用户名: 密码: 验证码:
脑梗死大鼠神经血管单元的损伤及黄体酮的干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口老龄化的进展,缺血性脑血管病已成为严重危害人类健康的疾病之一,但在治疗上除超早期溶栓及卒中单元外,尚缺乏有效的手段。为实现脑梗死治疗上的突破,研究者对众多临床试验失败的原因进行分析,认为可能与脑梗死复杂的病理变化及治疗药物的作用靶点单一有关,并提出“神经血管单元”的概念。即脑梗死发生后胶质细胞功能的紊乱、微血管结构的破坏均会加重神经元的损伤,仅针对其中的某个环节进行治疗可能收效甚微;因此,寻找与研究新的、多靶点的治疗药物意义重大。在脑外伤及周围神经损伤上的研究发现,黄体酮具有抑制氧自由基、兴奋性氨基酸释放及促进轴突生长、髓鞘形成的作用;提示黄体酮能够通过多种途径发挥神经保护作用。脑梗死与脑外伤具有相似的病理变化,为实现脑梗死治疗上的突破,已有研究观察了黄体酮对脑梗死的治疗价值,研究发现其可以明显改善脑梗死大鼠的神经功能,但是机制不清。因过度活化的小胶质细胞与氧自由基、兴奋性氨基酸、炎症因子等的释放均有关系,且另有研究表明自体神经干细胞的动员亦有助于神经功能的恢复。为进一步研究黄体酮对脑梗死的治疗价值,本研究拟首先研究黄体酮对小胶质细胞活化及相关炎症反应的影响,然后进一步评价黄体酮对自体神经干细胞动员、血脑屏障结构、脑梗死体积及神经功能的影响;研究内容主要涉及到小胶质细胞、血脑屏障的紧密连接、神经元等。
     第一部分体外研究黄体酮对小胶质细胞活化及相关炎症反应的影响
     目的:体外研究黄体酮对小胶质细胞活化及与之相关炎症反应的抑制作用,以探讨黄体酮神经保护作用的可能机制。
     方法:采用改良的McCarthy混合胶质细胞培养法从新生Sprague-Dawley (SD)大鼠(出生24 h内)皮层组织内分离、培养出小胶质细胞。经纯度鉴定后,取培养第一代细胞,用脂多糖(LPS)诱导其活化,并用黄体酮进行干预。采集培养上清液,用ELISA技术检测其内TNF-α、IL-1β的含量;并用MTT法检测LPS刺激及黄体酮干预对小胶质细胞活力的影响。
     结果:经CD11b/c鉴定,该方法分离的小胶质细胞纯度≥95%。ELISA法检测培养上清液内TNF-α、IL-1β的结果表明,LPS刺激显著增加了小胶质细胞上清液内TNF-α、IL-1β的含量,经黄体酮干预后培养上清液内TNF-α、IL-1β的含量明显下降(均有P<0.05)。MTT分析结果显示,在与对照组比较的基础上,LPS刺激及黄体酮干预对小胶质细胞的活力影响不大(P>0.05)。
     结论:用LPS刺激小胶质细胞活化能够很好地模拟脑缺血缺氧后的炎症变化。而黄体酮能够有效抑制与LPS刺激有关的炎症反应,说明抑制与小胶质细胞活化相关的炎症反应可能是其发挥脑保护作用的机制之一。
     第二部分黄体酮对脑梗死大鼠小胶质细胞活化及血脑屏障结构的影响
     目的:体内研究黄体酮对小胶质细胞活化及相关炎症反应的影响,并探讨其对神经血管单元保护作用的可能机制。
     方法:成年雄性SD大鼠120只,体重为250-300g。按随机化原则将所用实验动物分对照组(Control),模型组(Ischemia),溶剂治疗组(Vehicle),黄体酮治疗组(PROG)。通过线栓法制作脑梗死(MCAO)动物模型。将黄体酮溶于25% 2-羟丙基-β-环糊精(HBC)内,分别于成模后1h、6h腹腔注射黄体酮,随后每天行皮下注射,以利于逐渐吸收,每次注射剂量为15mg/Kg体质量。分别于成模后24h、72h通过免疫组织化学、Western blot技术检测离子钙接头蛋白(Ionized Calcium-Binding Adapter Molecule 1, Ibal)的表达情况,以反映脑梗死后小胶质细胞的活化情况;并通过上述技术检测与之有关的炎症因子TNF-α、IL-1β、MMP-9及血脑屏障结构蛋白Claudin5的表达情况,最后通过干湿重法检测脑组织含水量。
     结果:免疫组化染色表明脑梗死大鼠皮层脑组织内均有Iba1、TNF-α、IL-1β、MMP-9与Claudin5的表达;Western blot定量检测结果表明,脑梗死发生后Ibal、TNF-α、IL-1β、MMP-9的表达水平明显升高(P<0.05),血脑屏障结构蛋白Claudin5的表达水平明显下降(P<0.05)。而黄体酮治疗24h或72h后,Ibal、TNF-α、IL-1β、MMP-9蛋白的表达水平均明显下降(P<0.01)。黄体酮治疗24h对皮层脑组织内Claudin5蛋白表达及脑组织含水量的影响较小(P>0.05),在72h时可以显著减轻Claudin5蛋白的丢失程度并抑制脑水肿的严重程度(P<0.01)。
     结论:脑梗死发生后,通过检测Ibal的表达可以较好地反映小胶质细胞的活化情况,与小胶质细胞活化相关的炎症反应可能与神经血管单元完整性的破坏有关;经黄体酮治疗后小胶质细胞的活化程度及神经血管单元核心结构(血脑屏障)的破坏程度均明显减轻。说明抑制小胶质细胞活化及与之相关的炎症反应可能是黄体酮神经保护作用的机制之一。
     第三部分黄体酮对脑梗死大鼠脑部BDNF表达及自体神经干细胞增殖的影响
     目的:研究黄体酮的神经营养作用,进一步探讨黄体酮对神经血管单元保护作用的可能机制。
     方法:成年雄性SD大鼠84只,体重为250-300g。实验动物分组及给药方法同第二部分。线栓法制作脑梗死动物模型,分别于脑梗死后24h、72h通过免疫组化染色、实时荧光定量PCR、Western blot技术检测脑部脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)的表达情况;并通过BrdU/Nestin免疫荧光双染技术检测脑梗死7d时室管膜下区神经干细胞的增殖情况。
     结果:脑梗死发生后,脑部BDNF的表达在基因及蛋白水平均轻度增高;经黄体酮治疗24h、72h后,其表达水平明显增高,与模型组及溶剂治疗组比较,差异有显著性(P<0.01)。治疗7d后,黄体酮亦促进了室管膜下区神经干细胞的增殖,与模型组以及溶剂治疗组比较,差异亦有统计学意义(P<0.01)
     结论:黄体酮可以在基因及蛋白水平促进脑梗死大鼠脑部BDNF的表达及自体神经干细胞的动员。黄体酮的神经营养作用可能亦为其神经保护作用的机制之一。
     第四部分黄体酮对脑梗死大鼠脑梗死体积及神经功能的影响
     目的:研究黄体酮治疗对脑梗死体积及行为学的影响,评价其对脑梗死大鼠的治疗价值。
     方法:成年雄性SD大鼠24只,体重为250-300g。实验动物分组及给药方法同第二部分。分别于脑梗死后1d、2d、3d用Zea-Longer评分评价大鼠神经功能的缺损程度,并通过TTC染色于脑梗死后3d时检测脑梗死体积。
     结果:Zea-Longer评分显示,造模前所有大鼠均没有神经功能缺损症状,评分为0。成模后,除假手术组外,其余大鼠均有不同程度的神经功能缺损;经黄体酮治疗后,其神经功能明显改善,与模型组及溶剂治疗组比较差异均有显著性(P<0.01)。TTC染色表明,脑梗死体积在模型组及溶剂治疗组均比较大,且差异无统计学意义;经黄体酮治疗后脑梗死体积明显缩小,较模型组及溶剂治疗组差异均有显著性(P<0.01)
     结论:黄体酮治疗可以显著减小脑梗死体积,这可能与其促进脑梗死大鼠神经功能的恢复有关。
With the progress of population aging, ischemic cerebrovascular disease has become one of the serious diseases, which is harmful to human health, but there is still lack of effective treatment except for ultra-early thrombolytic treatment and stroke unit. To achieve a breakthrough in the treatment of cerebral infarction, some researchers analyze the causes of why so many drugs failed in their clinical trials for the treatment of cerebral infarction. They concluded that which may relate with the complex pathological changes of cerebral infarction and the single target of these drugs. After analysis, scientists put forward the concept of "neurovascular unit". That means that dysfunction of glial cells and the damage of microvascular structural are more serious than neuronal damage, and drugs only with a single target may achieve little, therefore, it is significant to find and research new, multi-target drugs for the treatment of stroke. Studies on traumatic brain injury and peripheral nerve injury revealed that progesterone (PROG) can sinificantly inhibit the release of oxygen free radicals and excitatory amino acid. In addition, PROG also promoted the growth of axon and myelination, which suggests PROG may exext neuroprotective effects through multiple targets. In order to achieve a breakthrough in the treatment of cerebral infarction, some scientists have observed the therapeutic value of PROG on cerebral infarction for there is similar pathological changes between cerebral infarction and traumatic brain injury. The results revealed that PROG can significantly improve the neurological functions of rats with cerebral infarction, but the mechanism is still unclear. Since excessive activation of microglial cells are associated with the release of oxygen free radicals, excitatory amino acids and inflammatory factors, and other studies also show that the autologous mobilization of neural stem cells help function recovery. To further study the therapeutic value of PROG on cerebral infarction, the influence of PROG on microglial activation and the associated inflammatory response was researched firstly, and then the influence of PROG on the mobilization of neural stem cell, the integrity of blood-brain barrier, infarct size and neurological functions was also further evaluated. The content of this research is mainly associated with microglia, tight junction of blood-brain barrier (BBB), neurons and so on.
