用户名: 密码: 验证码:
双磷酸盐及低频超声在骨水泥应用中的特殊作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国正进入老龄化社会,膝关节炎的发病率不断上升,人工全膝关节置换技术的广泛开展,术后并发症逐年增加,以假体无菌性松动尤甚,一旦出现须行人工关节翻修术,不仅治疗难度大,术后并发症率显著提高,而且给病人带来身心毁灭性的打击。如何有效防治假体松动已成为骨科医生亟待解决的重要问题。无菌性松动与假体周围骨量丢失紧密相关。骨量丢失分为两类:一类为机械性,发生于术后早期,以应力遮挡机制最主要。主要集中于股骨远端和胫骨近端,在术后3个月内丢失最快,可持续长达8年,丢失量分别达44%、57%;另一类为生物性,发生于术后后期,指磨损颗粒作用于炎症细胞引起慢性炎症反应,促进破骨细胞吸收骨质,抑制成骨细胞形成新骨。该机制较机械性骨量丢失更为隐匿,持续时间更长。阿仑膦酸钠属第三代双磷酸盐,是目前抑制骨质吸收的最有效的药物之一,不仅能抑制巨噬细胞和破骨细胞,而且可促进诱导成骨细胞和骨髓间充质干细胞形成新骨。阿仑膦酸钠已获美国食品药品管理局批准广泛用于防治骨质疏松病、代谢性骨病和Paget病。口服阿仑膦酸钠可显著提高人工关节置换术后假体周围骨密度,缓解假体周围的骨量丢失,提高假体的稳定性。但口服给药存在生物利用度低、易致食道溃疡及胃肠道反应、需要长达数年服药、病人耐受性较差、一旦停药阿仑膦酸钠对假体周围骨量的保护作用消失等弊病。迫切需要寻找一种针对假体周围骨量丢失的有效、经济、方便且安全的给药途径。
     体外研究证实,载双磷酸盐骨水泥能抑制骨水泥颗粒诱导巨噬细胞向破骨细胞分化和骨吸收作用。动物研究证实载双磷酸盐骨水泥能显著减少假体周围骨量丢失,增强假体的稳定性。尽管载阿仑膦酸钠骨水泥有着广阔的临床应用前景,但其药物缓释性能及机制的研究在国内外仍是空白。在以往力学性能的研究中,所载的阿仑膦酸钠基本为液剂,将不可避免地降低骨水泥的力学强度。
     随着骨科技术的进展,近年来关节置换手术得到迅速发展,对一些终末性关节疾病进行关节功能的重建,取得了满意的疗效。但是人工关节存在着本身一些无法避免的并发症,其中假体术后感染是关节置换最严重的并发症,一旦发生,几乎每个患者都需要第二次、第三次乃至多次手术来进行翻修,不仅给病人带来身心和经济上多方打击,而且就医生而言,治疗难度大,且再次感染率远高于初次关节置换,就成熟的髋、膝关节置换而言,翻修后再感染率达5~34%。虽然随着无菌条件的改善,抗生素的发展,关节置换术后感染率出现了很大下降,但是随着置换手术的不断推广,人工关节感染的绝对例数仍然不断在上升,就美国统计而言,只人工髋关节术后深部感染的病例每年超过4000例。而返观国内,随着人口结构的老龄化发展,再加上庞大的人口基数,我国近几年来人工关节置换数量迅速上升,同时关节术后感染病例亦不断增加。因此,如何有效的进行人工关节感染后翻修是关节外科医生所必须面对的并亟待解决的重要问题。
     尽管载抗生素骨水泥已广泛在防治人工关节感染上发挥了一定的作用,然而,不同国家地区对其作用所持观点、应用方法和疗效存在较大分歧,部分学者甚至对该项技术持否定态度。原因在于:(1)载抗生素骨水泥中药物难以溶出释放,不仅导致局部药物利用率低下,无法有效杀菌,而且局部无效抑菌浓度的释放可能引起选择性耐药的菌株出现;(2)骨水泥内载入抗生素会降低其力学性能,影响假体远期生存率;(3)长期载庆大霉素骨水泥的应用导致临床假体相关性感染的致病菌超过50%对庆大霉素耐药。低频超声已经成功的用于外科化脓性感染的治疗上,并迅速的推广到许多疾病的治疗,包括急慢性脓胸、各种妇科炎症等等。国外学者将其在体外作用于庆大霉素骨水泥后发现,低频超声能增强庆大霉素的释放,各样本中庆大霉素释放率提高了2.4~14.7%,但作者指出这仅仅是观察到的一个现象而已,许多机制尚不明了,参数和频率的优化组合尚需进一步研究。
     本研究旨在分别研究双磷酸盐及低频超声在丙烯酸骨水泥中的特殊应用,分为四个部分:一、在磨损颗粒诱导骨溶解的动物模型中,通过骨密度检测及生物力学测试,比较载阿仑膦酸钠丙烯酸骨水泥与皮下注射阿仑膦酸钠抑制钛磨屑诱导的骨溶解疗效;二、制备不同载荷的阿仑膦酸钠纯粉复合骨水泥试件,通过检测抗压强度、压缩弹性模量、抗张强度、抗弯强度和疲劳寿命,威布尔频率函数分析疲劳性能,激光散射法测定纯粉的粒径,分析药物载荷和体液浸泡对其力学性能的影响和规律;三、对载万古霉素骨水泥试件进行不同参数的高功率密度低频超声辐照,通过药物释放观测及电镜扫描,研究高功率密度低频超声辐照模式对超声促进药物释放的影响,并探讨作用机制。四、制作万古霉素骨水泥-假体柄界面模型,通过电镜扫描、墨汁浸染、生物力学检测等手段,研究低频脉冲超声对载万古霉素丙烯酸骨水泥-假体柄界面孔隙率和剪切应力的影响。
     第一章载阿仑膦酸钠骨水泥抑制钛磨屑诱导假体周围骨溶解
     目的比较载阿仑膦酸钠丙烯酸骨水泥与皮下注射阿仑膦酸钠抑制钛磨屑诱导的骨溶解疗效。
     方法48只成年雄性新西兰兔随机均分为无钛磨屑且无阿仑膦酸钠组(A组),有钛磨屑注射且无阿仑膦酸钠组(B组),钛磨屑分别注射0.1%、0.5%、1.0%且载阿仑膦酸钠丙烯酸骨水泥组(C、D、E组),钛磨屑注射且皮下注射阿仑膦酸钠组(F组),每组8只。将载阿仑膦酸钠骨水泥植入兔股骨远端。制备磨屑诱导骨溶解动物模型。术后8周对股骨行组织形态学分析、骨密度测定及界面力学测试。
     结果B组假体周围可见明显的骨溶解,而C、D、E、F组骨溶解明显少于B组。B组假体周围骨密度(bone mineral density, BMD)和骨-骨水泥界面抗剪强度分别较A组下降17%和56%;D组假体周围BMD和界面抗剪强度较B组分别增加29%和62%;E组假体周围BMD和界面抗剪强度较B组分别增加37%和29%;F组假体周围BMD和界面抗剪强度较B组分别增加51%和69%;C组、D组、E组分别与F组比较,假体周围BMD和界面抗剪强度的差异均无统计学意义。
     结论载阿仑膦酸钠丙烯酸骨水泥与皮下注射阿仑膦酸钠均可在一定程度上抑制磨损磨屑诱导的骨吸收,增强界面抗剪强度。
     第二章载阿仑膦酸钠骨水泥的力学性能和显微结构
     目的研究阿仑膦酸钠纯粉复合丙烯酸骨水泥的疲劳和静态力学性能,分析药物载荷和体液浸泡对其力学性能的影响和规律。
     方法制备不同载荷的阿仑膦酸钠纯粉复合骨水泥试件,根据纯粉载荷及试件的贮存环境进行分组,检测抗压强度、压缩弹性模量、抗张强度、抗弯强度和疲劳寿命,威布尔频率函数分析疲劳性能,激光散射法测定纯粉的粒径。
     结果增加纯粉载荷可提高试件的抗压强度极限、抗张强度极限,但降低疲劳寿命。体液浸泡可降低试件的抗压强度极限、压缩弹性模量、抗张强度极限及疲劳寿命。纯粉载入使骨水泥的疲劳性能下降16.7%-26.1%。纯粉的粒径为4.67Μm-44.21μgm。
     结论阿仑膦酸钠纯粉的粒径及分布范围较小,载入后丙烯酸骨水泥的静态力学性能仍显著高于ASTM/ISO标准,但疲劳性能有一定程度下降。与以往采用双磷酸盐液剂或片剂磨粉相比,纯粉对丙烯酸骨水泥力学强度的影响最小
     第三章高功率密度低频超声间断辐照对载万古霉素骨水泥药物释放的促进作用
     目的研究高功率密度低频超声辐照模式对超声促进药物释放的影响,并探讨其作用机制。
     方法制备质量分数为10%的载万古霉素骨水泥(vancomycin-loaded bone cement, VLBC)圆柱体试件,浸泡于40ml PBS中。将试件随机分为三组:空白对照组、超声连续辐照组、超声间断辐照组,后两组接受超声辐照14d。三组试件中部分样本(n=4)于浸泡28d内定时采样测定万古霉素浓度,计算T>MIC、14-28d亚抑菌浓度释药量、14d内累积释药量并行曲线拟合;部分样本(n=3)于浸泡14d后脱水、干燥、喷金,行扫描电镜观察表面形态。
     结果(1)超声间断辐照组T>MIC较对照组及超声连续辐照组分别提高6.56d、7.09d,超声连续辐照组T>MIC较对照组下降0.53d。(2)超声间断辐照组亚抑菌浓度释药量较对照组及超声连续辐照组分别下降0.16mg.0.19mg;超声间断辐照组14d累积释药量较对照组及超声连续辐照组分别提高2.88mg、2.81mg。(3)三组采用指数增长至最大值模型拟合效果均理想,超声间断辐照组M0、 Mmax-M0、K均较对照组和超声连续辐照组提高,超声连续辐照组MO较对照组高,但Mmax-M0、K、N较对照组低。
     结论高功率密度低频超声间断辐照不仅可显著提高VLBC药物的释放率,延长T>MIC还可抑制VLBC后期亚抑菌浓度释放。指数增长至最大值模型对超声辐照下VLBC药物释放的拟合度较理想。高功率密度低频超声间断辐照对VLBC的表面释放和内部弥散有明显的促进作用,连续辐照抑制VLBC的内部弥散。
     第四章低频超声对载万古霉素骨水泥-假体柄界面的微观结构和力学特性的影响
     目的研究低频脉冲超声对载万古霉素丙烯酸骨水泥-假体柄界面孔隙率和剪切应力的影响。
