用户名: 密码: 验证码:
基于超声导波的金属杆围堰系统质量检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前围堰金属缓冲杆质量的检测方法主要是拉拔法和取岩芯法,但是这两种方法都属于有损检测,已不能满足工程实践的要求。本文通过分析超声导波在围堰体系中的传播特性,运用理论计算、有限元模拟仿真以及试验相结合的方法,研究了基于超声导波检测技术的金属杆围堰系统的粘结质量。
     文中阐述了导波的形成原因、导波的相速度、群速度、频散曲线和截止频率;论述了导波的频散性和多模态特性,提出了选用模态单一的且频散性较弱的超声导波对结构进行无损检测为最佳的观点。
     文中推导出自由金属杆和围堰金属杆的理论模型,给出了顶端自由和底端自由、固定三种不同边界条件下的动态响应方程,并进行了有限元仿真,表明理论模型很好地解释了超声导波在金属杆和围堰金属杆中的传播机理和规律。
     在超声导波理论的基础上,分析了影响围堰金属杆检测的因素及围堰金属杆粘结质量的影响因素。对不同粘结面积的围堰金属杆进行了高低频仿真,低频部分存在频率75KHz时可清晰识别出固定端上界面反射波从而计算出有效粘结长度;高频部分存在频率2MHz时可清晰识别出底端反射波从而计算出全长衰减系数,根据该系数可以量化围堰金属杆的粘结质量。
     基于金属杆的内阻尼使材料具有蠕变和松弛行为的现象,分析了自由金属杆内阻尼与超声导波振幅衰减之间的关系,内阻尼越大振幅衰减越大;分析了围堰金属杆粘结段内阻尼大小与围堰金属杆粘结的好坏程度,内阻尼越大粘结越好且超声导波振幅衰减越大。得出了在低频范围内,内阻尼是导致超声导波在围堰金属杆中传播时能量衰减的主要原因。
     分析了以水泥砂浆为粘结介质的围堰金属杆中,特定频率的L(0,1)和L(0,2)导波在杆截面的轴向、径向位移,轴向能量流分布情况以及衰减情况;分析了以树脂为粘结介质的围堰金属杆中,特定频率的L(0,1)导波在杆截面的轴向、径向位移,轴向能量流分布情况以及衰减情况。得出了特定频率的导波对围堰金属杆的表面缺陷和内部缺陷是敏感的。
     分析了超声导波在围堰交界面处的传播机理,分析了超声导波波速减小与时域响应波形曲线增宽的原因,提出了围堰交界面处主要由界面波与Love波耦合而成的耦合波群(低频脉冲)传播的思想。
     根据同一频率超声导波在自由金属杆与围堰金属杆中传播时的衰减幅度差,定性地分析了围堰金属杆的粘结质量;提出了利用固段上界面反射回波与激励波的时间差变化确定以树脂为粘结介质的围堰金属杆作用载荷的方法;提出了通过测试围堰金属杆底端反射回波和固段上界面反射回波的时间差的变化确定以水泥砂浆为粘结介质的围堰金属杆粘结密实度的方法;提出了通过脱粘缺陷反射回波的时间和最优检测频率的纵向导波在围堰金属杆中的传播速度能够对杆体脱粘缺陷进行定位;验证了伴随混凝土凝固期增加,金属杆围堰系统上界面反射波的幅值增大,反映了围堰金属杆的粘结质量逐渐变好,提出了通过上界面反射波的幅值大小能够对杆的粘结质量进行判断和评价。
     现场检测表明,质量检测仪能比较准确的采集到超声导波在围堰体系上界面反射回波,能够测出围堰金属杆的有效粘结长度。根据介质的粘结强度,能够得到围堰金属杆的固化握力,体现质量检测的有效性与可行性。
Currently, the primary methods of detecting the quality of cofferdam metal buffer rod are the drawing method and coring method, but these two methods all belong to damage detection, which can't meet the requirements of Engineering practice. This paper, through analyzing the conducting characteristics of guided waves, by applying, the combination of theoretical calculation and finite element simulation test, analyzes the application of detective technique based on ultrasonic guided wave in metal buffer rod bonding quality of cofferdam system.
     The thesis explains how guided waves are formed, introduces the phase velocity, group velocity dispersion curves and cutoff frequency of it, discusses the dispersion and multi-modal properties of guided wave, and puts forward that it is best to choose single modal and weaker dispersion of ultrasonic guided wave to detect the structure.