     PartⅠResearch on the influence of PROG on the activation of microglia and the related inflammatory response in vitro
     Objective:To further exploit the neuroprotective mechanisms of PROG, this study was designed to research the inhibitory effects of PROG on the activation of microglia and the related inflammatory response in vitro.
     Methods:Microglia was dissociated, and purified from the cortex of neonatal Sprague-Dawley rats within 24h after born with modified McCarthy methods. After the assessment of the purity of microglia, lipopolysaccharide (LPS) was used to induce the activation of primary cultured microglia. The aliquots of incubation medium were taken and analyzed for the concentration of TNF-α, IL-1βafter the intervention of PROG with ELISA technique. In addition, MTT method was used to detect the viability of microglia after treatment with LPS and PROG.
     Results:After identification with the stain of CD11b/c, the purity of microglia is more than 95%. The results of ELISA showed that LPS significantly increased the release of TNF-αand IL-1β. The concentration of TNF-α, IL-1βwas significantly reduced after the intervention of PROG (P<0.05). MTT analysis showed that when based on the control group, PROG and LPS has little effects on cell viability (P>0.05).
     Conclusions:LPS induced the activation of microglia and increased the release of inflammatory factors, which analogue the inflammatory response associated with the activation of microglia after ischemic and anoxyaemia. PROG significantly inhibited the inflammatory response associated with the activation of microglia, which may be one of the neuroprotective mechanisms of PROG.
     PartⅡThe influence of PROG on the activation of microglia and the structure of BBB after stroke in rats
     Objective:To further exploit the neuroprotective effects of PROG on neurovascular unit, this study was designed to research the influence of PROG on the activation of microglia and the structure of BBB after stroke in vivo.
     Methods:One hundred and twenty adult male Sprague-Dawley rats weighing 250-300g were used for the experiments and were randomly divided into four groups: sham operated (control) group, ischemic group, vehicle-treated group and PROG-treated group. Rats underwent permanent middle cerebral artery occlusion (pMCAO) and received PROG (15 mg/kg) or vehicle by intraperitoneal injection 1 h,6h post-MCAO. Additional injections of 15 mg/kg were administered subcutaneously once a day after pMCAO. The expression of Ionized Calcium-Binding Adapter Molecule 1 (Ibal) was detected to reveal the activation of microglia with immunohistochemistry and western blot technique at 24h and 72h after cerebral infarction. In addition, TNF-α, IL-1β,MMP-9 and Claudin5 was also measured by immunohistochemistry and western blot technique at 24h and 72h after cerebral infarction. Brain water content was determined by the dry-wet weight method at 24h and 72h after cerebral infarction to explore the influence of PROG on inflammatory response and the structure of BBB.
     Results:Histochemistry staining revealed that there is the expression of Ibal, TNF-α, IL-1β, MMP-9 and Claudin5 in the brain after stroke. Western blot revealed that the expression of Iba1、TNF-α、IL-1β、MMP-9 is significantly increased after stroke (P<0.05). But the expression of Claudin5 was significantly reduced. After treatment of PROG, the expression of Ibal, TNF-α, IL-1β, MMP-9 is significantly reduced after stroke (P<0.05). The influence of PROG on brain water content and the integrity of BBB is not very significant at 24h after stroke (P>0.05), but PROG significantly increased the expression of Claudin5 and reduced brain water content at 72h after stroke (P<0.01).
     Conclusions:It is better to detect the activation of microglia by detecting the expression of Ibal after stroke. Inflammatory response associated with the activation of microglia may play important roles in the destruction of BBB. After treatment with PROG, the activation of microglia and the destruction of the core structure of neurovascular unit (BBB) was significantly inhibited, indicating that PROG may exert neuroprotective effects by inhibiting the activation of microglia and the associated inflammatory response.
     PartⅢInjection of PROG following stroke induces BDNF expression and neurogenesis in rats
     Objective:This study was designed to research the neurotrophic effects of PROG in vivo to further exploit the neuroprotective effects of PROG on neurovascular unit.
     Methods:Eighty-four adult male Sprague-Dawley rats weighing 250-300g were used in this section. The grouping and medication was similar with sectionⅡ. The expression of BDNF was measured by immunohistochemistry, real-time quantitative PCR and western blot technique at 24h and 72h after cerebral infarction, respectively. The proliferation of neural stem cells in subependymal zone (SVZ) was detected through BrdU/Nestin double immunofluorescence staining at 7d after stroke.
     Results:Statistical analysis showed that PROG administration significantly increased the expression of BDNF in gene level and protein level after permanent middle cerebral artery occlusion model (pMCAO) in the PROG-treated rats when compared with ischemic and vehicle-treated rats at 24h and 72h (P<0.05). In addition, PROG also significantly increased the proliferation of neural stem cells in SVZ (P<0.05).
     Conclusions:Treatment with PROG significantly increased the expression of BDNF in gene and protein levels. In addition, PROG also increased the mobilization of neural stem cells, suggesting that PROG may also exert neurotrophic effects after stroke.
     Part IV The efficacy of PROG on infarct volume and functional outcome after cerebral ischemia in rats
     Objective:The influence of PROG on infarct volume and functional outcome was studied to evaluate the therapeutic value of PROG on cerebral infarction.
     Methods:Twenty-four adult male Sprague-Dawley rats weighing 250-300g were used in this section. The grouping and medication was similar with sectionⅡ. Zea Longa test was used to evaluate their functional outcome at 1d,2d,3d after stroke. TTC staining was used to detect the infarct volume at 3d after stroke.