     方法制备1%质量分数万古霉素骨水泥-假体柄界面模型,随机分为对照组、450mW/cm2超声组和1200mW/cm2超声组,每组10个样本。对照组于37℃PBS中浸泡30d,超声组于37℃PBS中超声辐照7d后再浸泡23d,试件空气中风干24h后万能力学试验机检测界面剪切应力,场发射扫描电子显微镜和Image-Pro Pus6.0图像处理软件观察和分析界面孔隙分布。每组另取两试样置于3℃PBS和印度墨汁混和溶液中如上行超声辐照和体液浸泡,观察界面墨汁渗透浸染程度。
     结果450mW/cm2超声组界面剪切应力和孔隙率与对照组相比无显著差异;1200mW/cm2组界面剪切应力较对照组下降14%,界面孔隙率较对照组增加9%;1200mW/cm2组邻近超声探头的试件中上端孔隙率明显高于对照组相应区域,下部与对照组相比差异无统计学意义;1200mW/cm2组试件上端墨汁浸染较对照组和450mW/cm2超声组显著。
     结论1200mW/cm2低频脉冲超声连续辐照一周可增加界面孔隙率和体液渗透界面,但可降低丙烯酸骨水泥-假体柄界面初始稳定性,450mW/cm2低频脉冲超声不会降低丙烯酸骨水泥-假体柄界面剪切应力。超声对界面远期稳定性的影响有待疲劳试验和动物体内试验进一步研究。
Particle-induced osteolysis is a major cause of aseptic loosening after total joint arthroplasty. Bisphosphonates are commonly used to treat conditions associated with bone loss, such as osteoporosis, Paget's disease and skeletal carcinomatosis. Recently, several studies have shown that bisphosphonates can inhibit wear debris-induced osteolysis and increase peri-implant bone mineral density (BMD). However, side effects like fever, throat and stomach ulcers, and low bioavailability were observed after systemic treatment. Thus, bisphosphonate-loaded acrylic bone cement was proposed as local delivery system to reduce the risk of osteolysis and resulting prosthetic loosening. This proposal is similar to the addition of antibiotic to bone cement against infection. However, studies showed that liquid form of bisphosphonate led to incomplete polymerization of bone cement and weaken its mechanical strength. Powdered bisphosphonates proved to be a superior choice. Lewis et al. found that given the addition of0.21g of alendronate powder into50g of cement powder, there was no significant reduction in the fatigue life.
     Unfortunately, previous studies never focused on the effect of alendronate cement on wear debris-induced osteolysis in vivo. Also, it should be noted that bisphosphonates added to bone cement might reduce the mechanical properties of bone cement and led to the failure of the total joint replacement. Several studies have shown that liquid form of a bisphosphonate led to incomplete polymerization of acrylic bone cement and significantly reduced acrylic bone cement mechanical properties. Therefore, the aim of the present study is to comprehensively investigate the effect of drug load and fluid environment on the static mechanical properties, fatigue life, and micro structure of purified-alendronate-impregnated acrylic bone cement (PAIBC) in vitro and the related mechanism. In addition, the anti-resorptive efficacy of alendronate cement would be compared with systemic alendronate.
     Implant-related infection has been a devastating disaster for patients undergoing joint arthroplasty. Antibiotic-loaded bone cement is proven a keystone against the infection since it can provide high local delivery of antibiotic. Two categories are included based on the purposes:the prophylactic cement refers to prophylaxis against the infection with a low antibiotic load during a primary arthroplasty or a revision arthroplasty, whereas the therapeutic cement means curing the infection by using beads or spacers with a high antibiotic load between implant removal and reimplantation. High susceptibility to staphylococci, rare resistant strains, and weak toxicity render vancomycin typically the last resort or the drug of choice to be combined with aminoglycosides for loading into the therapeutic cement. Unfortunately, the therapeutic cement has met with mixed results. The relapse rate of the infection was reported to9%~18%. Such problem was mainly attributed to the poor antibiotic release from cement, of which vancomycin was one of the poorest. The length of time when local drug level exceeded the MIC (T>MIC), a key indicator for the antimicrobial activity of vancomycin-loaded bone cement (VLBC), was far from the required time for effective killing of bacteria. Furthermore, the long-term subtherapeutic release of antibiotic from cement will definitely select resistant strains. Anagnostakos et al. have shown that after prolonged time periods bacteria can even colonize gentamicin-vancomycin-loaded bone cement.