     Then the thesis deduces the theoretical model of free metal rod and cofferdam metal rod, brings forward three different boundary conditions of the response equations such as the top free, bottom free and fixed. Validated by finite element simulation conduction results, it is clear that the theoretical model well explains the conducting principles and rules of the guided waves in the metal rod and the cofferdam metal rod.
     Based on ultrasonic guided wave theory, the thesis analyses the factors influencing the cofferdam metal rod and its bonding quality, conducts high and low frequency simulation experiments with different bonding areas. It shows that the low-frequency of75KHz can clearly identify the interface reflection wave in fixed end, so the length of effective bond can be worked out; High-frequency of2MHz can clearly identify the bottom reflection wave, therefore, the attenuation coefficient of overall length can be worked out, according to which the bonding quality of the cofferdam metal rod can be quantified.
     Internal damping of the metal rod makes the material creep and relax, so the numerical value of free metal rod damping x reflects the value of internal damping, that is, the larger the numerical value of τ is, the larger internal damping is and the worse amplitude attenuation will be. The figure of cofferdam metal rod bonded segment τ1reflects the degree of metal rods and cofferdam bonded, that is, the larger τ1, the better bonded and the worse amplitude attenuation, which signifies that damping results in the energy decay of the cofferdam metal rod within the low frequency.
     This paper also analyses axial flow distribution and attenuation of the specific frequency guided waves L (0,1) and L (0,2) of cement mortar metal rod in rod section. Studies axial, radial displacement, axial How of energy distribution and attenuation of the specific frequency guided wave I,(0,1) of the resin cofferdam metal rod in rod section; It can be concluded that the specific frequency guided wave is sensitive to surface defects and inner defects.
     Besides, the paper analyses principles of the guided wave when conducting in the cofferdam interface, states the causes of guided wave velocity change(decrease) and the widened waveform in time domain response curve, makes an idea clear that in the cofferdam interface, it is the coupled wave group(low-frequency) that conducts most, which consists of interface wave and Love wave.
     According to the attenuation amplitude's difference of the same frequency guided wave conducting in free metal rod and cofferdam metal rod, the bonding quality of cofferdam metal rod has been qualitatively analyzed. Using the time's difference in reflection waves and excitation waves in solid upper interface, the way of resin metal buffer rod ioad has been put forward. Through the testing of time difference of the reflection waves of metal rod low side and solid upper interface, a way to determine the bonding density of cement mortar cofferdam metal rod has been proposed. According to the debond delect echo time and the velocity of longitudinal guided wave, which is the best to test frequency, when conducting in the cofferdam metal bumper bar, the rod body debond delect has been located. With the increasing of concrete solidification period, the quality of cofferdam metal rod's bonding gradually gets better, and the amplitude value of reflection wave in upper interlace becomes bigger, by which the rod's bonding quality can be assessed and judged.
     Field test shows that the quality of detection instrument can accurately collect the ultrasonic guided wave's reflection wave in the cofferdam system and detect the effective bonding length of cofferdam metal rod. According to the bond strength of medium, the cofferdam metal rod's curing grip can be obtained, so it is an effective and feasible way to detect the quality.
引文
[1]许明.锚固系统质量的无损检测与智能诊断技术研究[D].重庆:重庆大学博士学位论文,2002.
    [2]CeCS22:90.土层锚杆设计与施工规范[S].北京:冶金工业部建筑研究总院,1993.
    [3]陈至达.理性力学[M].重庆:重庆出版社,2000.
    [4]Thurner H F. Boltometer-Instrument for non-destructive testing of grouted rock bolts[C]. 2ndInternational Symposium on Filed Measurements in Geomechanics. Rotterdam:A. A. BalkemaPublishers,1988:135-143.
    [5]GEODYNAMIK. Boltometer 011-Users Manual[M]. Stockholm.1987.
    [6]Vrkljan I,Szavit s A, Kovacevic M S. Non-destructive procedure for testing grouting quality of rock anchors[J]. Proceedings of the Congress of the International Society for Rock Mechanics,1999.9 (2):1475-1478.
    [7]Thurston R. Elastic Waves in Rod sand Clad Rods [J]. Queensland.,1998,(64):1-37.
    [8]Beard M D.Lowe MJ S. Non-destructive testing of rock bolts using guided ultrasonic waves[J]. Intl Journal of Rock Mechanics & Mining Science,2003 (40):527-536.
    [9]Tadolini S C. Mine roof bolt load determinations utilizing ultrasonic measurement systems[C]. CIM Bulletin,1999,83:49-54.
    [10]Tadolini S C. Evaluation of ultrasonic measurement systems for bolt load determinations[R]. The US Bureau of Mines. Denver,1990.
