Service Report No. 17, 1988. Ottawa: Forintek Canada Corporation.
    
    46. Onysko DM. Implementation of residential floor performance criteria Part Ⅱ: Research on floor performance: A problem analysis. Canadian Forestry Service Report Contract No.03-50-10-008, 1984. Ottawa: Forintek Canada Corporation.
    
    47. Onysko DM (1985). Serviceability criteria for residential floors based on a field study of consumer response. Canadian Forestry Service Report Contract No.03-50-10-008. Ottawa: Forintek Canada Corporation.
    
    48. Onysko DM. Implementation of residential floor performance criteria Part Ⅲ: Research on floor performance: Serviceability criteria for residential floors. Canadian Forestry Service Report Contract No.03-50-10-008, 1985. Ottawa: Forintek Canada Corporation.
    
    49. Onysko DM. Performance and acceptability of wood floors-Forintek studies. Proceedings of the symposium/Workshop on Serviceability of Buildings (Movements, Deflections, Vibrations), University of Ottawa, Canada, 16-18 May 1988, (1):477-494.
    
    50. National Building Code of Canada(NBCC). Appendix A: Explanatory martial for the National Building Code. 1990, NBCC. Ottawa: National Research Council of Canada.
    
    51. Canadian Wood Council et al. Development of design procedures for vibration controlled spans using engineered wood members. Canadian Construction Material Center and Consortium of Manufactures of Engineered Wood Products Used in Repetitive Member Floor Systems Concluding Report, 1997. Ottawa.
    
    52. Hu LJ. Serviceability design criteria for commercial and multi-family floors. Canadian Forest Service Report No. 4, 2000. Sainte-Foy: Forintek Canada Corporation.
    
    53. Taylor S, Hua G and Onysko DM. Dynamical performance of wood framed floor systems with bridging/blocking enhancements. Forestry Products Society 54th Annual Meeting Presentations and Abstracts. South Lake Tahoe, US, June 18-21 2000:17-17.
    
    54. Taylor S and Hua G. Dynamical performance of wood framed floor systems with poured topping. Proceedings of the World Conference on Timber Engineering. Whistler, Canada, 31 July-3 August,2000:4.6.3.
    
    55. Ohlsson S. Floor vibration and human discomfort. PhD thesis, 1980. Gothenburg, Sweden: Chalmers University of Technology.
    
    56. Ohlsson S. Ten years of floor vibration research - A review of aspects and some results. Proceedings of the Symposium/Workshop on Serviceability of Buildings (Movements, Deflections, Vibrations), University of Ottawa, Canada,16-18 May 1988, (1):435-450.
    57. Ohlsson S. Serviceability criteria - especially floor vibration criteria. Proceeding of 1991 International Timber Engineering Conference, London, 2-5 September 1991, (1): I .58- I .65.
    
    58. Ohlsson S. Springiness and human induced floor vibration - A design guide. Swedish Council for Building Research Document D12, 1988. Stockholm: Swedish Council for Building Research.
    
    59. Ewins DJ. Modal Testing: Theory and Practice. Somerset, UK: Research Studies Press, 1984.
    
    60. Chui YH. Vibration performance of wooden floor in domestic dwellings. PhD thesis, 1987. Brighton, UK: Brighton Polytechnic.
    
    61. Smith I and Hu LJ. Vibration serviceability of ribbed plates by modal synthesis. IABSE Report of International Colloquium Goteborg 1993: Structural Serviceability of Buildings. Zurich: Vol,69:243-250.
    
    62. British Standards Institution. Evaluation of human exposure to vibration in buildings (1Hz to 80 Hz). British Standard BS6472, 1984. London:BSI.
    
    63. Smith I and Chui YH. Design of lightweight wooden floors to avoid human discomfort. Canadian Journal of Civil Engineering, 1988, (15):254-262.
    
    64. Chui YH and Smith I. A dynamic approach for timber floor design. New Zealand Journal of Timber Construction, 1990, 8(1): 9-10.
    
    65. Dolan JD et al. Preventing annoying wood floor vibration. Journal of Structural Engineering, 1999, 125 (1):19-24.
    
    66. Johnson JR. Vibration acceptability in wood floor system. Master's Thesis, 1994. Blacksburg. VA Virginia Polytechnic Institute.
    
    67. Patrick MM. Another proposed rule of thumb for controlling floor vibration. Wood Design Focus. Fall 1997, 3-3.
    
    68. Kullaa J and Talji A. Vibration tests for lightweight steel joist floors - dynamic properties and vibrations due to walking. VTT Building Technology Report, 1998. Espoo: VTT Building Technology.
    