     Ultrasound, a popular medical device for sonoporation and bone healing, has been found to enhance antibiotic release from acrylic bone cement. However, the enhancement by previous milliwatt-level ultrasonication was confined in the early period of drug release. Then the burst release waned quickly to a sustained slow release, which did not contribute to adequately enhancing the drug release, extending the T>MIC, and avoiding drug-resistant strains. Furthermore, the mechanisms of improved drug release from cement are poorly understood. The nonthermal effect of ultrasound, mainly the stable cavitation and the radiation pressure, generates multidirectional acoustic microstreams which produces a high shear stress at drug-cement interfaces, allowing detachment of drug grains from the surface and pushing solution into acrylic matrix via craters and channels. Although it was reported that low-frequency pulsed wave ultrasound was found to be safe in vivo experiments, there were few reports on the effects of low-frequency pulsed wave ultrasound on the shear strength on at the cement-stem interface. Studies have suggested that the loosening failure of cemented stems was initiated by debonding of the stem-cement interface because of a lack of chemical bonding, and the debonding at the interface is was primarily dominated by shear failure as proven with Finite Element Analysis. In the present study the kinetics of vancomycin release and the surface microstructure of VLBC under the watt-level ultrasonication with and without the pause insertion were contrasted. The shear strength, porosity and the extent of penetration of fluid into the cement-stem interface were determined and contrasted among the control group and ultrasound groups. Finally, the involved mechanisms were discussed.
     Part1Effects of local and systemic alendronate delivery on wear debris-induced osteolysis in vivo
     Objective:To investigate the effects of locally and systemically administered alendronate on wear-debris induced osteolysis in vivo.
     Methods:Endotoxin-free titanium particles were injected into rabbit femurs, prior to insertion of a non-weight-bearing polymethylmethacrylate plug into the distal femur canal. Then the particles were repeatedly injected into the knee2,4and6weeks after the implantation. Alendronate was incorporated at three different concentrations (0.1wt%,0.5wt%and1.0wt%) into bone cement for local delivery. For systemic delivery, alendronate was subcutaneously injected (1.0mg/kg/week) one week after the implantation and then once a week until sacrifice.
     Results:Eight weeks postoperatively, there was significant evidence of osteolysis surrounding the plug in the control group compared with markedly-blocked osteolysis in the local0.5wt%, local1.0wt%, and the systemic group. There was a concentration-dependent effect of alendronate on the improvement of periprosthetic bone mineral density. Notably, no significant difference was found between local0.5wt%alendronate and systemic alendronate in bone mineral density and implant fixation.
     Conclusions:Alendronate-loaded bone cement (0.5wt%) may be as effective as the systemic alendronate in inhibiting titanium particle-induced osteolysis.
     Part2Mechanical properties and micro-architecture of an acrylic cement impregnated with purified alendronate powder
     Objective:To investigate the static and fatigue properties of purified-alendronate-impregnated acrylic bone cement (PAIBC) in vitro, the effect of powder load and PBS immersion on biomechanics of PAIBC, and its related mechanism.
     Methods:PAIBC specimens were successfully manufactured for in-vitro assay, and randomly assigned to eight groups based upon the aging condition and the mass ratio between drug and cement (n=31-37):the control air group, the control PBS group, the0.1%PAIBC air group, the0.1%PAIBC PBS group, the0.5%PAIBC air group, the0.5%PAIBC PBS group, the1%PAIBC air group, and the1%PAIBC PBS group. According to the corresponding ASTM/ISO standards, their ultimate compressive. strength, compressive elastic modulus, ultimate tensile strength, ultimate flexuous strength, and fatigue life were tested systematically. The particle size distribution of purified alendronate powder was analyzed with the laser light scattering method. The fatigue test results, given as number of cycles-to-failure, were analyzed using the linearized format of the two-parameter Weibull function. The parameters of Weibull slope, Weibull characteristic fatigue life, Weibull mean number of fatigue stress cycles, and fatigue performance index were all calculated.
     Results:With drug load increased, there was an increase in ultimate compressive strength and ultimate tensile strength, and a decrease in fatigue life with statistical significance. When immersed in PBS for thirty days before the tests, the PAIBC specimens presented an overall significant decrease of ultimate compressive strength, compressive elastic modulus, ultimate tensile strength, and fatigue life. No effect of drug load or PBS immersion was noted on ultimate flexuous strength. The Weibull mean of fatigue life dropped by22.1%-26.1%after atmospheric aging and by 16.7%-18.9%after wet aging. The profile of particle size distribution presented a normal distribution. The diameter of drug particle ranged from4.67μm to44.21μm, with a mean diameter of20.77μm.
     Conclusions:Purified alendronate was a more homogeneous powder than tablet-ground powder, which contained particles with a lower range of sizes. The impregnation of purified bisphosphonate exerted less negative effect on the static and fatigue strength of acrylic bone cement, compared with liquid bisphosphonate and the tablet-ground one in literatures. The static strength of PAIBC was maintained high above the ASTM/ISO standards. Our study laid a biomechanical foundation for the potential clinical use of PAIBC.
     Part3Enhancement of intermittent insonation with low-frequency watt-level ultrasound on pharmacokinetics of vancomycin-loaded acrylic bone cement in vitro
     Objective:To investigate the effect of intermittent insonation on pharmacokinetics and microstructure of vancomycin-loaded acrylic bone cement (VLBC) in vitro under low-frequency elevated-intensity ultrasound, and its related mechanism.
     Methods:Twenty-one VLBC cylindrical specimens were successfully manufactured for in-vitro assay, and randomly assigned to three groups (n=7):the control group, the continuous-insonation group and the intermittent-insonation group. All specimens, from which both insonation groups were insonated for14d, were immersed in40-ml PBS. During28-d observation PBS from four specimens per group was extracted and analyzed with fluorescence polarization immunoassay at designated time intervals, respectively. Four pharmacokinetic parameters, the duration of time for which antimicrobial concentration exceed the minimum inhibitory concentration (T>MIC), the drug release during the first day, the drug release between14d and28d, the cumulative release during14d, were all calculated from plots of drug-release-versus-time curve. Exponential-rise-to-maximum model was adopted to fit the plots of drug cumulative release. After immersion of14d, three specimens were dehydrated, desiccated and coated with a thin layer of gold. Their surface microstructures were analyzed with scanning electron microscopy.
     Results:T>LMIC of the intermittent-insonation group increased by6.56d and7.09d compared with the control group (P<0.05) and the continuous-insonation group (P<0.05), respectively. However, T>MIC of the continuous-insonation group was lower than the control group by0.53d (P<0.05). The total release of intermittent-insonation group at sub-inhibitory drug level decreased by0.16mg and0.19mg compared with the control group (P<0.01) and the continuous-insonation group (P<0.01), respectively. The cumulative release of intermittent-insonation group during14d increased by2.88mg and2.81mg compared with the control group (P<0.01) and the continuous-insonation group (P<0.01), respectively. The goodness of fit with exponential-rise-to-maximum model was satisfying for three groups (P<0.01). M0, Mmax-Mo and K in intermittent-insonation group significantly increased compared with the control group and the continuous-insonation group. K and N in intermittent-insonation group appeared lower compared with the control group despite increase in Mo.