     Results:The results of Zea Longa test showed that there were no functional deficits in all animals prior to ischemia. There was no significant changes in motor function in sham-operated animals across the 3 day assessment period confirming that the surgical procedure did not affect motor outcome (P>0.05). Both PROG and vehicle-treated rats experienced significant decline in scores following occlusion. However, PROG-treated rats demonstrated a gradual improvement in scores compared with ischemic and vehicle-treated rats (P<0.05). TTC staining revealed that PROG administration significantly reduced the total infarct volume after pMCAO in the PROG-treated rats compared with ischemic and vehicle-treated rats (P<0.05).
     Conclusions:PROG significant reduced infarct volume after pMCAO, which may relate with the improvement of functional recovery after stroke in rats.
引文
[1]Schwartz Michal. Macrophages and Microglia in Central Nervous System Injury:Are They Helpful or Harmful [J]? Journal of Cerebral Blood Flow & Metabolism,2003,23(4): 385~394
    [2]Emsley, Hedley CA. Tyrrell, et al. Inflammation and Infection in Clinical st roke [J]. Journal of Cerebral Blood Flow & Metabolism,2002,22(12):1399~1419
    [3]Vagnerova K, Koerner IP, Hum PD. Gender and the injured brain [J]. Anesth Analg,2008, 107(1):201~214
    [4]Ishrat T, Sayeed I, Atif F, et al. Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats [J]. Brain Res, 2009,27(1257):94~101
    [5]Schumacher M, Guennoun R, Stein DG, et al. Progesterone:Therapeutic opportunities for neuroprotection and myelin repair [J]. Pharmacology & Therapeutics,2007,116(1):77~ 106
    [6]McCarthy KD, Devellis J. Preparation of separate ast roglial and oligodendroglial cell cultures from rat cerebral tissue [J]. J Cell Biol,1980,85(3):890~902
    [7]Chan WY, Kohsaka S, Rezaie P. The origin and cell lineage of microglia:new concepts [J]. Brain Res Rev,2007,53(2):344~354
    [8]Streit WJ. Microglia and macrophages in the developing CNS [J]. Neurotoxicology,2001, 22(5):619~624
    [9]Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain [J]. J Comp Neurol,2003,458(2):144~157
    [10]Matthias Schilling, Jan-Kolja Strecker, E Bernd Ringelstein, et al. The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice [J]. Brain Research,2009,1289:79~84
    [11]Soulet D, Rivest S. Bone-marrow-derived microglia:myth or reality [J]? Curr Opin Pharmacol,2008,8(4):508~518
    [12]Yoshihisa Kitamura, Daijiro Yanagisawa, Kazuyuki Takata, et al. Neuroprotective function in brain microglia [J]. Current Anaesthesia & Critical Care,2009,20:142~147
    [13]Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis:the dual role of microglia [J]. Neuroscience,2009,158(3):1021~1029
    [14]Liu B, Jiang JW, Wilson BC, et al. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide [J]. J Pharmacol Exp Ther,2000,295(1),125~132
    [15]Kaminska B, Gozdz A, Zawadzka M, et al. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target [J]. Anat Rec (Hoboken).2009,292(12): 1902~1913
    [16]Wilms H, Rosenstiel P, Romero-Ramos M, et al. Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils [J]. Int J Immunopathol Pharmacol,2009,22(4):897~909
    [17]Svensson C, Fernaeus SZ, Part K, et al. LPS-induced iNOS expression in Bv-2 cells is suppressed by an oxidative mechanism acting on the JNK pathway-a potential role for neuroprotection [J]. Brain Res,2010,1322:1~7
    [18]Chao CC, Hu S. Tumour necrosis factor-a potentiates glutamate neurotoxicity in human fetal brain cell cultures [J]. Dev Neurosci,1994,16(3-4):172~179
    [19]Kriz J. Inflammation in ischemic brain injury:timing is important [J]. Crit Rev Neurobiol, 2006,18(1-2):145~157
    [20]Kumari R, Willing LB, Patel SD, et al. The PPAR-gamma agonist, darglitazone, restores acute inflammatory responses to cerebral hypoxia-ischemia in the diabetic ob/ob mouse [J]. J Cereb Blood Flow & Metab,2010,30(2):352~360
    [21]Deng H, Han HS, Cheng D, et al. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation [J]. Stroke,2003,34(10):2495~2501
    [22]Czech B, Pfeilschifter W, Mazaheri-Omrani N, et al. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia [J]. Biochem Biophys Res Commun,2009,389(2): 251~256
    [23]Gibson CL, Constantin D, Prior MJ, et al. Progesterone suppresses the inflammatory response and nitric oxide synthase-2 expression following cerebral ischemia [J]. Exp Neurol,2005,193(2):522~530
    [24]Micevych P, Sinchak K. Estradiol regulation of progesterone synthesis in the brain [J]. Mol Cell Endocrinol,2008,290(1-2):44~50
    [25]Lacroix-Fralish ML, Tawfik VL, Nutile-McMenemy N. Differential regulation of neuregulin 1 expression by progesterone in astrocytes and neurons [J]. Neuron Glia Biol, 2006,2(4):227~234
    [26]Rew PD, Chavis JA, Bhatt R. Sexsteroid regulation of microglial cell activation:relevance to multiplesclerosis [J]. Ann N Y Acad Sci,2003,1007:329~334
    [27]Willis CL, Davis TP. Chronic inflammatory pain and the neurovascular unit:a central role for glia in maintaining BBB integrity [J]? Curr Pharm Des,2008,14(16):1625~1643
    [28]Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke [J]. J Neuropathol Exp Neurol,2003,62(2),127~136
    [29]Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke:lessons from animal models [J]. Metab Brain Dis,2004,19(3-4),151~167
    [30]Tauheed Ishrat, Iqbal Sayeed, Fahim Atif, et al. Stein. Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats [J]. Brain Research,2009,1257:94~101
    [31]Takaba H, Fukuda K, Yao H. Substrain differences, gender, and age of spontaneously hypertensive rats critically determine infarct size produced by distal middle cerebral artery occlusion [J]. Cell Mol Neurobiol,2004,24(5):589~598
    [32]Roof RL, Duvdevani R, Stein DG. Gender influences outcome of brain injury: progesterone plays a protective role [J]. Brain Res,1993,607:333~336
    [33]Djebaili M, Guo Q, Pettus EH, et al. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats [J]. J Neurotrauma,2005,22(1):106~118
    [34]He J, Evans CO, Hoffman SW, et al. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury [J]. Exp Neurol,2004,189(2):404~ 412
    [35]Pettus EH, Wright DW, Stein DG, et al. Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury [J]. Brain Res,2005,1049:112~119
    [36]Kumon Y, Kim SC, Tompkins P, et al. Neuroprotective effect of postischemic administration of progesterone in spontaneously hypertensive rats with focal cerebral ischemia [J]. J Neurosurg,2000,92(5):848~852
    [37]Sayeed I, Wali B, Stein DG. Progesterone inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion [J]. Restor Neurol Neurosci,2007,25(2): 151~159
    [38]Daisuke Ito, MD; Kortaro Tanaka, MD; Shigeaki Suzuki, MD; et al. Enhanced expression of Ibal, ionized Calcium-Binding Adapter Molecule 1, after transient focal cerebral ischemia in rat brain [J]. Stroke,2001,32(5):1208~1215
    [39]Wright DW, Bauer ME, Hoffman SW, et al. Serum progesterone levels correlate with decreased cerebral edema after traumatic brain injury in male rats [J]. J Neurotrauma,2001, 18(9):901~909