    69. Talji A and Kullaa J. Vibration tests for lightweight steel joist floors - subjective perceptions of vibrations and comparisons with design criteria. VTT Building Technology Report, 1998. Espoo: VTT Building Technology.
    
    70. Samuelsson M and Sandberg J. Vibration in lightweight steel floors. Swedish Institute of Steel Construction Report 190, 1998.4. Stockholm:SBI.
    
    71. Beattie GJ. The vibration performance of timber floors. BRANZ Study Report No.79, 1998. Auckland: BRANZ.
    72. Van Oosterhout GPC, Donkervoort R and Van de Kuilen J-WG. Vibration measurement on timber frame floors. Proceedings of the Cost Action ES Workshop of Construction, Structural and Serviceability Aspects of Muti-Story Timber Frame Building, Building Research Establishment (BRE),UK,10-11 June 1998; 98-CON-p096.
    
    73. Larsen H et al. Eurocode No. 5: Design of timber structures - Part Ⅰ : General rules and rules for building. ECS: Part I ,TC250/SC5 PT Ⅰ , 1992. Brussels: European Committee for Standardization.
    
    74. International Organization for Standards. Guide for the evaluation of human exposure to vibration. ISO Standard 2631, 1978. Geneva:ISO.
    1.中国建筑科学研究院建筑物理研究所.建筑围护结构的隔声.北京:中国建筑工业出版社,1980.
    2.康玉成.建筑隔声设计.北京:中国建筑工业出版社,2004.
    3.吴大胜等.建筑声学设计手册.北京:中国建筑工业出版社,1987.
    4.赵松岭.噪声的降低和隔离.上海:同济大学出版社,1989.
    5.姚德源,王其政.统计能量分析及其应用.北京:北京理工大学出版社,1995.
    6.卢秉恒,顾崇衔.粘弹性及约束阻尼夹层结构的模态综合法.西安交通大学学报,1986,(5):23-32.
    7.陈前,朱德懋.弹性-粘弹性复合结构模态理论.固体力学学报,1990,(1):23-30.
    8.赵经文,王宏钰.结构有限元分析.哈尔滨:哈尔滨工业大学出版社,1988.
    9.周中坚,卢耀祖.机械与汽车结构的有限元分析.上海:同济大学出版社,1996.
    10.张德兴编著.有限元法新编教程.上海:同济大学出版社,1988.
    11. L.L.Beranek. Noise and Vibration Control. McGraw-Hill Book, 1971.
    12. M.J. Croker, A.J.Price. Sound transmission using statistical energy analysis. Journal of sound and vibration, 1969, (3):469-486.
    13.秦佑国.统计能量分析应用于墙隔声研究.声学学报,1982,(4):251-262.
    14. A.Craggs. Transient response of a coupled plate acoustical system using plate and acoustical finite element. Journal of sound and vibration, 1971, (4):509-528.
    15. A.Craggs. The use of three simple dimensional acoustical finite elements for determining the natural modes and frequencies of complex shape enclosures. Journal of sound and vibration, 1972, (2):231-339.
    16. A.Craggs. An acoustical finite element approach for studying boundary flexibility and sound transmission between irregular enclosures. Journal of sound and vibration, 1972, (3):347-357.1.姚德源,王其政.统计能量分析及其应用.北京:北京理工大学出版社,1995.
    2.赵松龄.用统计能量法解有限尺寸壁板的隔声问题.振动与噪声控制学术会议论文集,1991,p312-320.
    3. Zhao Songling. Predicting of the sound transmission loss of aircrafi panel. ICA14, Beijing, 1992.
    4.杨光.蜂窝夹芯板隔声性能研究.同济大学硕士学位论文,1992.
    5.罗小华.轻质隔墙隔声性能的研究.同济大学博士学位论文,2000.1.建筑隔声测量规范(GBJ75-84),1985.
    2.康玉成.建筑隔声设计.北京:中国建筑工业出版社,2004.
    3.建筑隔声评价标准(GB/T50121-2005),2005.
    4.周海宾,任海青,费本华.现代框架式木结构住宅建造技术.建造技术及设计,2006,(3):94-97.
    5.CMHC.加拿大衣框架房屋建筑.加拿大房屋抵押贷款与住房公司,1998.
    6. B.H.Sharp. A study of techniques to increase the sound insulation of building elements. Technical report from Wyle Laboratory, EI Segundo, California, 1973.
    7.柳孝图.建筑物理.北京:中国建筑工业出版社,2000.1.康玉成.建筑隔声设计.北京:中国建筑工业出版社,2004.
    2. B.H.Sharp. A study of techniques to increase the sound insulation of building elements. Technical report from Wyle Laboratory, EI Segundo, Califomia, 1973.
    3.赵松龄.噪声的降低与隔离.上海:同济大学出版社,1989.
    4.秦佑国,王炳麟.建筑声环境.北京:清华大学出版社,1999.
    5.车世光,项端祁.噪声控制与室内声学.北京:工人出版社,1981.1. Lenzen K.H. and Murray T.M. Vibration of steel beam-concrete slab floor system. Studies in Engineering Mechanics Report No.29,1969, University of Kansas, Lawrence.
    
