用户名: 密码: 验证码:
深埋大理岩力学特性研究及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是地下工程向深部发展的世纪,深埋隧洞、核废料储存、深部地热开发都涉及到深埋岩体力学问题。20世纪80年代开始,加拿大、瑞典、日本、瑞士、美国等国都建立了地下实验室,对硬岩高应力破坏的监测技术、理论研究和相关数值分析方面取得了辉煌的成绩,其中以加拿大URL对Lac du Bonnet花岗岩的研究最为卓著。
     目前对于深埋大理岩力学特性的研究可参照加拿大URL花岗岩的研究思路,主要集中于4个方面:(1)强度特征除了传统的峰值强度和残余强度外,人们还提出了描述裂纹状态的启裂强度和损伤强度。对于小尺度岩块的各种强度阈值可采用试验手段获得;大体积岩体的强度阈值只有通过数值方法获得,近年来基于PFC的SRM(综合岩体模型)对此问题富有成效。(2)开挖损伤区域(EDZ)深埋隧洞开挖后由于应力调整、爆破扰动、温度湿度变化等因素会导致开挖面附近形成开挖损伤区域,了解开挖损伤区域的范围、损伤程度和演化特征对评价围岩稳定、渗透扩散规律和支护措施具有重要意义。(3)革新的试验技术研究目前真三轴试验机越来越普及,但硬岩的试验还要求真三轴加压时能同时监测压缩过程中的声发射、波速变化、渗透率变化,或对不同温度环境的模拟,还应能实现对海量试验数据的高速连续采集。(4)大型原位试验设计和实施室内试验针对小尺度的岩块力学特性开展研究,如果要将相关认识拓展至大尺度岩体还需要设计并开展针对性原位试验。
     本文主要工作致力于深埋大理岩力学特性的室内试验研究和描述方法研究。前者包括大理岩试样各损伤阈值的测定和峰后力学特性的试验研究,通过与花岗岩试验成果的对比,丰富了目前硬岩的研究成果;后者探讨大理岩力学特性的PFC方法描述,即用PFC描述了隧洞的开挖损伤特征、岩体强度特征和大理岩峰后特征,拓展了PFC方法在硬岩强度特征与开挖损伤区域描述方面的应用。在前述研究成果基础上,利用PFC标定特定岩体质量的开挖损伤深度和形态获得了岩体级别的颗粒细观参数,预测了埋深更大洞段的围岩损伤深度,与常用的连续方法相比,基于PFC的围岩损伤深度预测具有较高的精度,对支护设计具有重要价值。
     由于锦屏大理岩随围压变化所具有的脆-延-塑性转换特征,决定了它不会出现软岩里常见的大变形破坏,也不全是纯脆性的破坏,因而破损深度不会太深。在围岩破损的预测过程中包含了隧洞掘进方法的影响和围岩应力调整的影响,因此所预测的破损深度基本趋于围岩所处应力环境下的最大破损程度,本文应用PFC2D预测的Ⅲ类围岩破损深度,对支护深度的确定具有较好的指导意义。
     本文主要工作及创新点:
     (1)完成10组深埋大理岩试验的单轴压缩室内试验,通过应力-应变曲线确定大理岩的启裂强度、损伤强度和峰值强度;
     (2)完成12组深埋大理岩的常规三轴压缩试验,确定大理岩的峰值强度、残余强度。并通过试验揭示出大理岩的随围压增高所展示出来的脆-延转换特征,在较高的围压水平下,大理岩展现出理想塑性的力学响应;
     (3)采用基于Hoek-Brown强度的本构模型对锦屏Ⅱ类围岩进行了损伤深度预测,该模型能够统一描述大理岩在不同围压水平下的脆-延-塑性转换特征:
     (4)采用PFC方法从细观层面对大理岩的脆-延转换特征进行了描述,研究了基于Bond Particle Model模型的细观参数取值规律;
     (5)在合理描述大理岩脆-延转换的基础上,发展了基于PFC数值方法的模拟手段对深埋大理岩隧洞的围岩开挖损伤区域进行了直接的描述;
     (6)根据研究得到的PFC模拟围岩开挖损伤区域的数值方法,对锦屏引水隧洞不同埋深洞段的围岩开挖损伤深度进行预测,并将预测结果与现场实测结果进行了对比;
     (7)结合目前深埋地下工程在室内实验、现场试验、理论研究、数值分析方法等方面的进展,展望了后续研究工作。
     (8)发展了运用PFC方法模拟室内直剪试验来反演模型细观参数的方法。
With the development of the deep underground engineering in21th century, almost all deeply buried tunnels, nuclear wastes as well as exploitation of deep geoheat involve the deep rock mass mechanics. Since1980s, many underground research laboratories have been established in America, Canada, Sweden, Japan, Switzerland, and achieved much significant results in monitoring techniques, theoretical research and correlatable numerical analyses on hard rocks under high crustal stress. Among them, it was very impressive for the study of lac du bonnet granite in Canada by URL.