    [11]lvanovic A, Neilson R D, Rodger A A. Numerical modeling of single tendon ground anchorage systems[J]. Geotech. Eng.,2001,149(2):103-113.
    [12]Ivanovic A, Neilson R D, Rodger A A. Influence of prestress on the dynamic response of ground anchorages[J]. Journal of geotechnical and geoenvironment engineering,2002, 3:237-249.
    [13]M D Beard, M J S Lowe. Non-destructive testing of rock bolts using guided ultrasonic waves [J]. International Journal of Rock Mechanics & Mining Sciences,2003,40:528-536.
    [14]M D Beard, M J S Lowe, P Cawley. Inspection of rockbolts using guided ultrasonic waves[J]. Review of progress in quantitative nondestructive evaluation.2001.20:1156-1163.
    [15]M D Beard, M J S Lowe. P Cawley. Development of a guided wave inspection technique for rock bolts[J]. Review of progress in quantitative nondestructive evaluation.2002,21: 1318-1325.
    [16]M D Beard, M J S Lowe, P Cawley. Ultrasonic guided waves for inspection of grouted tendons and bolts[J]. Journal of Materials in Civil Engineering,2003,212-218.
    [17]Beard M D. Guided wave inspection of embedded cylindrical structures[D],University of London,2002.
    [18]Thurner H F. Boltometer-Instrument for non-destructive testing of grouted rock bolts[C]. 2ndinternational Symposium on Filed Measurements in Geomechanics. Rotterdam:A. A. BalkemaPublishers,1988:135-143.
    [19]Rodger A A. Milne G D, Littlejohn G S. Condition monitoring and integrity assesment of rock anchoragcs[C]. Proc, Int. Conf. On Ground Anchorages and Anchorages Structures. Institution of Civil Engineers, Thomas Tel ford, London,1997:343-352.
    [20]Roger A A. Holland I) C, Littlejohn G S, et al. The behavior of resin bonded rock bolts and other anchorages subjected to close proximity blasting[C]. Proc., Int. Congress on Rock Mechanics,1996,665-670.
    [21]Roger A A, Littlejohn G S, I Holland I) C, et al. Dynamic response of rock bolt systems at penyclip in North Wales[J]. Options for Tunneling, Developments Geotech. Eng.,1993, 74:719-727.
    [22]Djordjevic, N. A non-destructive test method to assess the integrity of installed rock bolts.JK Rock Bolt Tester [R]. Australia:The University of Queensland,2000.
    [23]D H Zou, Y Cui, V Madenga, et al. Effects of frequency and grouted length on the behavior of guided ultrasonic waves in rock bolts[J].International Journal of Rock Mechanics & Mining Sciences,2007,44:813-819.
    [24]Xu H. The dynamic and static behaviour of resin bonded rock bolts in tunnelling[D]. University of Bradford, U.K.,2001.
    [25]Milne G. Condition monitoring and integrity assessment of rock anchorages[D]. University of Aberdeen, U.K.,2002.
    [26]Connolly E F. Finite element modelling and parametric study of resin bonded rock anchorage system[D]. University of Aberdeen, U.K.,2004.
    [27]Ivanovic A. The dynamic response of ground anchorage systems[D]. University of Aberdeen, U.K.,2001.
    [28]V Madenga, D H Zou, C Zhang. Effects of curing time and frequency on ultrasonic wave velocity in grouted rock bolts[J]. Journal of applied geophysics,2006,59:79-87.
    [29]曾宪明等.锚杆锚索使用寿命与防护对策问题研究综述[M].总参工程兵所.2002.
    [30]汪明武,王鹤龄.锚固质量的无锁检测技术[J].岩石力学与工程学报,2000,21(1):126-129.
    [31]Wang M W, Wang H L. Nondestructive testing of grouted bolts system[J]. Chinese Journal of Geotechnical Engineering,2001,23(1):109-113.
    [32]汪明武,王鹤龄.锚固体系无损检测的研究[J].岩石力学与工程学报,2000,22(1):109-113.
    [33]廖春芳,吴艾,吴铁怀等.潭邵高速公路锚杆锚固质量无损检测技术及应用[J].2000,6:56-58.
    [34]岳向红.基于小波神经网络的锚杆锚固质量分析[D].武汉:中国科学院武汉岩土力学研究所,2000.
    [35]刘明贵,岳向红.基于小波神经网络的锚杆锚固质量分析[J].岩石力学与工程学报,2001,25(1):83-87.