    [40]Guo Q, Sayeed I, Baronne LM, et al. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats [J]. Exp Neurol,2006, 198(2):469~478
    [41]Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier [J]. Prog Drug Res,2003,61:39~78
    [42]Kanda T. Peripheral neuropathy and blood-nerve barrier [J]. Rinsho Shinkeigaku,2009, 49(11):959~962
    [43]Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier [J]. Neurobiol Dis,2010,37(1):13~25
    [44]Meistrell ME 3rd, Botchkina GI, Wang H, et al. Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia [J]. Shock,1997,8(5):341~348
    [45]Dziewulska D, Mossakowski MJ. Cellular expression of tumor necrosis factor-a and its receptors in human ischemic stroke [J]. Clin Neuropathol,2003,22:35~40
    [46]Nawashiro H, Martin D, Hallenbeck JM. Neuroprotective effects of TNF binding protein in focal cerebral ischemia [J]. Brain Res,1997,778:265~271
    [47]Botchkina GI, Meistrell ME 3rd, Botchkina IL, et al. Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia [J]. Mol Med.1997, 3(11):765~781
    [48]Abdallah Y, Gligorievski D, Kasseckert SA, et al. The role of poly (ADP-ribose) polymerase (PARP) in the autonomous proliferative response of endothelial cells to hypoxia [J]. Cardiovasc Res,2007,73(3):568~574
    [49]Williams AJ, Dave JR, Tortella FC. Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury:relation to nuclear factor kappaB (NF-kappaB), inflammatory gene expression, and leukocyte infiltration [J]. Neurochem Int,2006,49(2): 106~112
    [50]Shen J, Zhang H, Lin H, et al. Brazilein protects the brain against focal cerebral ischemia reperfusion injury correlating to inflammatory response suppression [J]. Eur J Pharmacol, 2007,558(1-3):88~95
    [51]Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases:a novel caspase-1 independent pathway of IL-1 beta processing [J]. J Immunol,1998,161(7):3340~3346
    [52]de Vries HE, Blom-Roosemalen MC, van OM, et al. The influence of cytokines on the integrity of the blood brain barrier in vitro [J]. J Neuroimmunol,1996,64(1):37~43
    [53]Overall CM, McQuibban GA, Clark-Lewis I. Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning:a new tool for degradomics [J]. Biol Chem,2002, 383(7-8):1059~1066
    [54]Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia [J]. Glia,2005,50(4):329~339
    [55]Svedin P, Hagberg H, Savman K, et al. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia [J]. J Neurosci,2007,27(7):1511~ 1518
    [56]Gottschall PE, Yu X. Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes [J]. J Neurochem,1995,64(4):1513~1520
    [57]Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation [J]. Semin Cell Dev Biol,2008,19(1):34~41
    [58]Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury [J]. Prog Brain Res,2009,175:219~237
    [59]Claire L, Gibson, Laura J, et al. Progesterone for the treatment of experimental brain injury; a systematic review [J]. Brain,2008,131(Pt2):318~328
    [60]Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, et al. Progesterone up-regulatesneuronal brain-derived neurotrophic factor expression in the injured spinal cord [J]. Neuroscience,2004,125(3):605~614
    [61]Cai W, Zhu Y, Furuya K, et al. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage [J]. Neuropharmacology, 2008,55(2):127~138
    [62]Pencea V, Bingaman KD, Wiegand SJ, et al. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus [J]. J Neurosci,2001,21(17):6706~6717.
    [63]Zaal Kokaia, Olle Lindvall. Neurogenesis after ischaemic brain insults [J]. Current Opinion in Neurobiology,2003,13(1):127~132
    [64]Shi Q, Zhang P, Zhang J, et al. Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neurosci Lett,2009,465(3):220~225
    [65]Ivanova T, Beyer C. Pre-and postnatal expression of brain-derived neurotrophic factor mRNA/protein and tyrosine protein kinase receptor B mRNA in the mouse hippocampus [J]. Neurosci Lett,2001,307(1):21~24
    [66]Schumacher M, Sitruk-Ware R, De Nicola AF. Progesterone and progestins: neuroprotection and myelin repair [J]. Curr Opin Pharmacol,2008,8(6):740~746
    [67]Kaur P, Jodhka PK, Underwood WA, et al. Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase-and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants [J]. J Neurosci Res; 2007,85(11):2441~2449
    [68]Yanamoto H, Nagata I, Sakata M, et al. Infarct tolerance induced by intra-cerebral infusion of recombinant brain-derived neurotrophic factor. Brain Research,2000,859(2):240~248
    [69]Ploughman M, Windle V, MacLellan CL, et al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats [J]. Stroke,2009, 40(4):1490~1495
    [70]Tanaka Y, Tozuka Y, Takata T, et al. Excitatory GABAergic activation of cortical dividing glial cells [J]. Cereb Cortex,2009,19(9):2181~2195
    [71]Zhang QG, Han D, Hu SQ, et al. Positive modulation of AMPA receptors prevents downregulation of GluR2 expression and activates the Lyn-ERKl/2-CREB signaling in rat brain ischemia [J]. Hippocampus,2010,20(1):65~77
    [72]Nishigori H, Mazzuca DM, Nygard KL, et al. BDNF and TrkB in the preterm and near-term ovine fetal brain and the effect of intermittent umbilical cord occlusion [J]. Reprod Sci,2008,15(9):895~905
    [73]Hunsberger J, Austin DR, Henter ID, et al. The neurotrophic and neuroprotective effects of psychotropic agents. Dialogues Clin Neurosci,2009,11(3):333~348
    [74]Lee E, Son H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep, 2009,42(5):239~244
    [75]Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif,2008, Suppl 1: 94~114
    [76]Begliuomini S, Casarosa E, Pluchino N, et al. Influence of endogenous and exogenous sex hormones on plasma brain-derived neurotrophic factor [J]. Hum Reprod,2007,22(4): 995~1002
    [77]Coughlan T, Gibson C, Murphy S. Progesterone, BDNF and neuroprotection in the injured CNS. Int J Neurosci,2009,119(10):1718~1740
    [78]Guerra-Araiza C, Amorim MA, Pinto-Almazan R, et al. Regulation of the phosphoinositide-3 kinase and mitogen-activated protein kinase signaling pathways by progesterone and its reduced metabolites in the rat brain [J]. J Neurosci Res,2009,87(2): 470~481
    [79]Groyer G, Eychenne B, Girard C, et al. Expression and functional state of the corticosteroid receptors and 11 beta-hydroxysteroid dehydrogenase type 2 in Schwann cells [J]. Endocrinology,2006,147(9):4339~4350
    [80]Magnaghi V, Cavarretta I, Galbiati M, et al. Neuroactive steroids and peripheral myelin proteins [J]. Brain Res Rev,2001; 37(1-3):360~371
    [81]Ghoumari AM, Ibanez C, el-Etr M, et al. Progesterone and its metabolites increase myelin basic proteinexpression in organotypic slice cultures of rat cerebellum [J]. J Neurochem, 2003,86(4):848~859
    [82]Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures [J]. Neuroscience,2005,135(1):47~58
    [83]Labombarda F, Gonzalez S, Deniselle MC, et al. Progesterone increases the expression of myelin basic protein and the number of cells showing NG(2) immunostaining in the lesioned spinal cord [J]. J Neurotrauma,2006,23:181~192
    [84]Ryu HH, Lim JH, Byeon YE, et al. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J Vet Sci,2009,10(4):273~284