    2. Rainer L.H and Pernica G Vertical dynamic forces from footsteps. National Research Council of Canada Report No. 25879,1986, National Research Council, Ottawa.
    
    3. Ebrahimpour A, Sack R.L, Patten W.N et al. Experimental measurements of dynamic loads imposed by moving crowd. Proceedings of Structures Congress Ⅻ, Atlanta, April 1994, American Society of Civil Engineers, New York, 1994, Vol.1, p1385-1390.
    
    4. Ohlsson S.V. Serviceability criteria-especially floor vibration criteria. Proceeding of 1991 International Timber Engineering Conference, September 1991, London, 1991, Vol.1, p1.58-1.65.
    
    5. Onysko D.M. Serviceability criterion for residential floors based on a field study of consumer response. Canadian Forestry Service Report Project No.03-50-10-008, 1985, Forintek Canada Corp.,Ottawa.
    
    6. Hu LJ. Serviceability design criteria for commercial and multi-family floors. Canadian Forestry Service Report No.4, 2000, Forintek Canada Corp, stainte-Foy.
    
    7. Allen D.E and Murray T.M (1993). Design criterion for vibration due to walking. AISC Engineering Journal, (4): 117-129.
    
    8. Murray T.M., Allen D.E and Ungar E.E Floor vibrations due to human activity. Steel Design Guide Series, American Institute of Steel Construction and Canadian Institute of Steel Construction, Chicago. 1997.
    
    9. Lenzen K.H. Vibration of steel joist-concrete slab floors. AISC Eng.Journal, 1966,(2):133-136.
    
    10. Ohlsson S. Floor vibrations and human discomfort. Ph.D thesis, 1982. Chalmers University of Technology, Goteborg.
    
    11. National Building Code of Canada. Commentary A: Serviceability criteria for deflections and vibrations. National Research Council of Canada, Ottawa. 1985.
    
    12. National Building Code of Canada. Appendix A: Explanatory material for the NBCC. National Research Council of Canada, Ottawa. 1990.
    
    13. Canadian Wood Council et al. Development of design procedures for vibration controlled spans using engineered wood members. Concluding Report to Canadian Construction Materials Centre and Consortium of Manufacturers of Engineered Wood Products Used in Repetitive Member Floor System, Canadian Construction Materials Centre, Ottawa. 1997.
    
    14. Dolan J.D. et al. Preventing annoying wood floor vibrations. Journal of Structural
    Engineering, 1999, (1): 19-24.
    
    15. Larsen H et al. Design of timber structures- part 1: general rules and rules for building. Eurocode NO.5. EC5: Part 1, TC250/SC5 PT1, 1992. European Committee for Standardization, Brussels.
    
    16. Foschi R.O. et al. Floor Vibration due to Occupants and Reliability-based Design Guidelines. Canadian Journal of Civil Engineering, 1988, (3): 471-479.
    
    17. Smith I and Chui Y.H. Design of lightweight wooden floors to avoid human discomfort. Canadian Journal of Civil Engineering, 1988, (2): 254-262.
    
    18. Hu LJ and Chui Y.H. Development of a design method to control vibrations induced by normal walking action in wood-based floors. Proceedings of the 8th World Conference on Timber Engineering, Lahti, June 2004, VTT Technical Research Centre of Finland, Lahti, 2004, p217-222.
    
    19. National Building Code of Canada(NBCC). Appendix A: Explanatory martial for the National Building Code. NBCC,1990. Ottawa: National Research Council of Canada.
    
    20. Smith I and Chui YH. Design of lightweight wooden floors to avoid human discomfort. Canadian Journal of Civil Engineering, 1988, (15):254-262.
    