    [36]陈波,鲁永康,郭玉等.电磁波检测锚固质量初探[J].工程地球物理学报,2001,1(4):336-339.
    [37]郭安萍.声发射技术在锚固质量检测中的试验研究[J].中国地质灾害与防治学报,1998,8(2):72-76.
    [38]郭世明,高才坤.弹性应力波法锚杆质量检测初探[J].西部探矿程,1999,16(1):46-49.
    [39]王鹤龄,汪明武.声频应力波在锚杆锚固状态检测中的应用[J].地质与勘探.2000,34(4):54-59.
    [40]汪明武,王鹤龄.锚固质量的无损检测技术[J].岩石力学与工程学报,2002,21(1):126-129.
    [41]http://www.geodynamik.com/languages/english/index_gb.html
    [42]许明.锚固系统质量的无损检测与智能诊断技术研究[D].博士论文.重庆大学.2003.
    [43]许明,张永兴,锚固系统质量检测的小波分析方法[J].岩土力学,2003,24(2):158-169.
    [44]汪明武,王鹤龄.锚固体系无损检测的研究[J].岩石力学与工程学报,2003,22(1):109-113.
    [45]王成,恽寿榕,李义.锚杆-锚固介质-围岩系统瞬态激励的响应分析[J].太原理工大学学报,2000,31(6):658-661.
    [46]李义,张昌锁,王成,锚杆锚固质量无损检测几个关键问题的研究[J].岩石力学与工程学报,2008,27(1):108-116.
    [47]李义,张昌锁,王富春等.混凝土早龄期强度无损检测法[P].中国,ZL200410012323,2008.
    [48]张昌锁,李义,赵阳升等.锚杆锚固质量无损检测中的激发波研究[J].岩石力学与工程学报,2006,25(6):1241-1425.
    [49]何存富,孙雅欣,吴斌等.超声导波技术在埋地锚杆检测中的应用研究[J].岩土工程学报,2006,25(6):1241-1425.
    [50]何存富,孙雅欣,王彦秀等.高频纵向超声导波在埋于无限大介质中钢材的传播特性[J].机械工程学报,2007,43(3):82-87.
    [51]吴斌,孙雅欣,何存富等.全长黏结型锚杆高频超声导波检测应用研究[J].岩石力学与工程学报,2007,26(2):397-403.
    [52]张昌锁,李义,Steve Zou.锚杆锚固结构中导波传播的数值模拟[J].太原理工大学学报,2009,40(3):274-278.
    [53]许明,张水兴.锚固系统的质量管理与检测技术研究[J].重庆建筑大学学报,2002,24(1):29-33.
    [54]许明,张永兴,阴可.锚杆极限承载力的人工神经网络预测[J].岩石力学与工程学报, 2002,21(5):755-758.
    [55]许明,张永兴.锚固系统质量检测的小波分析[J].岩土力学,2003,24(2):262-265.
    [56]许明,张永兴,阴可.某隧道锚杆完整性的无损检测方法[J].土木工程学报,2004,37(5):78-81.
    [57]张永兴,陈建功.锚杆-围岩结构系统低应变动力响应理论与应用研究[J].岩石力学与工程学报,2007,26(9):1758-1766.
    [58]王成.锚杆锚固质量动测新技术研究[D].山西:太原理工大学,1998.
    [59]林华长.金属杆在岩土介质中的振动特性及弹性波的传播规律研究[D].北京:北京理工大学,2006.
    [60]林华长,王成,宁建国等.金属杆锚固系统在瞬态激励下的动态响应[J].力学与实践,2005,27(5):3-42.
    [61]魏立尧,王成等.导波在锚固金属杆中传播机理的研究[J].岩土工程学报,2005,27(12):1437-1441.
    [62]杨桂通,张善元编著.弹性动力学[M].北京:中国铁道出版社.1998.
    [63](美)J.L.罗斯 著.何存富等译,杨桂通校.固体中的超声波[M].北京:科学出版社,2004.
    [64]Rose, J. L.. Ultrasonic waves in sold media[J]. Cambriage university press. UK.1999.
    [65]Serway P A. Physics for Scientist and Engineers with Modern Physics[M]. Philadelphia: Sauders,1998.
    [66]Auld B A. Acoustic Fields and Waves in Solids, Volume Ⅱ [M]. Standford:Krieger Publishing Company,1999.
    [67]Thurston, R.. Elastic waves in rods[J]. J. Aoc. Am.1987,64(1):1-37.
    [68]徐攸在.桩的动测新技术[M].北京:中国建筑工业出版社,2003.