     Conclusions:Under the intermittent insonation with elevated-intensity low-frequency ultrasound, both the total drug release and T>MIC of VLBC will increase; in addition, the long-term release of sub-inhibitory drug release will almost cease. The exponential-rise-to-maximum model is suitable for predicting the drug release of VLBC with insonation. Our pharmacokinetic data and fitting curve confirmed the significant enhancement of intermittent insonation with low-frequency elevated-intensity ultrasound on surface liberation and internal diffusion of drug from VLBC.
     Part4Effect of Low-Frequency Pulsed Wave Ultrasound on Micro-Architecture and Mechanics of Stem-Cement Interface
     Objectives: Several studies have shown that low-frequency pulsed wave ultrasound can effectively enhance and accelerate antibiotic release from bone cement. The mechanisms may be associated with the effects of detaching forces and pushing forces by acoustic microstream. We hypothesized that low-frequency pulsed wave ultrasound improved interfacial porosity and penetration of fluid through the cement-stem interface.
     Methods:The1%vancomycin-loaded acrylic bone cement-stem interface samples were successfully manufactured and randomly divided into three groups:the control group,450mW/cm2ultrasound group and1200mW/cm2ultrasound group. Two ultrasound groups were exposed to a local ultrasonic field for7days, then immersed in37℃PBS for23days, while the control group immersed in PBS for30days with no ultrasonication. After30-day immersion, the shear strength and the porosity of the stem-cement interface were determined. Two additional specimens from each group were investigated for the extent of penetration of fluid into the stem-cement surface.
     Results:The450mW/cm2ultrasonication had no significant effect on the cement-stem interface (p<0.05). The mean shear strength decreased by14%and the interfacial porosity increased by9%in the1200mW/cm2ultrasound group compared with the control group; also, there was a higher porosity and much more penetration of fluid at the interface close to the ultrasound transducer in the1200mW/cm2group compared to the control group.
     Conclusions:The1200mW/cm2low-frequency pulsed wave ultrasound significantly enhanced porosity and penetration of fluid at the interface which resulted in the lower interfacial initial stability. But the effect of low-frequency pulsed wave ultrasound on the fatigue strength of the stem-cement deserved further investigation with the cyclic loading tests in vivo.
引文
[1].蔡谓,王继芳,胡永成,等.磨损磨屑对滑膜细胞系胞间通讯的影响及其在人工关节无菌性松动中的意义.中华外科杂志,1999,37:406-408.
    [2].蔡迅梓,严世贵,戴雪松.全膝置换术后应力遮挡致骨量丢失的研究进展.中华外科杂志,2006,44:1434-1436.
    [3].王继芳,胡永成,卢世璧,等.人工关节磨损颗粒激活骨-假体界面巨噬细胞生物学机制探讨.中华外科杂志,1999,37:53-56.
    [4]. von Knoch F, Jaquiery C, Kowalsky M, et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells, Biomaterials,2005,26:6941-6949.
    [5]. Im GI, Qureshi SA, Kenney J, et al. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials,2004,25:4105-4115.
    [6]. Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest,1999,104:1363-1374.
    [7]. Morris CD, Einhorn TA. Bisphosphonates in orthopaedic surgery._J Bone Joint Surg Am,2005,87:1609-1618.
    [8]. von Knoch F, Wedemeyer C, Heckelei A, et al. Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis. Biomaterials,2005,26: 5783-5789.
    [9]. Yu NY, Ruys AJ, Zenios M, et al. Bisphosphonate-laden acrylic bone cement: mechanical properties, elution performance, and in vivo activity. J Biomed Mater Res B Appl Biomater,2008,87:482-491.
    [10]. von Knoch F, Eckhardt C, Alabre CI, et al. Anabolic effects of bisphosphonates on peri-implant bone stock. Biomaterials,2007,28:3549-3559.
    [11]. Howie DW, Vernon-Roberts B, Oakeshott R, et al. A rat model of resorption of bone at the cement-bone interface in the presence of polyethylene wear particles. J Bone Joint Surg Am,1988,70:257-263.
    [12]. Thadani PJ, Waxman B, Sladek E, et al. Inhibition of particulate debris-induced osteolysis by alendronate in a rat model. Orthopedics,2002,25:59-63.
    [13]. Jakobsen T, Kold S, Bechtold JE, et al. Local alendronate increases fixation of implants inserted with bone compaction:12-week canine study. J Orthop Res, 2007,25:432-441.
    [14].王友,戴尅戎,张蒲,等.松动人工髋关节周围组织中聚乙烯磨损磨屑观察.中华外科杂志,1997,35:459-461.
    [15].蔡谞,王继芳,卢世璧,等.无菌性松动假体周围界膜的组织学及超微结构特征.中华医学杂志,2000,80:826-830.
    [16]. Yang SY, Yu H, Gong W, et al. Murine model of prosthesis failure for the long-term study of aseptic loosening. J Orthop Res,2007,25:603-611.
    [17]. Millett PJ, Allen MJ, Bostrom MP. Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am,2002,84:236-249.
    [18]. Jensen TB, Bechtold JE, Chen X, et al. Systemic alendronate treatment improves fixation of press-fit implants:a canine study using nonloaded implants. J Orthop Res,2007,25:772-778.
    [19].胡建华,张良,孙常太,等.阿仑膦酸钠对骨小梁力学特性的作用.中国骨质疏松杂志,2003,9:61-63.
    [20].胡建华,黄公怡,丁铭.阿仑膦酸钠对骨小梁结构特性的作用.中华骨科杂志,2001,21:529-532.
    [21]. Peter B, Pioletti DP, Laib S, et al.2005. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone, 2005,36:52-60.
    [22]. Neut D, van de Belt H, van Horn JR, et al. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials,2003,24:1829-1831.
    [23]. Sabokbar A, Fujikawa Y, Murray DW, et al. Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption. Ann Rheum Dis,1998,57: 614-618.
    [24].李锋,段军,陈安民,等.局部运用阿仑膦酸钠对免人工关节假体无菌性松动 的抑制作用的研究.生物骨科材料与临床研究,2003,1:9-16.
    [25].蔡迅梓,严世贵,应志敏,等.载双磷酸盐骨水泥的静态机械强度和疲劳极限.中华外科杂志.2009;47:465-468.
    [1].邢智庆,马忠泰,李子荣,等.阿仑膦酸钠局部持续使用防治人工关节无菌性松动可行性的细胞学研究.中华骨科杂志,2001,21:533-536.
    [2]. Bhandari M, Bajammal S, Guyatt GH, et al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am,2005,87:293-301.
    [3]. Hamish S, Nick A, Ashley Y. Bisphosphonate cement composition to prevent aseptic loosening of orthopedic implant devices. Patent WO9639107,1996.12.12.
    [4]. Lewis G. Fatigue testing and performance of acrylic bone-cement materials: state-of-the-art review. J Biomed Mater Res B,2003,66:457-486.
    [5]. Kuehn KD, Ege W, Gopp U. Acrylic bone cements:mechanical and physical properties. Orthop Clin North Am,2005,36:29-39.
    [6]. 范卫民,陈曦,李翔.抗生素骨水泥物理和力学性能及洗提特性的实验研究.中华骨科杂志,2003,23:361-364.
    [7]. Lewis G. Properties of acrylic bone cement:state of the art review. J Biomed Mater Res,1997,38:155-182.