     The methods of research on deeply buried marble can refer to the previous route of the granit byURL, which could include four aspects as follows:1) Strength feature. Besides traditional peak strength and residual strength, researchers have proposed a crack initiation strength and a damage strength in order to characterize the state of cracks. In general, the threshold value of majority strength of microscale intact rocks can be acquired by tests, while the threshold values for macroscale rock mass can only be obtained using numerical simulation. Recently, it is very efficient to solve the macroscale rock mass in terms of the PFC-based SRM.2) Excavation damage zone (EDZ). Due to the stress redistribution, disturbance of blasting and changes of temperature and humidity, a EDZ will form after excavation in the deeply buried tunnel face. It is very important to evaluate stability, percolation and diffusion mechanics and support measures of surrounding rocks by understanding the region, degree and evolution of EDZ.3) Reformed experimental technique. Although the true triaxial testing machine is now popular in many laboratories, the test of hard rocks has more requirements including simultaneously monitoring the acoustic emission in compression, changes of wave velocity, and permeability, or simulating at varied temperature and quickly recording seadata from tests.4) Large-scale in-situ test design and implement.The room experiments only solve the mechanic investigation of small-scale block rocks,instead for macroscale rock mass, it is necessary to design and carry out the in-situ test.
     In this work, room testing and description methods of mechanics to deeply buried marble are studied. The former covers the test of varied damage thresholds and post failure behaviors of marble samples. The results are compared to that in the case of granite, which enrich the research achievement of the hard rocks. The latter explores the description of PFC methods in mechanic behaviors of marble, namely describing the features of excavation damage, rock mass strength and post failures by means of PFC. This study broadens the application of PFC in strength and damage fields of hard rocks. Compared with traditional continuum methods, PFC has higher accuracy in prediction of damage thickness to hard rocks, showing a vast importance to support design.
     Due to a specific shift characteristics of brittleness-ductility plasticity with the confining pressure for marble in Jinping, it determines that large-scale deformation behaviors can not occur in the same way in common soft rocks, also it is not the pure brittle failures. Thus the thickness of breakage might not be deep. The breakage thickness of surrounding rock predicted by PFC includes the influence of excavation and stress redistribution and is close to the maximum extent. The resultant may provide a guiding significance for support design.
     Main work and points of innovation:
     (1)10groups of room single-axial compression tests of deeply buried marble are accomplished, and the crack initiation strength, damage strength and peak strength of marble are determined according to stress-strain curves.
     (2)12groups of normal tri-axial tests of deeply buried marble are completed, and the peak strength and residual strength are detected. These reveal a brittleness-ductility shift characteristic for marble with increasing confining pressure, and a idea plasticity response under higher confining pressures.
     (3) Cundall's BDP (Brittle-Ductile-Plastic model) can be used to describe the shift of brittleness-ductile-plastic under varied confining pressures, and the breakage depth of Jinpin III level marble mass is predicted.
     (4) Features of the shift between brittleness-ductile-plastic of Marble are described by PFC method, and the micro-parameters is studied based on the Bond Particle Mode.
     (5) On the base of reasonable description of the shift between brittleness and ductile for marble, a numerical simulation based on PFC is developed to directly analyze the excavation breakage zone of surrounding marble mass.
     (6) According to the obtained method of predicting breakage zone, seven groups of surrounding marble samples from water tunnel with various depth in Jinping are calculated. The results indicate that the calculated value is in agreement with the measured value.
     (7) A perspective to the future work is made through analyzing the current progress in room tests, field tests, theoretical investingation and numerical simulation.
引文
[1]Diego.Ma.Ivars.Bonded Particle Model For Jointed Rock Mass (Phd) [D]. STOCKHOLM:Royal Institute of Technology (KTH),2010.