    [85]Belayev L, Khoutorova L, Zhao KL, et al. A novel neurotrophic therapeutic strategy for experimental stroke. Brain Res,2009, (14):117~123
    [86]Qian W, Yao WL, Zhu C, et al. Transplantation of immortalized neural progenitor cells to treat focal cerebral ischemia:experiment with rats. Zhonghua Yi Xue Za Zhi,2008,88(13): 867~870
    [87]Monnet FP, Maurice T. The sigmal protein as a target for the nongenomic effects of neuro (active) steroids:molecular, physiological, and behavioral aspects [J]. J Pharmacol Sci, 2006,100(2):93~118
    [88]Morrow AL, VanDoren MJ, Penland SN, et al. The role of GABAergic neuroactive steroids in ethanol action, tolerance and dependence [J]. Brain Res Rev,2001,37(1-3): 98~109
    [89]Rupprecht R, Holsboer F. Neuroactive steroids:mechanisms of action and neuropsychopharmacological perspectives [J]. Trends Neurosci,1999,22(9):410~416
    [90]Schumacher M, Guennoun R, Mercier G, et al. Progesterone synthesis and myelin formation in peripheral nerves [J]. Brain Res Rev,2001,37(1-3):343~359
    [91]Wright DW, Ritchie JC, Mullins RE, et al. Steady-state serum concentrations of progesterone following continuous intravenous infusion in patients with acute moderate to severe traumatic brain injury [J]. J Clin Pharmacol,2005,45(6):640~648
    [92]Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT:A Randomized Clinical Trial of Progesterone for Acute Traumatic Brain Injury [J]. Ann Emerg Med,2007,49(4):391~ 402
    [93]el-Etr M, Vukusic S, Gignoux L, et al. Steroid hormones in multiple sclerosis [J]. J Neurol Sci,2005,233(1-2):49~54
    [94]Zea Longa Z, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke [J].1989,20(l):84~91
    [95]Roof RL, Duvdevani R, Braswell L, et al. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats [J]. Exp Neurol,1994,129(1):64~69
    [96]Goss CW, Hoffman SW, Stein DG. Behavioral effects and anatomic correlates after brain injury:a progesterone dose-response study [J]. Pharmacol Biochem Behav,2003,76(2): 231~242
    [97]Nagai M, Re DB, Nagata T. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons [J]. Nat Neurosci,2007,10(5):615~622
    [98]Giaume C, Kirchhoff F, Matute C. Glia:the fulcrum of brain diseases [J]. Cell Death and Differentiation,2007,14(7):1324~1335
    [99]Emiri Tejima, Bing-Qiao Zhao, Kiyoshi Tsuji. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage [J]. Journal of Cerebral Blood Flow & Metabolism,2007,27(3):460~468
    [100]Nicholas J, Maragakis, Jeffrey D Rothstein. Mechanisms of Disease:astrocytes in neurodegenerative disease [J]. Nature Clinical Practice Neurology,2006,2(12):679~689
    [101]Willis CL, Davis TP. Chronic inflammatory pain and the neurovascular unit:a central role for glia in maintaining BBB integrity [J]? Curr Pharm Des,2008,14(16):1625~1643
    [102]de Vries HE, Blom-Roosemalen MC, van OM, et al. The influence of cytokines on the integrity of the bloodbrain barrier in vitro [J]. J Neuroimmunol,2007,64(1-3):37~43
    [103]Gearing AJ, Beckett P, Christodoulou M, et al. Processing of tumour necrosis factor-alpha precursor by metalloproteinases [J]. Nature,1994,370(6490):555~557
    [104]William Dauer. Neurotrophic Factors and Parkinson's Disease:The Emergence of a New Player [J]? Science Stke,2007,411:60~63
    [105]Zhang CW, Lu Q, You SW, et al. CNTF and BDNF Have Similar Effects on Retinal Ganglion Cell Survival but Differential Effects on Nitric Oxide Synthase Expression Soon after Optic Nerve Injury [J]. Investigative Ophthalmology and Visual Science,2005,46(4): 1497~1503
    [106]Nao R, Fan DP, Klaus M, et al. BDNF and NT-4/5 Prevent Atrophy of Rat Rubrospinal Neurons after Cervical Axotomy, Stimulate GAP-43 and the Tubulin mRNA Expression, and Promote Axonal Regeneration [J]. J. neuroscience,1997,17(24):9583~9595
    [107]Brandolic Sanic A, De Bernardi MA. BDNF and bFGF down regulate NMDA receptor function in cerebellar granule cells [J]. J Neurosci,1998,18(1):7153~7161
    [108]Shun S, Yutaka T, Akinori A. Brain derived neurotrophic factor pretreatment exerts a partially protective effect against glutamate-induced neurotrophicity in cultured rat cortical neurons [J]. Neuroscience Lett,1993,164(3):55~58
    [109]Schabitz WR, Sommer C, Zoder W, et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal ischemia [J]. Stroke,2000,31 (9):2212~2217
    [110]Betz AL, Coester HC. Effect of steroids on edema and sodium uptake of the brain during focal ischemia in rats [J]. Stroke,1990,21(8):1199~1204
    [111]Gulinello M, Orman R, Smith SS. Sex differences in anxiety, sensorimotor gating and expression of the alpha4 subunit of the GABAA receptor in the amygdala after progesterone with drawal [J]. Eur J Neurosci,2003,17:641~64
    [112]Herson PS, Koerner IP, Hum PD. Sex, sex steroids, and brain injury. Semin Reprod Med, 2009,27(3):229~239
    [113]Iguchi M, Takamura C, Umekawa T, et al. Inhibitory effects of female sex hormones on urinary stone formation in rats [J]. Kidney Int,1999,56(2):479~485
    [114]Orendorz-Fraczkowska K, Pospiech L, Gawron W, et al. Vertigo in women in menopausal period [J]. Otolaryngol Pol,2004,58(2):359~364
    [115]Schumacher M, Guennoun R, Robert F, et al. Local synthesis and dual actions of progesterone in the nervous system:neuroprotection and myelination [J]. Growth Horm IGF Res,2004,14 (Suppl A):S18~S33
    [116]Gutai J P, Meyer WJ, Kowarski AA, et al. Twenty-four hour integrated concent rations of progesterone,17-hydroxyprogesterone and cortisol in normal male subjects [J]. Clin Endocrinol Metab,1977,44 (1):116~120
    [117]Baulieu EE, Robel P, Schumacher M. Development and regeneration of the nervous system: a role for neurosteroids [J]. Dev Neurosci,1996,18 (1-2):6~21
    [118]Peterson RS, Saldanha CJ, Schlinger BA. Rapid upregulation of aromatase mRNA and protein following neural injury in the zebra finch (Taeniopygia guttata) [J]. J Neuroendocrinol,2001,13(4):317~323
    [119]Garcia-Segura LM, Wozniak A, Azcoitia I, et al. Aromatase expression byastrocytes after brain injury:implications for local estrogen formation in brain repair [J]. Neurosci,1999, 89(2):567~578
    [120]Jung-Testas I, Do Thi A, Koenig H, et al. Progesterone as a neurosteroid:synthesis and actions in rat glial cells [J]. J Steroid Biochem Mol Biol,1999,69(1-6):97~107
    [121]Lephart ED, Lund TD, Horvath TL. Brain androgen and progesterone metabolizing enzymes:biosynthesis, distribution and function [J]. Brain Res Brain Res Rev,2001, 37(1-3):25-37
    [122]Melcangi RC, Magnaghi V, Galbiati M, et al. Formation and effects of neuroactivesteroids in the central and peripheral nervous system [J]. Int Rev Neurobiol,2001,46:145~176
    [123]Melcangi RC, Magnaghi V, Martini L. Steroid metabolism and effects in central and peripheral glial cells [J]. J Neurobiol,1999,40(4):471~483
    [124]Melcangi RC, Magnaghi V, Cavarretta I, et al. Ageinduced decrease of glycoprotein Poand myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives [J]. Neurosci,1998,85(2):569~578
    [125]Zwain IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain [J]. Endocrino,1999,140(8):3843~3852