    [8]. Hansen D, Jensen JS. Mixing does not improve mechanical properties of all bone cements. Manual and centrifugation-vacuum mixing compared for 10 cement brands. Acta Orthop Scand,1992,63:13-18.
    [9]. Liacouras PC, Owen JR, Jiranek WA, et al. Effect of pigmentation on the mechanical and polymerization characteristics of bone cement. J Arthroplasty, 2006,21:606-611.
    [10].张树栋,谭江威,曲广运,等.不同温度保存单体在不同环境温度下聚合的骨水泥抗疲劳性能比较.中华骨科杂志,2005,25:692-695.
    [11]. Persson C, Baleani M, Guandalini L, et al. Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement. Acta Orthop,2006,77: 617-621.
    [12]. Dunne N, Hill J, McAfee P, et al. In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin:effect on mechanical properties, antibiotic release, and biofilm formation. Acta Orthop,2007,78: 774-785.
    [13]. Postak PD, Greenwald AS. The influence of antibiotics on the fatigue life of acrylic bone cement. J Bone Joint Surg Am,2006,88:148-155.
    [14]. Nottrott M, M(?)olster AO, Gjerdet NR. Time dependent mechanical properties of bone cement. An in vitro study over one year. J Biomed Mater Res B Appl Biomater,2007,83:416-421.
    [15]. He Y, Trotignon JP, Loty B, et al. Effect of antibiotics on the properties of poly(methylmethacrylate)-based bone cement. J Biomed Mater Res B,2002,63: 800-806.
    [16]. Healey JH, Shannon F, Boland P, et al. PMMA to stabilize bone and deliver antineoplastic and antiresorptive agents. Clin Orthop Relat Res,2003,415: 263-275.
    [17]. Sabokbar A, Fujikawa Y, Murray DW, et al. Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption. Ann Rheum Dis,1998,57: 614-618.
    [18].李锋,段军,陈安民,等.局部运用阿仑膦酸钠对兔人工假体无菌性松动抑制作用的研究.生物骨科材料与临床研究,2003;1:9-10.
    [19]. Zenios M, Nokes L, Galasko CS. Effect of a bisphosphonate, disodium pamidronate, on the quasi-static flexural properties of Palacos R acrylic bone cement. J Biomed Mater Res B,2004,71:322-326.
    [20]. Yu NY, Ruys AJ, Zenios M, et al. Bisphosphonate-laden acrylic bone cement: Mechanical properties, elution performance, and in vivo activity. J Biomed Mater Res B,2008,87:482-491.
    [21]. Lewis G, Janna S. Alendronate in bone cement:fatigue life degraded by liquid, not by powder. Clin Orthop Relat Res,2006,445:233-238.
    [22]. Zhou Y, Yue W, Li C, Mason JJ. Static and fatigue mechanical characterizations of variable diameter fibers reinforced bone cement. J Mater Sci Mater Med,2009, 20:633-641.
    [23].蔡迅梓,严世贵,朱芳兵,等.载阿仑膦酸钠骨水泥抑制钛磨屑诱导的假体周 围骨溶解.中华骨科杂志,2010;30:899-905.
    [1].任国宝,陈信.庆大霉素骨水泥的实验及全髋人工关节置换术75例报告.中华骨科杂志,1992,12:325-328.
    [2].范卫民,陈曦,李翔.抗生素骨水泥物理和力学性能及洗提特性的实验.中华骨科杂志,2003,23:361-364.
    [3].蒋垚,沈灏,张先龙,等.带抗生素可活动关节骨水泥间隔在全膝关节置换术后感染中的应用.中华骨科杂志,2006,26:827-830.
    [4]. Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg (Am),2006,88: 2487-2500.
    [5].严世贵,蔡迅梓,张建良,等.低频超声对万古霉素骨水泥药物释放的影响.中华骨科杂志,2006,26:191-195.
    [6].王祥华,蔡迅梓,严世贵,等.低频超声下万古霉素骨水泥的抗菌性能及安全性的实验.中华医学杂志,2006,86:3215-3216.
    [7].蔡迅梓,吴浩波,严世贵,等.低频脉冲型超声治疗起始时间对载万古霉素骨水泥药动及药效特性的影响.中华骨科杂志,2007,27:292-297.
    [8]. 张树栋,谭江威,曲广运,等.不同温度保存单体在不同环境温度下聚合的骨水泥抗疲劳性能比较.中华骨科杂志,2005,25:692-695.
    [9]. Lewis G, Xu J, Deb S, et al. Influence of the activator in an acrylic bone cement on an array of cement properties. J Biomed Mater Res A,2007,81:544-553.
    [10]. Moojen DJF, Hentenaar B, Vogely HC, et al. In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers. J Arthroplasy,2008,23: 1152-1156.
    [11]. Neut D, van de Belt H, van Horn JR, et al. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials,2003,24:1829-1831.
    [12]. Ensing GT, Hendriks JG, Jongsma JE, et al. The influence of ultrasound on the release of gentamicin from antibiotic-loaded acrylic beads and bone cements. J Biomed Mater Res B Appl Biomater,2005,75:1-5.
    [13]. Hendriks JG, Neut D, van Horn JR, et al. Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. J Bone Joint Surg (Br).2005,87: 272-276.
    [14]. Hill CR, Bamber JC, ter Haar GR. Physical principles of medical ultrasonics.2nd ed. West Sussex:John Wiley & Sons Ltd,2004.349-406.
    [15]. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet, 2001,358:135-138.
    [16]. Diez-Pena E, Frutos G, Frutos P, et al. Gentamicin sulphate release from a modified commercial acrylic surgical radiopaque bone cement. I. Influence of the gentamicin concentration on the release process mechanism. Chem Pharm Bull (Tokyo).2002,50:1201-1208.
    [17]. Carmen JC, Roeder BL, Nelson JL, et al. Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl, 2004,18:237-245.
    [1]. Powles JW, Spencer RF, Lovering AM. Gentamicin release from old cement during revision hip arthroplasty. J Bone Joint Surg (Br),1998,80:607-610.
    [2]. Tunney MM, Dunne N, Einarsson G, et al. Biofilm formation by bacteria isolated from retrieved failed prosthetic hip implants in an vitro model of hip arthroplasty antibiotic prophylaxis. J Orthop Res,2007,25:2-10.
    [3]. Wentworth SJ, Masri BA, Duncan CP, et al. Hip prosthesis of antibiotic-loaded acrylic cement for the treatment of infections following total hip arthroplast. J Bone Joint Surg (Am),2002,84:123-128.
    [4].严世贵,蔡迅梓,张建良,等.低频超声对万古霉素骨水泥药物释放的影响.中华骨科杂志,2006,26:191-195.
    [5].王祥华,蔡迅梓,严世贵,等.低频超声下万古霉素骨水泥的抗菌性能及安全性的实验研究.中华医学杂志,2006,86:3215-3216.
    [6].蔡迅梓,吴浩波,严世贵,等.低频脉冲型超声治疗起始时间对载万古霉素骨水泥药动及药效特性的影响.中华骨科杂志,2007,27:292-297.
    [7]. Harris WH. Is it advantageous to strengthen the cement-metal interface and use a collar for cemented femoral components of total hip replacement? Clin Orthop, 1992,285:67-72.
    [8]. Jasty M, Maloney WJ, Bragdon CR, et al. The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg (Br),1991,73: 551-558.
