用户名: 密码: 验证码:
一种肺炎链球菌溶菌酶样假想蛋白质SP0987的结构和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于抗生素耐药的增加和疫苗本身存在的缺陷,肺炎链球菌的预防和治疗面临着很大的挑战。这就需要我们进一步深入研究肺炎链球菌的致病机理,为抗菌药物的开发和疫苗的研制提供理论基础。前期工作中课题组研究发现,肺炎链球菌的一个体内诱导基因sp0987编码的假想蛋白质SP0987是一个潜在的毒力因子。到目前为止,SP0987的结构和功能都不清楚,需要我们做进一步的研究。
     目的本研究将用X-射线晶体学方法首次解析假想蛋白质SP0987的三维立体结构,在结构的基础上研究其生物学功能,并探索sp0987基因影响细菌毒力的初步机制。
     方法通过克隆、表达、纯化、蛋白质晶体培养、衍射数据收集和蛋白质三维立体结构解析,得到SP0987的三维立体结构;从三维结构所提供的信息,运用酶活性分析方法和定点突变技术进行溶菌酶活性的分析和酶活性位点的分析与验证;通过荧光报告系统来确定SP0987的细胞定位;通过构建肺炎链球菌sp0987缺陷菌株研究小鼠生存实验及体内的定植实验和体外的细胞粘附和侵袭实验,来研究sp0987基因缺陷后对肺炎链球菌致病性的影响。
     结果生物信息学分析显示,由基因sp0987编码的假想蛋白质SP0987全长266个氨基酸,其编码产物可能为溶菌酶,主要作用是降解细胞壁中N-乙酰胞壁酸和N-乙酰葡糖胺之间的β-1,4-糖苷键,属于GH25家族溶菌酶;通过克隆、表达、纯化、蛋白质晶体培养、衍射数据收集和蛋白质三维立体结构解析,首次成功解析SP0987的三维立体结构;序列比对和三维结构叠合分析发现,SP0987是溶菌酶样蛋白质,保守性分析及结构特点分析发现可能的活性位点D33、D131、E133和D222,且都为酸性氨基酸残基;分子筛实验提示,SP0987在溶液中以单体形式存在;应用绿色荧光蛋白报告系统分析SP0987的细胞定位,结果发现SP0987定位于细胞膜,与生物信息学分析结果一致;用LFH-PCR技术构建sp0987缺陷菌,小鼠体内生存实验结果显示,sp0987缺陷后肺炎链球菌毒力明显减弱;体外细胞实验发现,sp0987缺陷菌对宿主细胞的侵袭明显弱于野生菌,而对宿主细胞的粘附没有明显差异;体内定植实验发现,肺炎链球菌D39野生菌及缺陷菌经鼻腔感染后,缺陷菌入血时间明显较晚,且在BALB/c小鼠鼻咽部和肺部的细菌载量有明显差异,缺陷菌的细菌载量明显减少。
     结论用X-射线晶体学方法首次成功解析肺炎链球菌假想蛋白质SP0987的三维结构;结构分析及功能实验发现,SP0987是溶菌酶样膜蛋白,在溶液中以单体形式存在;毒力实验显示,sp0987基因缺陷菌在小鼠体内毒力显著降低,并影响肺炎链球菌的侵袭能力和定植能力,所以其编码产物SP0987是一种新的毒力因子。
Streptococcus pneumoniae is a serious challenge for the prevention and therapy because of the increasing antibiotic resistance and the defects of the current vaccine. So further research should be done on the pathogenic mechanism of Streptococcus pneumoniae, which can supply the theory background of more effective antibiotic and vaccine development. In our previous study, we have found that a putative protein SP0987 from Streptococcus pneumoniae coded by an in vivo induction gene sp0987, may be a new virulence factor. Till now, the structure and function of SP0987 was unknown, so we decided to do further research on the protein.
     Objectives The aim of this study was to resole the structure of the protein SP0987 for the first time, to study the function based on the structure and the effect of the sp0987 gene on the pathogenesis of Streptococcus pneumoniae.
     Methods The structure of sp0987 was analysed by clone, expression, purification, protein crystal growth, diffraction data collection and protein structure resolution. Based on the structure, the enzyme activity and the active sites were analysed through the analysis of enzyme activity and site-directed mutagenesis. The cellular localization of SP0987 was analysed using novel fluorescent reporter system.The virulence study was carried out by the construction of the sp0987 mutant strain, cell adherence and invasion experiment in vitro, colonization experiment in vivo.