    [126]Ohno S, Matsumoto N, Watanabe M, et al. Flavonoid inhibition of overexpressed human 3 beta-hydroxysteroid dehydrogenase type II. J Steroid Biochem Mol Biol,2004,88(2): 175~182
    [127]adi A, Tang-Wai R, McBride HM, et al. The human steroidogenic acute regulatory (StAR) gene is expressed in the urogenital system and encodes a mitochondrial polypeptide [J]. Biochim Biophys Acta,1995,1258(2):228~233
    [128]ugawara T, Lin D, Holt JA, et al. Structure of the human steroidogenic acute regulatory protein (StAR) gene:StAR stimulates mitochondrial cholesterol 27-hydroxylase activity [J]. Biochemistry,1995,34(39):12506~12512
    [129]urukawa A, Miyatake A, Ohnishi T, et al. Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system:colocalization of StAR, cytochrome P-450SCC (CYP XIA1), and 3β-hydroxysteroid dehydrogenase in the rat brain [J]. J Neurochem,1998,71(6):2231~2238
    [130]Tsukasa Inoue, Jun-Ichi Akahira, Takashi Suzuki, et al. Progesterone Production and Actions in the Human Central Nervous System and Neurogenic Tumors [J]. The Journal of Clinical Endocrinology & Metabolism,2002,87(11):5325~5331
    [131]Waterman MRA. A rising StAR:an essential role in cholesterol transport [J]. Science, 1995,267(5205):1780~1781
    [132]Wang H, Napoli KL, Strobel HW. Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones [J]. Mol Cell Biochem,2000,213(1-2):127~135
    [133]Lephart ED, Lund TD, Horvath TL. Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function [J]. Brain Res Brain Res Rev,2001, 37(1-3):25~37
    [134]Melcangi RC, Celotti F, Martini L. Progesterone 5-alpha-reduction in neuronal and in different types of glial cell cultures:type 1 and 2 astrocytes and oligodendrocytes [J]. Brain Res,1994,639(2):202~206
    [135]Guerra-Araiza C, Villamar-Cruz O, Gonzalez-Arenas A, et al. Changes in progesterone receptor isoforms content in the rat brain during the oestrous cycle and after oestradiol and progesterone treatments [J]. J Neuroendocrinol,2003,15(10):984~990
    [136]Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I. Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain [J]. Brain Res Bull,2002, 59(2):105~109
    [137]Guerra-Araiza C, Reyna-Neyra A, Salazar AM, et al. Progesterone receptor isoforms expression in the prepuberal and adult male rat brain [J]. Brain Res Bull,2001,54(1):13~ 17
    [138]Guerra-Araiza C, Cerbon MA, Morimoto S, et al. Progesterone receptor isoforms expression pattern in the rat brain during the estrous cycle [J]. Life Sci,2000,66(18): 1743~1752
    [139]Camacho-Arroyo I, Guerra-Araiza C, Cerbon MA. Progesterone receptor isoforms are differentially regulated by sex steroids in the rat forebrain [J]. Neuroreport,1998,9(18): 3993~3996
    [140]Kato J, Hirata S, Nozawa A, Mouri N. The ontogeny of gene expression of progestin receptors in the female rat brain [J]. J Steroid Biochem Mol Biol,1993,47(1-6):173~182
    [141]Hagihara K, Hirata S, Osada T, et al. Distribution of cells containing progesterone receptor mRNA in the female rat di-and telencephalon:an in situ hybridization study [J]. Brain Res Mol Brain Res,1992,14(3):239~249
    [142]Hagihara K, Hirata S, Osada T, et al. Expression of progesterone receptor in the neonatal rat brain cortex:detection of its mRNA using reverse transcription-polymerase chain reaction [J]. J Steroid Biochem Mol Biol,1992,41(3-8):637~640
    [143]Kato J, Onouchi T. Progestin receptors in female rat brain and hypophysis in the development from fetal to postnatal stages [J]. Endocrinology,1983,113(1):29~36
    [144]Kato J, Onouchi T, Takamatsu M. Decreased progestin receptors in the cerebral cortex of hypothyroid postnatal rats [J]. J Steroid Biochem,1984,20(4A):817~819
    [145]Pratt WB. The hsp90-based chaperone system:involvement in signal transduction from a variety of hormone and growth factor receptors [J]. Proc Soc Exp Biol Med,1998,217(4): 420~434
    [146]Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery [J]. Exp Biol Med (Maywood),2003,228(2): 111~133
    [147]Leonhardt SA, Boonyaratanakornkit V, Edwards DP. Progesterone receptor transcription and non-transcription signaling mechanisms [J]. Steroids,2003,68(10-13):761~770
    [148]DeMarzo AM, Beck CA, Onate SA, et al. Dimerization of mammalian progesterone receptors occurs in the absence of DNA and is related to the release of the 90-kDa heat shock protein [J]. Proc Natl Acad Sci U S A,1991,88(1):72~76
    [149]Edwards DP, DeMarzo AM, Onate SA, et al. Mechanisms controlling steroid receptor binding to specific DNA sequences [J]. Steroids,1991,56(5):271~278
    [150]Allan GF, Leng X, Tsai SY, et al. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation [J]. J Biol Chem, 1992,267(27):19513~19520
    [151]McKenna NJ, O'Malley BW. Minireview:nuclear receptor coactivators-an update [J]. Endocrinology,2002,143(7):2461~2465
    [152]Westin S, Rosenfeld MG, Glass CK. Nuclear receptor coactivators [J]. Adv Pharmacol, 2000,47:89-112
    [153]Groshong SD, Owen GI, Grimison B, et al. Biphasic regulation of breast cancer cell growth by progesterone:role of the cyclin-dependent kinase inhibitors, p21 and p27(Kip1) [J]. Mol Endocrinol,1997,11(11):1593~1607
    [154]Richer JK, Lange CA, Manning NG, et al. Convergence of progesterone with growth factor and cytokine signaling in breast cancer. Progesterone receptors regulate signal transducers and activators of transcription expression and activity [J]. J Biol Chem,1998,273(47): 31317~31326
    [155]Owen GI, Richer JK, Tung L, et al. Progesterone regulates transcription of the p21 (WAF1) cyclin-dependent kinase inhibitor gene through Spl and CBP/p300 [J]. J Biol Chem,1998, 273(17):10696~10701
    [156]Lange CA, Richer JK, Shen T, et al. Convergence of progesterone and epidermal growth factor signaling in breast cancer. Potentiation of mitogen-activated protein kinase pathways [J]. J Biol Chem,1998,273(47):31308~31316
    [157]Kraus WL, Montano MM, Katzenellenbogen BS. Cloning of the rat progesterone receptor gene 5'-region and identification of two functionally distinct promoters [J]. Mol Endocrinol, 1993,7(22):1603~1616
    [158]Loosfelt H, Logeat F, Vu Hai MT, et al. The rabbit progesterone receptor. Evidence for a single steroid-binding subunit and characterization of receptor mRNA [J]. J Biol Chem, 1994,259:14196~14202
    [159]Conneely OM, Kettleberger DM, Tsai MJ, et al. The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event [J]. J Biol Chem,1989, 264(24):14062~14064
    [160]Schneider W, Ramachandran C, Satyaswaroop PG, et al. Murine progesterone receptor exists predominantly as the 83-kilodalton 'A' form [J]. J Steroid Biochem Mol Biol,1991 38(3):285~291
    [161]Lessey BA, Alexander PS, Horwitz KB. The subunit structure of human breast cancer progesterone receptors:characterization by chromatography and photoaffinity labeling [J]. Endocrinology,1983,112(4):1267~1274
    [162]Sartorius CA, Melville MY, Hovland AR, et al. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform [J]. Mol Endocrinol,1994,8(10):1347~1360