    [2]P.K.Kaiser, M.Cai.Assessment of excavation damaged zone using a micromechanics model [J].Tunnelling and Underground Space Technology, 2005,20(2):301-310.
    [3]M.S.King, W.S.Pettitt.Acoustic Emission and Velocity Associated with the Formation of Sets of Parallel Fractures in Sandstones [J].International Journal of Rock Mechanics & Mining Sciences,2004,41(3):1-6.
    [4]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局GB50487-2008.水利水电工程地质勘察规范[S].北京:中国计划出版社,2009
    [5]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局GB50021-2001(2009版).岩土工程勘察规范[S].北京:中国建筑工业出版社,2009
    [6]Lockner.D.A., Byerlee.J.D., Kuksenko.V, et al.Observations of quasistatic fault growth from acoustic emissions, Fault Mechanics and Transport Properties of Rocks [M].London:Academic Press,1992.
    [7]李全伟.放射性废物处理与处置[R].成都,2010.
    [8]Hoek E, Brown Et.Underground excavations in rock [M].London, UK: Institute of Mining and Metallurgy,1982.
    [9]Brown Et, Hoek E.Practical estimates of rock mass strength [J].Int J Rock Mech Min Sci Geomech,1997,34(8):1165-1186.
    [10]Rice Jr, Rudnicki Jw.Conditions for the localization of deformation in pressure-sensitive dilatant materials [J].J Mech Phys Solids,1975,23(3): 371-394.
    [11]Fang Z.A local degradation approach to the numerical analysis of brittle fracture in heterogeneous rocks (Phd) [D].London:University of London,2001.
    [12]Kachanov Lm.Time of the rupture process under creepconditions[J].Izv Akad Nauk SSR Otd Tekh Nauk,1958,8(1):26-31.
    [13]朱珍德,易顺民.裂隙岩体损伤力学导论[M].北京:科学出版社,2005.
    [14]L.Jing.A review of techniques, advances and outstanding issues in numerical modelling for rock mechnicas and rock engineering [J].Int J Rock Mech Min Sci Geomech,2003,40(3):283-353.
    [15]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):24-31.
    [16]Costin L S.Time-dipendent Damage and creep of brittle rock. Damage Mechanics and Continuum Modeling [M].New York:ASCE,1985.
    [17]Krajcinovic D.Constitutive theories for solids with defective micro-structure. Damage Mechanics and Continuum Modeling [M].New York: ASCE,1985.
    [18]Sumaral D, Krajcinovic D.A mecsomechanics model for brittle deformation process:Part Ⅰ and Part Ⅱ [J].ASME J Appl Mech,1989,56(1): 51-62.
    [19]Basista M, Krajcinovic D.Micromechanically inspired phenomenolotical damage model [J].ASME J Appl Mech,1991,58(2):305-310.
    [20]Meredith P G, Atkinson B K.The theory of subcritical crack growth with application to minerals and rocks. Fracture Mechanics of Rock [M].London: Academic,1987.
    [21]Murakami S.Mechanical modeling fo material damage [J].ASME J Appl Mech,1987,55(2):280-286.
    [22]Murakami S.Anisotropic aspect of material damage and application to continnue damage mechanics, Continuum Damage Mechanics. Theory and application [M].New York:Springer,1987.
    [23]Peng L H, Shen W, YueYG, etc.Elastic damage and energy dissipation in anisotropic solid material [J].Fracture Mech,1987,33(2):247-255.
    [24]Yang G, Swoboda G.An energy based damage model of geomaterials I. formulation and numerical results [J].Int J Rock Mech Min Sci,1999,36(11): 1719-1734.
    [25]Yang G, Swoboda G.An energy based damage model of geomaterials II. Deduction of damage evolution laws [J].Int J Rock Mech Min Sci,1999,36(11): 1735-1755.
    [26]孙钧,凌建明.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,11(4):378-383.
    [27]Kachanov M.Effective elastic properties of cracked solids:critical review of some basic concepts [J].App Mech Rev,1992,45(3):304-335.
    [28]Bazant Z P.Mechanics of distributed cracking [J].Appl Mech Rev,1986, 39(6):675-705.
    [29]D Hoxhab, J F Shao, M Bart.Modelling of induced anisotropic damage in granites [J].Int J Rock Mech Min Sci,1999,36(9):1001-1012.
    [30]朱珍德.裂隙岩体非稳定渗流场与损伤场的研究(Phd)[D].上海:同济大学,1997.