    [9]. Iesaka K, Jaffe WL, Kummer FJ. Effects of preheating of hip prostheses on the stem-cement interface. J Bone Joint Surg (Am),2003,85:421-427.
    [10]. Iesaka K, Jaffe WL, Jones CM, et al. The effects of fluid penetration and interfacial porosity on the fixation of cemented femoral components. J Bone Joint Surg (Br),2005,87:1298-1302.
    [11]. Zhang H, Brown L, Blunt L. Static shear strength between polished stem and seven commercial acrylic bone cements. J Mater Sci Mater Med,2008,19: 591-599.
    [12]. Ramaniraka NA, Rakotomanana LR, Leyvraz PF. The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface. J Bone Joint Surg (Br),2000,82:297-303.
    [13]. Jiranek WA, Hanssen AD, Greenwald AS William A, et al. Antibiotic-Loaded Bone Cement for Infection Prophylaxis in Total Joint Replacement. J Bone Joint Surg (Am),2006,88:2487-2500.
    [14]. Jafri AA, Green S M, Partington P F, et al. Pre-heating of components in cemented total hip arthroplasty. J Bone Joint Surg (Br),2004,86:1214-1219.
    [15]. Crawford RW, Evans M, Linq RS, et al. Fluid flow around model femoral components of differing surface finishes:In vitro investigations. Acta Orthop Scand,1999,70:589-595.
    [16]. Iesaka K, Jaffe WL, Kummer FJ. Integrity of the Stem-Cement Interface in THA: Effects of Stem Surface Finish and Cement Porosity. J Biomed Mater Res B Appl Biomater,2008,87:77-82.
    [17].蔡迅梓,严世贵,颜瑞健,等.高功率密度低频超声间断辐照对载万古霉素骨水泥药物释放的促进作用.中华骨科杂志,2009,29:140-145.
    [18]. ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol,2007, 93(1-3):111-129.
    [19]. Chaodi L, Steven S, James M. Effects of pre-cooling and pre-heating procedures on cement polymerization and thermal osteonecrosis in cemented hip replacements. Medical Engineering & Physics,2003,559-564.
    [20]. Hendee WR, Ritenour ER. Ultrasound waves. Medical Imaging Physics. New York:Wiley; 2002. Chapter 19, pp 308-314.
    [21]. Wang JS, Taylor M, Flivik G, et al. Factors affecting the static shear strength of the prosthetic stem-bone cement interface. J Mater Sci Mater Med,2003,14:55-61.
    [22]. Geiger MH, Keating EM, Ritter MA,et al. The clinical significance of vacuum mixing bone cement.Clin Orthop Relat Res,2001,382:258-266.
    [23]. Messick KJ, Miller MA, Damron LA, et al. Vacuum-mixing cement does not decrease overall porosity in cemented femoral stems:an in vitro laboratory investigation. J Bone Joint Surg(Br),2007,89:1115-1121.
    [24]. Ishihara S, McEvily AJ, Goshima T, et al. On fatigue lifetimes and fatigue crack growth behavior of bone cement. J Mater Sci Mater Med,2000,11:661-666.
    [25]. Miiller RT, Schiirmann N. Shear strength of the cement metal interface-an experimental study. Arch Orthop Trauma Surg,1999,119:133-138.
    [26]. Lu Y, Wu F, Xue G, et al. Interfacial modification for an aluminum/ epoxy resin laminated composite. Composite Interface,1994,2:265.
    [27]. Hsieh PH, Tai CL, Chang YH, et al. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature. J Orthop Res,2006,24:1809-1814.
    [28]. Ahmed A, Nair R, Burke D, et al. Transient and residual stresses and displacements in self-curing bone cement. Part 2:Thermoelastic analysis of the stem fixation system. J Biomech Eng,1982,104:28-37.
    [1]. Prieto-Alhambra D, Javaid MK, Judge A, et al. Fracture risk before and after total hip replacement in patients with osteoarthritis:Potential benefits of bisphosphonate use. Arthritis Rheum.2011;63:992-1001.
    [2]. Tsutsumi R, Hock C, Bechtold CD, et al. Differential effects of biologic versus bisphosphonate inhibition of wear debris-induced osteolysis assessed by longitudinal micro-CT. J Orthop Res.2008;26:1340-1346.
    [3]. Purdue PE, Koulouvaris P, Nestor BJ, et al. The central role of wear debris in periprosthetic osteolysis. HSS J.2006;2:102-113.
    [4]. Furnes O, Lie SA, Espehaug B, et al. Hip disease and the prognosis of total hip replacements. A review of 53,698 primary total hip replacements reported to the Norwegian Arthroplasty Register 1987-99. J Bone Joint Surg Br. 2001;83:579-586.
    [5]. Sundfeldt M, Carlsson LV, Johansson CB, et al. Aseptic loosening, not only a question of wear:a review of different theories. Acta Orthop.2006;77:177-197.
    [6]. Brown DL, Robbins R. Developments in the therapeutic applications of bisphosphonates. J Clin Pharmacol.1999;39:651-60.
    [7]. Bhandari M, Bajammal S, Guyatt GH, et al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am.2005;87:293-301.
    [8]. Fokter SK, Komadina R, Repse-Fokter. An Effect of etidronate in preventing periprosthetic bone loss following cemented hip arthroplasty:a randomized, double blind, controlled trial. Wien Klin Wochenschr.2006;118:23-28.
    [9]. Trevisan C, Ortolani S, Romano P, et al. Decreased periprosthetic bone loss in patients treated with clodronate:a 1-year randomized controlled study. Calcif Tissue Int.2010;86:436-446.
    [10]. Shetty N, Hamer AJ, Stockley I, et al. Clinical and radiological outcome of total hip replacement five years after pamidronate therapy. A trial extension. J Bone Joint Surg Br.2006;88:1309-1315.
    [11]. Tapaninen TS, Venesmaa PK, Jurvelin JS, et al. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty-a 5-year follow-up of 16 patients. Scand J Surg.2010;99:32-37.
    [12]. Wang CJ, Wang JW, Ko JY, et al. Three-year changes in bone mineral density around the knee after a six-month course of oral alendronate following total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am. 2006;88:267-272.
    [13]. Arabmotlagh M, Pilz M, Warzecha J, et al. Changes of femoral periprosthetic bone mineral density 6 years after treatment with alendronate following total hip arthroplasty. J Orthop Res.2009;27:183-188.
    [14]. Yamaguchi K, Masuhara K, Yamasaki S, et al. Effects of discontinuation as well as intervention of cyclic therapy with etidronate on bone remodeling after cementless total hip arthroplasty. Bone.2004;35:217-223.
    [15]. Furlan AD, Pennick V, Bombardier C, et al.2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009;34:1929-1941.
    [16]. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.0.1 [updated September 2008]. The Cochrane Collaboration,2008.
    [17]. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ.2004;328:1490.
    [18]. Arabmotlagh M, Rittmeister M, Hennigs T. Alendronate prevents femoral periprosthetic bone loss following total hip arthroplasty:prospective randomized double-blind study. J Orthop Res.2006;24(7)1336-1341.
    [19]. Soininvaara TA, Jurvelin JS, Miettinen HJ, et al. Effect of alendronate on periprosthetic bone loss after total knee arthroplasty:a one-year, randomized, controlled trial of 19 patients. Calcif Tissue Int.2002;71:472-477.