     Results The putative protein SP0987 , coded by the gene sp0987, 266 amino acid, was predicted by bioinformatics to be aβ-1,4-N-acetylmuramidase belonging to glycosylhydrolase family 25, which cleaved theβ-1,4-glycosidic bond between N-acetylmuramic acid(NAM) and N-acetylglucosamine(NAG) in the carbohydrate backbone of bacterial peptidoglycan. The structure of SP0987 was resolved successfully for the first time by clone, expression, purification, protein crystal growth, diffraction data collection and protein structure resolution. By sequence and structural comparison of SP0987 with other lysozymes, we found that SP0987 was a lysozyme-like protein, and the active sites were probably D33, D131, E133 and D222. The protein SP0987 was proved to be a monomer state in solution by size exclusion chromatography; A GFP fusion to SP0987 showed clear membrane localization, as predicted from its primary sequence. The sp0987 gene mutant stain was constructed by LFH-PCR, and the reduced virulence of the mutant suggested the SP0987 may be a virulence factor in Streptococcus pneumoniae. In vitro, the invasion rate of the mutant strain to the host cell was lower than the wild strain, while there was no difference between the mutant stain and the wild strain in adherence. In vivo, when mice were challenged intranazal, the wild strain appeared in blood earlier than the mutant strain, and the number of bacteria in the nasal and lung tissue of the mutant was much smaller than the wild strain.
     Conclusions The structure of the putative protein SP0987 from Streptococcus pneumoniae was resolved for the first time by X-ray crystallography. The protein SP0987 was a new lysozyme-like membrane protein, and was a monomer state in solution. The sp0987 gene mutant strain showed reduced virulence in the intranasal mouse model , and affected invasion and colonization of Streptococcus pneumoniae. So, the protein SP0987 is a new virulence factor of Streptococcus pneumoniae.
引文
[1] Luby SP, Brooks WA, Saha SK, et al. Use of multiple surveillance modalities to assess the epidemiology of Streptococcus pneumoniae infection in Bangladesh. [J]. Clin Infect Dis.2009,48:S97-102.
    [2] Berkley JA, Lowe BS, Mwangi I, et al. Bacteremia among children admitted to a rural hospital in Kenya. [J].N. Engl. J. Med. 2005, 352: 39–47.
    [3] Mackenzie GA, Carapetis JR, Leach AJ, et al. Pneumococcal vaccination and otitis media in Australian Aboriginal infants: comparison of two birth cohorts before and after introduction of vaccination. [J]. BMC Pediatr. 2009,9:14.
    [4] Weiser JN, Paton JC , Andrew PW,et al. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. [J].Nature Reviews Microbiology. 2008, 6: 288-301.
    [5] Bartilson M, Marra A, Christine J, et al. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. [J].Mol Microbiol, 2001, 39: 126-135.
    [6] Meng JP, Yin YB, Zhang XM, et al. Identification of Streptococcus pneumoniae genes specifically induced in mouse lung tissues. [J].Can J Microbiol. 2008,54:58-65.
    [7] Yukie Shibata, Miki Kawada,1Yoshio Nakano. Identification and Characterization of an Autolysin-Encoding Gene of Streptococcus mutans.[J].Infect. Immun.2005, 73:3512–3520.
    [8] Martinez-Fleites, C.; et al.The crystal structure of a family GH25 lysozyme from Bacillus anthracis implies a neighboring-group catalytic mechanism with retention of anomeric configuration. [J].Carbohydr. Res. 2009, 344:1753-1757.
    [9] Orihuela, C. J., Gao, G. L., Francis, K. P., et al.Tissue-specific contributions of pneumococcal virulence factors to pathogenesis.[J].J.Infect. Dis. 2004, 190:1661–1669.
    [10] Garcia, P., Gonzalez, M.P., Garcia, E., Lopez, R. and Garcia,J.L. LytB, a novel pneumococcal murein hydrolase essential for cell separation.[J].Mol. Microbiol. 1999,31:1275–1277.
    [11] Garcia P, Paz González M, García E, et al.The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobiledomains. [J].Mol Microbiol. 1999,33:128-38.
    [12] Astrid Rau, Tanis Hogg, Rüdiger Marquardt,et al.A New Lysozyme Fold. CRYSTAL STRUCTURE OF THE MURAMIDASE FROM STREPTOMYCES COELICOLOR AT 1.65 ? RESOLUTION.[J].J.Biol. Chem.2001,276: 31994– 31999.
    [13] Aras Kadioglu, Jeffrey N. Weiser, James C. Paton , et al.The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. [J].Nature Reviews Microbiology .2008,6:288-301.
    [1] Meng JP, Yin YB, Zhang XM, et al. Identification of Streptococcus pneumoniae genes specifically induced in mouse lung tissues. [J].Can J Microbiol. 2008,54:58-65.