    [31]Andrieux S.Un modele de materiiau microfissure-applications aux roches et aux betons (Phd) [D].Paris:ENPC,1983.
    [32]Andrieux S, Bamberger Y, Marigo J J.Un modele de materiau microfissure pour les roches et les betons [J]. J Mec Theor Appl,1986,5(3): 478-509.
    [33]Ju J W, Lee X.Micromechanical damage model for brittle solids-Ⅱ compressive loading [J].J Eng Mech,1991,117(7):1515-1536.
    [34]Chaboche J L.Damage induced anisotropy:on the difficulties associated with active/passive unilateral condition [J].Int J Damage Mech,1992,1(1): 148-171.
    [35]C.Derek.Martin.Seventeenth Canadian geotechnical colloquium:the effect loss and stress path on brittle rock strength [J].Canadian geotechnical Journal,1997,34(5):698-725.
    [36]Van Munster, Pestman.B.J.An acoustic emission study of damage development and stress-memory effects in sand-stone [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996, 33(6):585-593.
    [37]P.K.Kaiser, M.S.Diederichs, C.D.Martin, et al.Invited Keynote: Underground Works in Hard Rock Tunnelling and Mining [C]//GeoEng2000. Melbourne:2000.
    [38]R.H.C.Wong, K.T.Chau, C.A.Tang, P.Lin.Analysis of crack coalescence in rock-like materials containing three flaws:Part I:experimental approach [J].Int J Rock Mech & Min Sci,2001,38(7):909-924.
    [39]P.K.Kaiser, M.S.Dierichs, C.D.Martin.Underground Works in Hard Rock Tunnelling and Mining [C]//GeoEng 2000.Lancaster, Pennsylvania:Technomic Publishing,2000:841-926.
    [40]Mark.S.Diederichs.The 2003 Canadian Geotechnical ColloquiumMechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling [J].Canadian Geotechnical Journal,2007,44(9):1082-1116.
    [41]N.A.Chandler, J.S.O.Lau.Innovative laboratory testing [J].International Journal of Rock Mechanics and Mining Sciences,2004,41(9):1427-1445.
    [42]Veronique.Falmagne.Quantification of rock mass degradation using micro-seismic monitoring and application for mine design [PhD][D].Kingston, Ontario, Canada:Queen's university,2001.
    [43]廖雄华,周健,徐建平,等.粘性土室内平面应变试验的颗粒流模拟[J].水利学报,2002,(12):11-17.
    [44]朱焕春,李浩,O'Conner C.脆性岩体的高应力破坏与数值模拟[C]//第九届全国岩石力学与工程学术大会论文集.北京:科学出版社,2006:260-266.
    [45]王涛.隧洞围岩破坏的颗粒流模拟方法研究[C]//第九届全国岩石力学与工程学术大会论文集.北京:科学出版社,2006:464-471.
    [46]D.O.Potyondy, P.A.Cundall.A bonded-particle model for rock [J]. International Journal of Rock echanics & Mining Sciences,2004, (41):1329-1364.
    [47]Itasca Consulting Group, Inc.PFC2D Theory and Background [K].Minneapolis, Minnesota, USA:Itasca Consulting Group, Inc,2004.
    [48]曾远.土体破坏细观机理及颗粒流数值模拟(phd)[D].上海:同济大学, 2006.
    [49]O.Potyondy D.Simulating stress corrosion with a bonded-particle model for rock [J].International Journal of Rock Mechanics & Mining Sciences.2007, (44):677-691.
    [50]S.P.Hunt, A.G.eyers, V.Louchnikov.Modelling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method [J].COMPUTER AND GEOTECHNICS,2003, (30):611-621.
    [51]Hazzard JF, Young RP.Simulating acoustic emissions in bonded-particle models of rock [J].International Hournal of Rock Mechanics and Mining Sciences,2000, (37):867-872.
    [52]Hazzard JF, Maxwell SC, Young RP.Micromechanical modelling of acoustic emissions [C]//Eurorock 98, Proceedings SPE/ISRM Rock Mechanics in Petroleum Engineering.Trondheim:1998:519-526.
    [53]M.Cai, P.K.Kaiser, H.Morioka, et al.FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J].International Journal of Rock Mechanics & Mining Sciences,2007, (44):550-564.
    [54]T.S.Wanne, R.P.Young.Bonded-particle modeling of thermally fractured granite [J].International Journal of Rock Mechanics & Mining Sciences,2008, (45):789-799.