    [69]蔡启富等.数学物理方程[M].武汉:武汉水利电力大学出版社,2000.
    [70]胡昌斌,王奎华,谢康和.考虑桩土相互作用效应的桩顶纵向振动时域响应分析[J].计算力学学报,2004,21(4):P392-399.
    [71]胡海岩.结构阻尼模型及系统时域动响应[J].应用力学学报,1999,10(1):P34-43.
    [72]刘式适,刘式达编著.特殊函数(第二版)[M].北京:气象出版社,2002.3
    [73]杨桂通,张善元编著.弹性动力学[M].北京:中国铁道出版社,1988.72:113.
    [74](美)J.L.罗斯 著.何存富等译,杨桂通校.固体中的超声波[M].北京:科学出版社.2004.3.14-17,118-120.
    [75]钱伟长著.微分方程的理论及其解法[M].北京:国防工业出版社.第版,1992.12.
    [76]刘式适,刘式达编著.特殊函数(第二版)[M].北京:气象出版社,2002.3.
    [77]王礼立.应力波基础[M].北京:国防工业出版社,1985.5.7-32.135-143.
    [78]徐孝诚,尹立中.关于结构高频响应分析中有限元网格划分的细化标准[J].振动与冲击.Vol.21 No.1.2003.
    [79]黎在良,刘殿魁.固体中的波[M].北京:科学出版社,1955,262-266.
    [80]Achenbach.J D著,徐值信,洪锦如译.弹性固体中波的传播[M].上海,同济大学出版社,1992.
    [81]Beard MD, Lowe MJS, Cawley P. Ultrasonic guided waves for the inspection of grouted tendons and bolts..1 Mater Civil Eng,2002,in press.
    [82]M.D. Beard, M.J.S. Lowe., Non-destructive testing of rock bolts using guided ultrasonic waves[J], International Journal of Rock Mechanics & Mining Sciences,40(2003) 527-536.
    [83]张昌锁,李义,Steve Zou.锚杆锚固结构中导波传播的数值模拟[J].太原理工大学学报,2009,40(3):274-278.
    [84]Rose J L著.固体中的超声波[M].何存富,吴斌,王秀彦译.北京:科学出版社,2004.
    [85]Huo Shihong. Estimation of adhesive bond strength in laminated safety glass using guided mechanical waves[D]. University of Illinois at Urbana-Champaign,2008.
    [86]Lowe M. Plate waves for the NDT of difussion bonded titanium[D]. London:Imperial College of Science Technology and Medicine,1993.
    [87]Pavlakovic B N. Leaky guided ultrasonic waves in NDT[D]. London:Imperial College, 1998.
    [88]他得安,刘振清,贺鹏飞.复合管状结构中超声导波的位移分布[J].复合材料学报,2003,20(6):130-136.
    [89]王怀秀,朱维国.矿用树脂锚杆锚固质量无损检测的试验研究[J].煤炭科学技术2004,31(4):38-40.
    [90]王礼立.应力波基础[M].北京:国防工业出版社.1985,7-32,135-143.
    [91]A.A.齐楚林著.万山,苏耀中译.波动过程、光学、核物理学[M].上海:上海科学技术出版社1989.3.12-14.
    [92]Rose J L著.固体中的超声波[M].何存富,吴斌,王秀彦译.北京:科学出版社,2004.
    [93]黄明昌,肖春喜,王靖涛.应力波在毛洞周围绕射时波长-洞径比效应[J].岩土力学.1994.(1):47-56.
    [94]R.S.C. Cobbold. Foundation of Biomedical Ultrasound[M]. Oxford University Press, 2006.
    [95]刘增华,吴斌,李隆涛等.管道超声导波检测中信号选取的实验研究[J].北京工业大学学报,2006,32(8):699-703.
    [96]Avioli M J. Lamb wave inspection for large cracks in centrifugally cast stainless steel[R]. EPRI report RP2405-23, Georgetown University,1988.
    [97]Randall R B. Frequency Analysis[M]. Copenhagen:Bruel & Kjaer,1977.
    [98]Sachse W, Pao Yih-Hsing. On the determination of phase and group velocities of dispersive waves insolids[J]. Journal of Applied Physics,1978,49(8):4320-4327.
    [99]尤丽华,高龙琴,林晖.测试技术[M].北京:机械工业出版社,2002.
    [100]Gabor D. Theory of communication[J]. Journal of the Institute of Electrical Engineers, 1946,93:429-457.
    [101]王礼立.应力波基础[M].北京:国防工业出版社,1985.5.7-32.135-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700