    [2]林亚静,刘志杰,龚为民.蛋白质结构研究.[J].生命科学.2007年6月第19卷第3期.
    [3]梁栋材.X-射线晶体学[M].北京:科学出版社,2006: 241-345。
    [4] Aras Kadioglu, Jeffrey N. Weiser, James C. Paton , et al.The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. [J].Nature Reviews Microbiology .2008,6:288-301.
    [5] Krogh, A., Larsson, B., von Heijne, G.et al.Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. [J].J. Mol.Biol. 2001,305:567–580.
    [6] Gábor E.Tusnády and István Simon.The HMMTOP transmembrane topology prediction server .[J].Bioinformatics,2001,17:849–950.
    [7] Matthews, B. W. Relation between gamma- and alpha-chymotrypsin.[J].J. Mol. Biol.1968, 33, 491–497.
    [8] Navaza, J.Implementation of molecular replacement in AMoRe.[J].Acta Cryst.2001, D57, 1367–1372.
    [9] McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. et al, J.Likelihood-enhanced fast translation functions.[J].Acta Crystallogr D Biol Crystallogr,2005,61(Pt 4): 458-464.
    [10] Vagin, A. & Teplyakov, A.An approach to multi-copy search in molecular replacement.[J].Acta Cryst. D2000, 56:1622–1624.
    [11] Terwilliger, T.C.and J.Berendzen.Automated MAD and MIR structure solution.[J].Acta Crystallographica D1999,55:849-861.
    [12] EmsleyP, Cowtan K. Coot: model-building tools for molecular graphics.[J].Acta Crystallographica D.2004, 60:2126-2132.
    [13] Porter,C.J.,Schuch,R.,Pelzek,et al,The 1.6 ? Crystal Structure of the Catalytic Domainof PlyB, a Bacteriophage Lysin Active Against Bacillus anthracis.[J].J.Mol.Biol. 2007,366:540–550.
    [14] Hermoso, J. A., Monterroso, B., Albert, A.,et al.Structural basisfor selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1.[J].Structure, 2003,11:1239–1249.
    [15] Rau, A., Hogg, T., Marquardt, R. & Hilgenfeld, R. A new lysozyme fold. Crystal structure of the muramidase from Streptomyces coelicolor at 1.65 ? resolution.[J].J. Biol. Chem.2001,276:31994–31999.
    [16] P Carter.Site-directed mutagenesis.[J].Biochem J.1986,237(1):1–7.
    [1] Krogh, A., Larsson, B., von Heijne, G.et al.Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.[J].J. Mol.Biol. 2001,305:567–580.
    [2] Gábor E.Tusnády and István Simon.The HMMTOP transmembrane topology prediction server .[J].Bioinformatics.2001,17:849–950.
    [3] Katherine E. Price and Andrew Camilli.Pneumolysin Localizes to the Cell Wall of Streptococcus pneumoniae.[J].J Bacteriol. 2009,191(7): 2163–2168.
    [4] M.G. Ormerod. Flow Cytometry: A Practical Approach, 3rd Edition.[M]Oxford University Press.2000.
    [5] Alice Eberhardt et al.Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel ?uorescent reporter systems.[J].Molecular Microbiology.2009,74(2), 395–408.
    [6] David Z. Rudner, Qi Pan, and Richard M. Losick.Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. [J]. PNAS.2002, 99: 8701–8706.
    [7] Megumi F. Mills, Mary E. Marquart, and Larry S.McDaniel.Localization of PcsB Streptococcus pneumoniae and Its Differential Expression in Response to Stress.[J].J.Bacteriol.2007,189(12):4544-4546.
    [8] Taichi Usui and Hidenori Matsui.Lysozyme-mediated p-Nitrophenyl Penta-N-acetyl-β-chitopentaoside Production in Aqueous-dimethylsulfoxide Solvent System, as a Substrate for a Lysozyme Assay. [J].Agric. Biol Chem.1989,53 (2):383-388.
    [9] Raja Biswas et al.Activityof themajor staphylococcal autolysinAtl. [J].FEMS Microbiol Lett 2006,259:260–268.
    [10] ANATOLY SEVERIN, DIANE HORNE, ALEXANDER TOMASZ.Autolysis and Cell Wall Degradation in a Choline-Independent Strain of Streptococcus pneumoniae.[J].MICROBIAL DRUG RESISTANCE.1997,Volume 3, Number 4.
    [11] JOSE F. GARCIA-BUSTOS , ALEXANDER TOMASZ.Teichoic Acid-Containing Muropeptides from Streptococcus pneumoniae as Substrates for the PneumococcalAutolysin.[J].JOURNAL OF BACTERIOLOGY.1987, 169: 447-453.