    [55]J.Z.Pei, M.F.Chang.Study on Permanent Deformation Characteristics of Asphalt Pavement Based on Discrete Element Method [C]//ICCTP 2009:Critical Issues in Transportation Systems Planning, Development, and Management.2009:2171-2178.
    [56]Lobo-Guerrero, Luis E Vallejo S.Discrete element method analysis of railtrack ballast degradation during cyclic loading [J].Granular Matter,2006, (8):195-204.
    [57]W.L.Lim, G.R.McDowell.Discrete element modelling of railway ballast [J].Granular Matter,2005, (7):19-29.
    [58]Chen Bin, Li Jianqiao, Li yinwu, et al.Application Research of Numerical Simulation of Pressure Characteristics of Lunar Soil [C]//Intermational Symposium on DEM.Beijing:2008:
    [59]Yoshiyuki Shimizu, Peter A.Cundall.Three-Dimensional DEM Simulations of Bulk Handing by Screw Conveyors [J]. Journal of Engineering Mechanics,2001, (9):864-872.
    [60]Cundall PA.Numerical experiments on rough joints in shear using a bonded particle model [C]//Aspects of tectonic faulting.Berlin:1999:1-9.
    [61]Kulatilake PHSW, Malama B, Wang J.Physical and particle flow modeling of jointed rock block behavior under uniaxial loading [J].International Journal of Rock Mechanics & Mining Sciences,2001, (38):641-657.
    [62]Jung-Wood Park, Jae-Joon Song.Numerical simulation of a direct shear test on a rock joint using a bonded-particle model [J].International Journal of Rock Mechanics & Mining Sciences,2009, (46):1315-1328.
    [63]J.Imber, G.W.Tuckwell, C.Childs, et al.Three-dimensional distinct element modelling of relay growth and breaching along normal faults [J].Journal of Structural Geology,2004, (26):1897-1911.
    [64]C.Wang, D.D.Tannant, P.A.Lilly.Numerical analysis of the stability of heavily jointed rock slopes using PFC2D [J].International Journal of Rock Mechanics & Mining Sciences,2003, (40):415-424.
    [65]Yoshiyuki Shimizu.Three-dimensional simulation using fixed coarse-grid thermal-fluid scheme and conduction heat transfer scheme in distinct element method [J].Powder Technology,2006, (165):140-152.
    [66]张刚.管涌现象细观机理的模型试验与颗粒流数值模拟研究[博士学位论文][D].上海:同济大学,2007.
    [67]陈长冰,梁醒培.筒仓卸料过程的离散元模拟分析[J].仓储物流,2008,16(1):11-13.
    [68]Hoda T, Towhata I.Flow deformation of ground due to liquefaction during earthquake [C]//Numerical Modeling in Micromechanics via Particle Methods.Konietzky H ed:2002:141-150.
    [69]Chao-Lung Tang, Jyr-Ching Hu, Ming-Lang Lin, et al.The Tsaoling landslide triggered by the Chi-Chi erathquake, Taiwan:Insights from a discrete element simulation [J].Engineering Geology.2009, (106):1-19.
    [70]贾敏才,王磊,周健.干砂强夯动力特性的细观颗粒流分析[J].岩土力学,2009,30(4):871-878.
    [71]Marc Ruest, Peter Cundall, Alan Guest, et al.Developments using the Particle Flow Code to Simulate Rock Fragmentation by Condensed Phase Explosives [R].Santiago Chile:Fragblast-8,2006.
    [72]Jerzy rojek.Discrete Element Modelling of Rock Cutting [J].Computer Methods in Materials Science,2007,7(2):224-230.
    [73]刘汉龙,杨贵.土石坝振动台模型试验颗粒流数值模拟分析[J].防灾减灾工程学报,2009,29(5):479-484.
    [74]Xiao-Ming SUN, Cheng CHENG, Jin-Li MIAO.Effect of Clay Mineral Content on Rockburst Based on Laboratory Test and Numerical Simulation [C]// RaSiM 7(2009):Controlling Seismic Hazard and Sustainable Development of Deep Mines.C.A. Tand(ed):Rinton Press,2009:699-704.
    [75]苏栋,李霞,李相崧.桩-土水平相互作用的颗粒流数值研究[J].深圳大学学报理工版,2006,23(1):42-47.