    21. S.P. Timoshenko, J.N.Goodier. Theory of Elasticity(Third edition), 2004.
    
    22. Chui YH. Application of ribbed-plate theory to predict vibrational serviceability of timber floor systems. The 7th World Conference on Timber Engineering, WCTE 2002, August 12-15, 2002, Shah Alam, Malaysia.
    1. British Standard Institute. Code of practice for the structural use of timer. Part 2: Permissible stress design. Materials and workmanship. BS5268, 1984. London: BSI.
    
    2. British Standard Institute. Methods of test for the determination of certain physical and mechanical properties of timber in structural sizes. BS5820, 1979. London: BSI.
    
    3. American Society for Testing and Materials. Standard methods of static tests of timbers in structural sizes. ASTM D198-02, 2002. Philadelphia, PA:ASTM.
    
    4. Bodig J and Jayne B.A. Mechanics of wood and wood composites. NewYork: Van Nostrand Reinhold Co. Inc. 1982.
    
    5. APA-The Engineered Wood Association. True and apparent Moduli of Elasticity. Technical Topical, Form No.TT-082, 2004. Technical Services Division, APA
    
    6. Timoshenko S., Young D.H and Weaver W. Vibration problems in engineering. New York: J. Wiley & Son. 1974.
    
    7. Huang T.C. The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions. Journal of Applied Mechanics, 1961, (28): 579-584.
    
    8. Chui YH and Smith I. Influence of rotatory inertia shear deformation and support condition on natural frequency of wooden beams. Wood Science and Technology, 1989, (24):233-245.
    
    9. Hearmon RFS. Theory of vibration testing of wood. Journal of Forest Products, 1966, (16):29-40.
    
    10. Kollmann FF and Krech H. Dynamical measurement of the elastic wood properties and damping. A contribution to non-destructive material testing. Holz Roh-Werkstoff, 1960, (18):41-54.
    
    11. Becker H.F. Measuring the moduli of rigidity of solid wood by torsional vibration tests. Holz als Roh- und Werkstoff, 1973, (31):207-210.
    
    12. Chui YH. Simultaneous evaluation of bending and shear moduli of wood and the influence of knots on the parameters. Wood Science and Technology, 1991, (2): 125-134.
    
    13. Peter WC. Lau and Yvon Tardif. Evalation of Moduli of Elasticity and Rigidity of panel products by Torsional-bending vibration. Project No.3110 M464, 1996. Canadian Forestry Service No. Forintek Canada Corp.
    1. National Building Code of Canada(NBCC). Appendix A: Explanatory martial for the National Building Code. 1990, NBCC. Ottawa: National Research Council of Canada.
    
    2. Canadian Wood Council (CWC), DMO Associates, Quaile Engineering Ltd., Forintek Canada Corp. Development of design procedures for vibration controlled spans using engineered wood members. Concluding report, 1997, pA8-A9.
    
    3. Johnson JR. Vibration acceptability in wood floor system. Master's Thesis, 1994. Blacksburg. VA Virginia Polytechnic Institute.
    
    4. Ohlsson S. Serviceability criteria - especially floor vibration criteria. Proceeding of 1991 International Timber Engineering Conference, London, 2-5 September 1991,(1): Ⅰ .58-Ⅰ .65.
    
    5. Smith I and Chui YH. Design of lightweight wooden floors to avoid human discomfort. Canadian Journal of Civil Engineering, 1988, (15):254-262.
    
    6. Dolan JD et al. Preventing annoying wood floor vibration. Journal of Structural Engineering, 1999,125 (l):19-24.
    1. FCC (Forintek Canada Corp.) protocols for field testing of wood based floor system. Forintek Canada Corp., Sainte-Foy, Canada.
    2. ISO Vibration and shock-Experimental determination of mechanical mobility-Part 1: Basic definitions and transducers. Geneva. ISO 7626-1:1986(E).
    3. ISO Vibration and shock-Experimental determination of mechanical mobility-Part 5: Measurements using impact excitation with an exciter which is not attached to structure. Geneva. ISO 7626-5:1994(E).
    4.李德葆,陆秋海.工程振动试验分析.北京:清华大学出版社,2004.
    5.李德葆.振动模态分析及其应用.北京:宇航出版社,1989.
    6. Chui YH. Evaluation of vibrational performance of light-weight wooden floors. Proceedings of the 1988 International Conference on Timber Engineering, 1988, Vol. 1, pp. 102-109.
    7. CAN/CSA-S16.1-M89. Handbook of Steel Construction, 1993. Sthedn. Willowdale: Canadian Institute of Steel Construction.
    8. Hu LJ and Chui YH. A new design method to control vibration induced by foot steps in timber floor. Technical Report, 2000, Sainte-Foy: Forintek Canada Corp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700