    [20]. Shetty NR, Hamer AJ, Stockley I, et. al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. J Bone Joint Surg Am.2005;87:2589-2590.
    [21]. Hennigs T, Arabmotlagh M, Schwarz A, et al. Dose-dependent prevention of early periprosthetic bone loss by alendronate. Z Orthop Ihre Grenzgeb.2002; 140:42-47.
    [22]. Wilkinson JM, Stockley I, Peel NF, et al. Effect of pamidronate in preventing local bone loss after total hip arthroplasty:a randomized, double-blind, controlled trial. J Bone Miner Res.2001; 16:556-564.
    [23]. Wang CJ, Wang JW, Weng LH, et al. The effect of alendronate on bone mineral density in the distal part of the femur and proximal part of the tibia after total knee arthroplasty. J Bone Joint Surg Am.2003;85:2121-2126.
    [24]. Venesmaa PK, Kroger HP, Miettinen HJ, et al. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty:a prospective randomized study. J Bone Miner Res.2001;16:2126-2131.
    [25]. Wilkinson JM, Eagleton AC, Stockley I, et al. Effect of pamidronate on bone turnover and implant migration after total hip arthroplasty:a randomized trial. J Orthop Res.2005;23:1-8.
    [26]. Fokter SK, Komadina R, Repse-Fokter A, et al. Etidronate does not suppress periprosthetic bone loss following cemented hip arthroplasty. Int Orthop. 2005;29:362-367.
    [27]. Yamaguchi K, Masuhara K, Yamasaki S, et al. Cyclic therapy with etidronate has a therapeutic effect against local osteoporosis after cementless total hip arthroplasty. Bone.2003;33:144-149.
    [28]. Yamaguchi K, Masuhara K, Yamasaki S, et al. Efficacy of different dosing schedules of etidronate for stress shielding after cementless total hip arthroplasty. J Orthop Sci.2005; 10:32-36.
    [29]. Abu-Rajab RB, Watson WS, Gallacher P, et al. The effect of 6 months oral alendronate treatment on periprosthetic bone loss after total knee arthroplasty. Eur J Orthop Surg Traumatol.2009;19:231-235.
    [30]. Nehme A, Maalouf G, Tricoire JL, et al. [Effect of alendronate on periprosthetic bone loss after cemented primary total hip arthroplasty:a prospective randomized study]. Rev Chir Orthop Reparatrice Appar Mot.2003;89:593-598.
    [31]. Nishioka T, Yagi S, Mitsuhashi T, et al. Alendronate inhibits periprosthetic bone loss around uncemented femoral components. J Bone Miner Metab. 2007;25:179-183.
    [32]. Huang JF, Liu JB. Alendronate prevents early femoral periprosthetic bone loss following total hip arthroplasty. Journal of Jiangsu University (Medicine Edition). 2007;17:542-544.
    [33]. Wang YM, Li X, Wang JQ, et al. Study on the Periprosthetic Bone Loss after Cemented Primary Total Hip Replacement. Tianjin Medical Journal. 2005;33:492-494.
    [34]. Yamasaki S, Masuhara K, Yamaguchi K, et al. Risedronate reduces postoperative bone resorption after cementless total hip arthroplasty. Osteoporos Int. 2007;18:1009-1015.
    [35]. Takeyama S, Shinoda H. [Pharmacological actions and pharmacokinetics of bisphosphonates]. Clin Calcium.2003; 13:115-121.
    [36]. Jansen JP, Bergman GJ, Huels J, et al. The efficacy of bisphosphonates in the prevention of vertebral, hip, and nonvertebral-nonhip fractures in osteoporosis:a network meta-analysis. Semin Arthritis Rheum.2011;40:275-84.
    [37]. Uusi-Rasi K, Sievanen H, Heinonen A, et al. Effect of discontinuation of alendronate treatment and exercise on bone mass and physical fitness:15-month follow-up of a randomized, controlled trial. Bone.2004;35:799-805.
    [38]. Antic VN, Fleisch H, Muhlbauer RC. Effect of bisphosphonates on the increase in bone resorption induced by a low calcium diet. Calcif Tissue Int. 1996;58:443-448.
    [39]. Shapses SA, Kendler D, Robson R, et al. Effect of alendronate and vitamin D(3) on fractional calcium absorption in a double-blind, randomized, placebo-controlled trial in postmenopausal osteoporotic women. J Bone Miner Res.2011;doi:10.1002/jbmr.395.
    [40]. Tanko LB, Mouritzen U, Lehmann HJ, et al. Oral ibandronate:changes in markers of bone turnover during adequately dosed continuous and weekly therapy and during different suboptimally dosed treatment regimens. Bone.2003; 32:687-693.
    [41]. Bonnick S, Broy S, Kaiser F, et al. Treatment with alendronate plus calcium, alendronate alone, or calcium alone for postmenopausal low bone mineral density. Curr Med Res Opin.2007;23:1341-1349.
    [1]. Alfonso OM, Silva GA, Duart CJ, Villas TC. Infected vertebroplasty due to uncommon bacteria solved surgically:a rare and threatening life complication of a common procedure:report of a case and a review of the literature. Spine (Phila Pa 1976).2006;31:770-773.
    [2]. Alvarez L, Alcaraz M, Perez-Higueras A, Granizo JJ, de Miguel I, Rossi RE. Percutaneous vertebroplasty:functional improvement in patients with osteoporotic compression fractures. Spine (Phila Pa 1976).2006;31:1113-1118.
    [3]. Anselmetti GC, Manca A, Hirsch J, Montemurro F, Isaia G, Osella G. Percutaneous Vertebroplasty in Osteoporotic Patients:An Institutional Experience of 1,634 Patients with Long-Term Follow-Up. J Vasc Interv Radiol. 2011;22:1714-1720.
    [4]. Atkins D, Briss PA, Eccles M, Flottorp S, Guyatt GH, Harbour RT. Systems for grading the quality of evidence and the strength of recommendations II:pilot study of a new system. Bmc Health Serv Res.2005;5:25.
    [5]. Barr JD, Barr MS, Lemley TJ, McCann RM. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine (Phila Pa 1976).2000;25:923-928.
    [6]. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA.2009;301:513-521.
    [7]. Boluki D. Surgical therapy of osteoporotic vertebral body fractures. Z Rheumatol. 2011;70:45-55.
    [8]. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med.2009;361:557-568.
    [9]. Chang CY, Teng MM, Wei CJ, Luo CB, Chang FC. Percutaneous vertebroplasty for patients with osteoporosis:a one-year follow-up. Acta Radiol. 2006;47:568-573.
    [10]. Chen HL, Wong CS, Ho ST, Chang FL, Hsu CH, Wu CT. A lethal pulmonary embolism during percutaneous vertebroplasty. Anesth Analg.2002;95:1060-1062.
    [11]. Chin DK, Kim YS, Cho YE, Shin JJ. Efficacy of postural reduction in osteoporotic vertebral compression fractures followed by percutaneous vertebroplasty. Neurosurgery.2006;58:695-700.
    [12]. Cohen LD. Fractures of the osteoporotic spine. Orthop Clin North Am. 1990;21:143-150.
    [13]. Cortet B, Cotten A, Boutry N, Flipo RM, Duquesnoy B. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures:an open prospective study. J Rheumatol.1999;26:2222-2228.
    [14]. Diamond TH, Champion B, Clark WA. Management of acute osteoporotic vertebral fractures:a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. Am J Med.2003; 114:257-265.