    [76]张思峰.预应力内锚固段作用机理及其耐久性研究(phd)[D].上海:同济大学,2007.
    [77]周健,彭述权,樊玲.刚性挡土墙主动土压力颗粒流模拟[J].岩土力学,2008,29(3):629-638.
    [78]郑刚,焦莹,柴浩,等.扩径桩抗压抗拔性能的颗粒流数值模拟[J].天津大学学报,2008,41(1):78-84.
    [79]刘文白,周健.上拔荷载作用下桩的颗粒流数值模拟[J].岩土工程学报,2004,26(4):516-521.
    [80]Toivo Wanne, Saanio, Riekkola Oy.Rock Strength and Deformation Dependence on Schistosity Simulation of Rock with PFC3D [R].Helsinki, Finland:POSIVA 2002-05,2002.
    [81]刘海涛,程晓辉.粗粒土尺寸效应的离散元分析[J].岩土力学,2009,30(增):287-292.
    [82]Hai-ying HUANG.Discrete element modeling of tool-rock interaction (Phd) [D].American:University of Minnesota,1999.
    [83]Bu-dong YANG, Yue JIAO, Shu-ting LEI.A study on the effects of microparameters on macroproperties for specimens created by bonded particles [J].International Journal for Computer-Aided Engineering and Software,2006, (23):607-631.
    [84]www.itasca.cn.URL隧洞网络内Mine-by隧洞顶板和底板位置出现强烈片帮化现象[DB/OL]. [http://www.itasca.cn/ruanjian.jsp?sclassid=139 & classid=118
    [85]Potyondy D, Autio J.Bonded-particle simulations of the in-situ failure test at Olkiluoto [C]//Rock mechanics in the national interest.Balkema, Netherlands:2001:1553-1560.
    [86]Potyondy D, Cundall P.The PFC model for rock:predicting rock-mass damage at the underground research laboratory [R].Ontario:Ontario Power Generation,2001.Report No.:06819-REP-01200-10061-R00.
    [87]Anderson OL, Grew PC.Stress corrosion theory of crack propagation with applications to geophysics [J].Rev Geophys Space Phys,1977,15(1):77-104.
    [88]Atkinson BK, Meredith RG.The theory of subcritical crack growth with applications to minerals and rocks [G]//Atkinson BK.Fracture mechanics of rock.London:Academic Press,1987.
    [89]Potyondy DO, Cundall PA.Modeling notch-formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles [J].Int J Rock Mech Min Sci Geomech,1998,35(4-5)
    [90]Lau JSO, Chandler NA.Innovative laboratory testing [J].Int J Rock Mech Min Sci Geomech,2004,41(8)
    [91]李天斌,石豫川,等.锦屏二级水电站岩爆形成机理、分类及防治措施研究[R].成都,2005.
    [92]潘益斌,褚卫江,吴疆等.雅砻江锦屏二级水电站引水隧洞衬砌形式及断面型式变更设计专题报告[R].杭州:中国水电顾问集团华东勘测设计研究院,2010.
    [93]王湘峰.锦屏二级水电站深埋特长引水隧洞岩爆模拟及预测研究[硕士 学位论文][D].成都:成都理工大学,2006.
    [94]杨安林,赵桂连.锦屏辅助洞工程岩爆特征与防治综述[J].人民长江,2009,40(16):47-48.
    [95]彩虹.TBM岩爆照片[DB/OL].[2009-10-7].http://www.yantubbs.com/ read.php?tid=70310
    [96]王建良,姚激,褚卫江,等.深埋长隧洞原位地应力场确定方法研究[J].云南农业大学学报,2010,25(5):690-696.
    [97]Itasca中国公司.沿线地应力和岩体力学特性阶段性成果报告[R].武汉,2009.
    [98]Damodara.Reddy.Chinnasane.Brittle rock for stability assessment underground excavation[Master][D].Sundbury,Ontario,Canada:Laurentian University,2004.
    [99]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11):2205-2213.
    [100]张春生,陈详荣,侯靖,等.锦屏二级水电站深埋大理岩力学特性研究[J].岩石力学与工程学报,2010,29(10):1 999-2009.
    [101]黄书岭,丁秀丽,张传庆.深部脆性岩石的力学行为与本构模型研究[C]//第四届深部岩体力学与工程灾害控制学术研讨会论文集.北京:中国矿业大学出版社,2009.
    [102]汪斌,朱杰兵,邬爱清,等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10):2138-2145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700