    [163]Giangrande PH, Kimbrel EA, Edwards DP, et al. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding [J]. Mol Cell Biol,2000,20(9):3102~3115
    [164]Wei LL, Gonzalez-Aller C, Wood WM, et al.5'-Heterogeneity in human progesterone receptor transcripts predicts a new aminoterminal truncated "C"-receptor and unique A-receptor messages [J]. Mol Endocrinol,1990,4(12):1833~1840
    [165]Wei LL, Hawkins P, Baker C, et al. An amino-terminal truncated progesterone receptor isoform, PRc, enhances progestin-induced transcriptional activity [J]. Mol Endocrinol, 1996,10(11):1379~1387
    [166]Kato J, Hirata S, Nozawa A, et al. Gene expression of progesterone receptor isoforms in the rat brain [J]. Horm Behav,1994,28(6):454~463
    [167]Quadros PS, Goldstein AYN, De Vries GJ, et al. Regulation of sex differences in progesterone receptor expression in the medial preoptic nucleus of postnatal rats [J]. J Neuroendocrinol,2002,14(10):761~767
    [168]Wagner CK, Nakayama AY, De Vries GJ. Potential role of maternal progesterone in the sexual differentiation of the brain [J]. Endocrinology,1998,139(8):3658~3661
    [169]Meyer-Bahlburg HF, Ehrhardt AA. Neurobehavioral effects of prenatal origin:sex hormones [J]. Prog Clin Biol Res,1980,36:93~107
    [170]Pistritto G, Papacleovoulou G, Ragone G, et al. Differentiation-dependent progesterone synthesis and metabolism in NT2-N human neurons [J]. Exp Neurol,2009,217(2):302~ 311
    [171]Quadros PS, Pfau JL, Goldstein AYN, et al. Sex differences in progesterone receptor expression:a potential mechanism for estradiol-mediated sexual differentiation [J]. Endocrinology,2002,143(10):3727~3739
    [172]Christine K. Wagner. Progesterone Receptors and Neural Development:A Gap between Bench and Bedside [J]? Endocrinology,2008,149(6):2743~2749
    [173]Herson PS, Koerner IP, Hum PD. Sex, sex steroids, and brain injury [J]. Semin Reprod Med,2009,27(3):229~239
    [174]Attella MJ, Nattinville A, Stein DG. Hormonal state affects recovery from frontal cortex lesions in adult female rats [J]. Behav Neural Biol,1987,48(3):352~367
    [175]Stein DG. Brain damage, sex hormones and recovery:a new role for progesterone and estrogen [J]? Trends Neurosci,2001,24(7):386~391
    [176]Hunt JS, Miller L, Roby KF, et al. Female steroid hormones regulate production of pro-inflammatory molecules in uterine leukocytes [J]. J Reprod. Immunol,1997,35(2): 87~99
    [177]Roof RL, Zhang Q, Glasier MM, et al. Gender-specific impairment on Morris water maze task after entorhinal cortex lesion [J]. Behav Brain Res,1993,57(1):47~51
    [178]Vink R, Nimmo AJ. Multifunctional drugs for head injury. Neurotherapeutics.2009,6(1): 28~42
    [179]Roof RL, Duvdevani R, Heyburn JW, et al. Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective [J]. Exp Neurol,1996,138(1):246~251
    [180]Ehring GR, Kerschbaum HH, Eder C, et al. A nongenomic mechanism for progesterone- mediated immunosuppression:inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes [J]. J Exp Med,1998,188(9):1593~1602
    [181]Duvdevani R, Roof RL, Fiilop Z, et al. Blood-brain barrier breakdown and edema formation following frontal cortical contusion:does hormonal status play a role [J]? J Neurotrauma,1995,12(1):65~75
    [182]Shear DA, Galani R, Hoffman SW. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury [J]. Exp Neurol,2002,178(1): 59~67
    [183]Ockene JK, Barad DH, Cochrane BB, et al. Symptom experience after discontinuing use of estrogen plus progestin [J]. JAMA,2005,294(2):183~193
    [184]Stoffel EC, Craft RM. Ovarian hormone withdrawal-induced "depression" in female rats [J]. Physiol Behav,2004,83(3):505~513
    [185]Cutler SM, Pettus EH. Hoffman SW, et al. Tapered progesterone withdrawal enhances behavioral and molecular recovery after traumatic brain injury [J]. Exp Neurol,2005, 195(2):423~429
    [186]Chen M, Chopp, Y. Li. Neuroprotective effects of progesterone after transient middle cerebral artery occlusion in rat [J]. J Neurol Sci.1999,171(1):24~30
    [187]Jiang N, Chopp M, Stein D, et al. Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats [J]. Brain Res,1996,735(1):101~107
    [188]Sayeed I, Guo Q, Hoffman SW, et al. Allopregnanolone, a progesterone metabolite, is more effective than progesterone in reducing cortical infarct volume after transient middle cerebral artery occlusion [J]. Ann Emerg Med,2006,47(4):381~389
    [189]Morali G, Letechipia-Vallejo G, Lopez-Loeza E, et al. Post-ischemic administration of progesterone in rats exerts neuroprotective effects on the hippocampus [J]. Neurosci Lett, 2005,382(3):286~290
    [190]Murphy SJ, Traystman RJ, Hum PD, et al. Progesterone exacerbates striatal stroke injury in progesterone-deficient female animals [J]. Stroke,2000,31(5):1173~1178
    [191]Toung TJ, Chen TY, Littleton-Kearney MT, et al. Effects of combined estrogen and progesterone on brain infarction in reproductively senescent female rats [J]. J Cereb Blood Flow Metab,2004,24(10):1160~1166
    [192]Wagner AK, Willard LA, Kline AE, et al. Evaluation of estrous cycle stage and gender on behavioral outcome after experimental traumatic brain injury [J]. Brain Res,2004,998(1): 113~121
    [193]Cervantes M, Gonzalez-Vidal MD, Ruelas R, et al. Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus [J]. Arch Med Res,2002,33(1):6~14
    [194]Chavez-Delgado ME, Mora-Galindo J, Gomez-Pinedo U, et al. Facial nerve regeneration through progesterone-loaded chitosan prosthesis, A preliminary report [J]. J Biomed Mater Res B Appl Biomater,2003,67(2):702~711
    [195]Gibson CL, Murphy SP. Progesterone enhances functional recovery after middle cerebral artery occlusion in male mice [J]. J Cereb Blood Flow Metab,2004,24(7):805~813
    [196]Thomas AJ, Nockels RP, Pan H Q, Shaffrey CI, et al. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats [J]. Spine 1999,24(20):2134~2138
    [197]De Nicola AF, Ferrini M, Gonzalez SL, Gonzalez Deniselle MC, et al. Regulation of gene expression by corticoid hormones in the brain and spinal cord [J]. J Steroid Biochem Mol Biol,1998,65(1-6):253~272
    [198]De Nicola AF, Gonzalez SL, Labombarda F, et al. Progesterone treatment of spinal cord injury:Effects on receptors, neurotrophins, and myelination [J]. J Mol Neurosci,2006, 28(1):3~15
    [199]Gonzalez SL, Labombarda F, Deniselle MC, et al. Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons [J]. J Steroid Biochem Mol Biol,2005,94(1-3):143~149
    [200]Gonzalez Deniselle MC, Garay L, Gonzalez S, et al. Progesterone restores retrograde labeling of cervical motoneurons in Wobbler mouse motoneuron disease [J]. Exp Neurol, 2005,195(2):518~523
    [201]Labombarda F, Gonzalez SL, Gonzalez DM., et al. Cellular basis for progesterone neuroprotection in the injured spinal cord [J]. J Neurotrauma,2002,19(3):343~355
    [202]Gibson CL, Laura J, et al. Progesterone for the treatment of experimental brain injury, a systematic review [J]. Brain,2008,131 (Pt2):318~328
    [203]Marmarou A. The pathophysiology of brain edema and elevated intracranial pressure [J]. Clevel Clin J Med,2004,71 (Suppl 1):S6~S8
    [204]Papadopoulos MC, Krishna S, Verkman AS. Aquaporin water channels and brain edema [J]. Mt Sinai J Med,2002,69(4):242~248