    [15]. Farrokhi MR, Alibai E, Maghami Z. Randomized controlled trial of percutaneous vertebroplasty versus optimal medical management for the relief of pain and disability in acute osteoporotic vertebral compression fractures. J Neurosurg Spine. 2011;14:561-569.
    [16]. Farrokhi MR, Torabinezhad S, Ghajar KA. Pilot study of a new acrylic cage in a dog cervical spine fusion model. J Spinal Disord Tech.2010;23:272-277.
    [17]. Furlan AD, Pennick V, Bombardier C, van Tulder M.2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine (Phila Pa 1976).2009;34:1929-1941.
    [18]. Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford).2000;39:1410-1414.
    [19]. Grafe IA, Noldge G, Weiss C, Libicher M, Baier M, Nawroth P. Prediction of immediate and long-term benefit after kyphoplasty of painful osteoporotic vertebral fractures by preoperative MRI. Eur J Truma Emerg Surg. 2011;37:379-386.
    [20]. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539-1558.
    [21]. Hiwatashi A, Moritani T, Numaguchi Y, Westesson PL. Increase in vertebral body. Am J Neuroradiol.2003;24(2):185-189.
    [22]. Huskisson EC. Measurement of pain. J Rheumatol.1982;9:768-769.
    [23]. Jensen ME, McGraw JK, Cardella JF, Hirsch JA. Position statement on percutaneous vertebral augmentation:a consensus statement developed by the American Society of Interventional and Therapeutic Neuroradiology, Society of Interventional Radiology, American Association of Neurological Surgeons/Congress of Neurological Surgeons, and American Society of Spine Radiology. J Neurointerv Surg.2009;1:181-185.
    [24]. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int.2006;17:1726-1733.
    [25]. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR. Vertebral fractures and mortality in older women:a prospective study. Arch Intern Med.1999;159:1215-1220.
    [26]. Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med. 2009;361:569-579.
    [27]. Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos Ⅱ):an open-label randomised trial. Lancet. 2010;376:1085-1092.
    [28]. Lee BJ, Lee SR, Yoo TY. Paraplegia as a complication of percutaneous vertebroplasty with polymethylmethacrylate:a case report. Spine (Phila Pa 1976). 2002;27:419-422.
    [29]. Lin WC, Lee CH, Chen SH, Lui CC. Unusual presentation of infected vertebroplasty with delayed cement dislodgment in an immunocompromised patient:case report and review of literature. Cardiovasc Intervent Radiol. 2008;31:231-235.
    [30]. Lips P, Cooper C, Agnusdei D, Caulin F, Egger P, Johnell O, et al. Quality of life in patients with vertebral fractures:validation of the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO). Osteoporos Int. 1999;10:150-160.
    [31]. Manchikanti L, Singh V, Falco FJ, Cash KA, Pampati V. Effectiveness of thoracic medial branch blocks in managing chronic pain:a preliminary report of a randomized, double-blind controlled trial. Pain Physician.2008;11:491-504.
    [32]. McGraw JK, Cardella J, Barr JD, Mathis JM, Sanchez O, Schwartzberg MS. Society of Interventional Radiology quality improvement guidelines for percutaneous vertebroplasty. J Vasc Interv Radiol.2003; 14:311-315.
    [33]. McGraw JK, Cardella J, Barr JD, Mathis JM, Sanchez O, Schwartzberg MS, Swan TL, Sacks D; SIR Standards of Practice Committee. Society of Interventional Radiology quality improvement guidelines for percutaneous vertebroplasty. J Vasc Interv Radiol.2003; 14:827-831.
    [34]. Melzack R. The McGill Pain Questionnaire:major properties and scoring methods. Pain.1975; 1:277-299.
    [35]. Phillips FM. Minimally invasive treatments of osteoporotic vertebral compression fractures. Spine (Phila Pa 1976).2003;28(15 Suppl):45-53.
    [36]. Ploeg WT, Veldhuizen AG, The B, Sietsma MS. Percutaneous vertebroplasty as a treatment for osteoporotic vertebral compression fractures:a systematic review. Eur Spine J.2006;15:1749-1758.
    [37]. Rousing R, Andersen MO, Jespersen SM, Thomsen K, Lauritsen J. Percutaneous vertebroplasty compared to conservative treatment in patients with painful acute or subacute osteoporotic vertebral fractures:three-months follow-up in a clinical randomized study. Spine (Phila Pa 1976).2009;34:1349-1354.
    [38]. Shih MS, Cook MA, Spence CA, Palnitkar S, McElroy H, Parfitt AM. Relationship between bone formation rate and osteoblast surface on different subdivisions of the endosteal envelope in aging & osteoporosis. Bone. 1993;14:519-521.
    [39]. Staples MP, Kallmes DF, Comstock BA, Jarvik JG, Osborne RH, Heagerty PJ. Effectiveness of vertebroplasty using individual patient data from two randomised placebo controlled trials:meta-analysis. BMJ.2011;343:d3952.
    [40]. Sun G, Jin P, Li M, Liu XW, Li FD. Height restoration and wedge angle correction effects of percutaneous vertebroplasty:association with intraosseous clefts. Eur Radiol.2011:21:2597-2603.
    [41]. Sun G, Jin P, Li M, Lu Y, Ding J, Liu X, et al. Percutaneous cementoplasty for painful osteolytic humeral metastases:initial experience with an innovative technique. Skeletal Radiol.2011;40:1345-1348.
    [42]. Tamayo-Orozco J, Arzac-Palumbo P, Peon-Vidales H, Mota-Bolfeta R, Fuentes F. Vertebral fractures associated with osteoporosis:patient management. Am J Med. 1997; 103:44-50.
    [43]. Tan BHM. Analysis of the effects of percutaneous vertebroplasty in osteoporotic compression fractures. J Orthopaedics.2011;8:e9.
    [44]. Trout AT, Kallmes DF. Does vertebroplasty cause incident vertebral fractures? A review of available data. Am J Neuroradiol.2006;27:1397-1403.
    [45]. Trout AT, Kallmes DF, Gray LA, Goodnature BA, Everson SL, Comstock BA. Evaluation of vertebroplasty with a validated outcome measure:the Roland-Morris Disability Questionnaire. Am J Neuroradiol.2005;26:2652-2657.
    [46]. Uebelhart B, Casez P, Rizzoli R, Louis-Simonet M. Prophylactic injection of methylmetacrylate in vertebrae located between two previously cemented levels does not prevent a subsequent compression fracture in a patient with bone fragility. Joint Bone Spine.2008;75:322-324.
    [47]. Voormolen MH, Mali WP, Lohle PN, Fransen H, Lampmann LE, van der Graaf Y, et al. Percutaneous vertebroplasty compared with optimal pain medication treatment:short-term clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study. Am J Neuroradiol.2007;28:555-560.
    [48]. Voormolen MH, van Rooij WJ, Sluzewski M, van der Graaf Y, Lampmann LE, Lohle PN, et al. Pain response in the first trimester after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures with or without bone marrow edema. Am J Neuroradiol.2006;27:1579-1585.
    [49]. Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures:EQ-5D and SF-6D. Qual Life Res.2005; 14: 1523-1532.
    [50]. Wang HK, Lu K, Liang CL, Weng HC, Wang KW, Tsai YD. Comparing clinical outcomes following percutaneous vertebroplasty with conservative therapy for acute osteoporotic vertebral compression fractures. Pain Med.2010; 11: 1659-1665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700