    [205]Marmarou A, Signoretti S, Aygok G, et al. Traumatic brain edema in diffuse and focal injury:cellular or vasogenic [J]? Acta Neurochir,2006,96 (Suppl):24~29
    [206]Marmarou A, Signoretti S, Fatouros PP, et al. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries [J]. J Neurosurg,2006,104(5):720~ 730
    [207]Aggarwal R, Medhi B, Pathak A, et al. Neuroprotective effect of progesterone on acute phase changes induced by partial global cerebral ischaemia in mice [J]. J Pharm Pharmacol, 2008,60(6):731-737
    [208]Kasturi BS, Stein DG. Progesterone decreases cortical and sub-cortical edema in young and aged ovariectomized rats with brain injury. Restor Neurol Neurosci,2009,27(4): 265~275
    [209]Hu Z, Li Y, Fang M, et al. Exogenous progesterone:a potential therapeutic candidate in CNS injury and neurodegeneration. Curr Med Chem,2009,16(11):1418~1425
    [210]Meffre D, Delespierre B, Gouezou M, et al. The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury [J]. J Neurochem,2005,93(5):1314~1326
    [211]Guennoun D, Meffre F, Lambombarda SL, et al. The membrane-associated progesterone-binding protein 25-Dx:Expression, cellular localization and up-regulation after brain and spinal cord injuries [J]. Brain Res Rev,2008,57(2):492~504
    [212]Goodman Y, Bruce AJ, Cheng B, et al. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons [J]. J Neurochem,1996,66(5):1836~1844
    [213]Roof RL, Fritts ME. Progesterone metabolites may mediate its neuroprotective effects after traumatic brain injury [J]. Neurotrauma,1997,14:760
    [214]Subramanian M, Pusphendran CK, Tarachand U, et al. Gestation confers temporary resistance to peroxidation in the maternal rat brain [J]. Neurosci. Lett,1993,155(2):151~ 154
    [215]Vedder H, Anthes N, Stumm G, et al. Estrogen hormones reduce lipid peroxidation in cells and tissues of the central nervous system [J]. J Neurochem,1999,72(6):2531~2538
    [216]Roof RL, Hoffman SW, Stein DG. Progesterone protects against lipid peroxidation following traumatic brain injury in rats [J]. Mol Chem Neuropathol,1997,31(1):1~11
    [217]Shimamura K, Sugino N, Yoshida Y, et al. Changes in lipid peroxide and antioxidant enzyme activities in corpora lutea during pseudopregnancy in rats [J]. J Reprod Fertil,1995, 105(2):253~257
    [218]Cargill RS, Geddes DM, Malcom S, et al. Progesterone is protective at the cellular level in an in vitro model of TBI [J]. J Neurotrauma,1999,16:983~988
    [219]Malcolm SG, Cargill RS. Progesterone protects neurons from mitochondrial damage after in vitro injury [J]. J Neurotrauma,2000,17:967~971
    [220]Chao TC, Van Alten PJ, Walker RJ. Steroid sex hormones and macrophage function: modulation of reactive oxygen intermediates and nitrite release [J]. Am J Reprod Immunol, 1994,32(1):43~52
    [221]Fulop Z, Duvdevani R, Hoffman SW, et al. Two step activation of the resident and invading microglial cells following brain contusion [J]. Society for Neuroscience Abstracts, 1992,18:178~185
    [222]Holmin S, Mathiesen T, Shetye J, et al. Intracerebral inflammatory response to experimental brain contusion [J]. Acta Neurochir,1995,132(1-3):110~119
    [223]Soares HD, Hicks RR, Smith D, et al. Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury [J]. J Neurosci,1995,15(12):8223~8233
    [224]Soares HD, Sinson GP, McIntosh TK. Fetal hippocampal transplants attenuate CA3 pyramidal cell death resulting from fluid percussion brain injury in the rat [J]. J Neurotrauma,1995,12(6):1059~1067
    [225]Bayir H, Marion DW, Puccio AM, et al. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients [J]. J Neurotrauma,2004,21(1):1~8
    [226]Arvin B, Neville LF, Barone FC, et al. The role of inflammation and cytokines in brain injury [J]. Neurosci Biobehav Rev,1996,20(3):445~452
    [227]Ganter S, Northoff H, Mannel D, et al. Growth control of cultured microglia [J]. J Neurosci Res,1992,33(2):218~230
    [228]Kelly RW, Carr GG, Riley SC. The inhibition of synthesis of a beta-chemokine, monocyte chemotactic protein-1 (MCP-1) by progesterone [J]. Biochem Biophys Res Commun,1997, 239(2):557~561
    [229]Robert R, Spitzer JA. Effects of female hormones (17beta-estradiol and progesterone) on nitric oxide production by alveolar macrophages in rats [J]. Nitric Oxide,1997,1(6):453~ 462
    [230]Djebaili M, Hoffman SW, Stein DG. Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex [J]. Neuroscience, 2004,123(2):349~359
    [231]Drew PD, Chavis JA. Female sex steroids:effects upon microglial cell activation [J]. J Neuroimmunol,2000,111(1-2):77~85
    [232]Coughlan T, Gibson C, Murphy S. Modulatory effects of progesterone on inducible nitric oxide synthase expression in vivo and in vitro [J]. J Neurochem.2005,93(4):932~942
    [233]Nilsen J, Brinton RD. Impact of progestins on estradiol potentiation of the glutamate calcium response [J]. NeuroReport,2002,13(6):825~830
    [234]Mani SK. Signaling mechanisms in progesterone-neurotransmitter interactions [J]. Neuroscience,2006,138(3):773~781
    [235]Pierson RC, Lyons AM, Greenfield Jr J. Gonadal steroids regulate GABAA receptor subunit mRNA expression in NT2-N neurons [J]. Brain Res Mol Brain Res,2005,138(2): 105~115
    [236]Shen H, Gong QH, Yuan M, et al. Short-term steroid treatment increases delta GABAA receptor subunit expression in rat CA1 hippocampus:pharmacological and behavioral effects [J]. Neuropharmacology,2005,49(5):573~586
    [237]Brann DW, Zamorano PL, De Sevilla L, et al. Expression of glutamate receptor subunits in the hypothalamus of the female rat during the afternoon of the proestrous luteinizing hormone surge and effects of antiprogestin treatment and aging [J]. Neuroendocrinology, 2005,81(2):120~128
    [238]Reddy DS. Role of neurosteroids in catamenial epilepsy [J]. Epilepsy Res,2004,62(2-3): 99~118
    [239]Rhodes ME, Frye CA. Actions at GABA (A) receptors in the hippocampus may mediate some antiseizure effects of progestins [J]. Epilepsy Behav,2005,6(3):320~327
    [240]Yao XL, Liu J, Lee E, et al. Progesterone differentially regulates pro-and antivapoptotic gene expression in cerebral cortex following traumatic brain injury in rats [J]. J Neurotrauma,2005,22(6):656~668
    [241]Nilsen J, Brinton RD. Impact of progestins on estradiol potentiation of the glutamate calcium response [J]. NeuroReport,2002,13(6):825~830
    [242]Nilsen J, Brinton RD. Divergent impact of progesterone and medroxyprogesterone acetate (Provera) on nuclear mitogen-activated protein kinase signaling [J]. Proc Natl Acad Sci USA,2003,100(18):10506~10511
    [243]Littleton-Kearney MT, Klaus JA, Hum PD. Effects of combined oral conjugated estrogens and medroxyprogesterone acetate on brain infarction size after experimental stroke in rat [J]. J Cereb Blood Flow Metab,2005,25(4):421~426
    [244]Bernardi F, Pluchino N, Pieri M, et al. Progesterone and medroxyprogesterone acetate effects on central and peripheral allopregnanolone and beta-endorphin levels [J]. Neuroendocrinology,2006,83(5-6):348~359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700