    [12] Yukie Shibata, Miki Kawada,Yoshio Nakano.Identification and Characterization of an Autolysin-Encoding Gene of Streptococcus mutans.[J].Infect. Immun.2005, 73:3512–3520.
    [13] Christine Heilmann,Gunther Thumm,Gursharan S. Chhatwal.Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis.[J].Microbiology .2003, 149:2769–2778.
    [14] Meng JP, Yin YB, Zhang XM, et al. Identification of Streptococcus pneumoniae genes specifically induced in mouse lung tissues. [J].Can J Microbiol. 2008,54:58-65.
    [15] Hidekazu Kuwayama,Shinji Obara,Takahiro Morio.PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors.[J].Nucleic Acids Research,2002,30(2):e2.
    [16] Waldemar Vollmer, Alexander Tomasz.Peptidoglycan N-Acetylglucosamine Deacetylase, a Putative Virulence Factor in Streptococcus pneumoniae.[J].INFECTION AND IMMUNITY, 2002, p.7176–7178
    [17] Satoshi Uchiyama,Aaron F. Carlin,Arya Khosravi.The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion.[J].J. Exp. Med. Vol.2009, 206 :1845-1852.
    [18] Kelly S. Doran, Erin J. Engelson, Arya Khosravi.Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid.[J].The Journal of Clinical Investigation .2005,115:Number 9.
    [19] Peter Mancuso, Marc Peters-Golden, Deepti Goel.Disruption of Leptin Receptor-STAT3 Signaling Enhances Leukotriene Production and Pulmonary Host Defense against Pneumococcal Pneumonia.[J].J Immunol, Prepublished online 10 December 2010 .
    [20] Aras Kadioglu, Jeffrey N. Weiser, James C. Paton et al.The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease.[J].Nature Reviews Microbiology.2008, 6:288-301.
    [1] MacFarlane G Alexander Fleming: The Man and the Myth [M]. Oxford Univ Press, Oxford. 1985.
    [2] Chantal Abergel , Vincent Monchois , Deborah Byrne et al., Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria[J]. PNAS.2007,vol.104.15:6394-6399.
    [3] Vollmer, W., Joris, B., Charlier, P. & Foster, S.Peptidoglycan (murein) hydrolases. [J]FEMS Microbiol. Rev. 2008, 32: 259–286 .
    [4] Vollmer W.Structural variation in the glycan strands of bacterial peptidoglycan. [J]FEMS Microbiol Rev. 2007,32: 287–306.
    [5] Monterroso B, Lo Garcia JL, Saiz JL et al.Unravelling the structure of the pneumococcal autolytic lysozyme. [J]Biochem.2005,391: 41–49.
    [6] Pérez-Dorado I, González A, Morales M, et al.Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC[J].Nat Struct Mol Biol. 2010,17(5):576-81. Martinez-Fleites C, Korczynska JE, Davies GJ
    [7] Martinez-Fleites C ,Korczynska JE, Davies GJ et al.The crystal structure of a family GH25 lysozyme from Bacillus anthracis implies a neighboring-group catalytic mechanism with retention of anomeric configuration. [J].Carbohydr. Res. 2009, 344:1753-1757.
    [8] Blake CC, Koenig DF, MairGA et al. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. [J].Nature. 1965, 206:757–761.
    [9] Monzingo, A. F, Marcotte E M, Hart PJ et al. X-ray structure of an anti-fungal chitosanase from streptomyces N174. [J]. Nat. Struct. Biol.1996, 3:133–140.
    [10] Rau A, Hogg T, Marquardt R et al. A New Lysozyme Fold.Crystal structure of the muramidase from streptomyces coelicolor at 1.65 ? resolution.[J].J Biol. Chem.2001, 276:31994–31999.
    [11] Porter CJ, Schuch RP, elzek AJ, et al.PlyB (a lysin) from Bacillus anthracis. [J].J.Mol.Biol.2007,366:540–550.
    [12] Hermoso JA, Monterroso B, Albert A, et al. Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1. [J].Structure. 2003,10:1239-49.
    [13] Shockman GD & Holtje JV. Microbial peptidoglycan(murein) hydrolases. Bacterial Cell Wall [M], Elsevier, Amsterdam .1994,p131–166.
    [14] De BoerWR, Kruyssen FJ &Wouters JT. Cell wall turnoverin batch and chemostat cultures of Bacillus subtilis. [J] J Bacteriol .1981,145: 50–60.
    [15] Goodell EW. Recycling of murein by Escherichia coli. [J]. J Bacteriol.1985,163: 305–310.
    [16] Kraft AR, Prabhu J, Ursinus A, et al. Interferencewith murein turnover has no effect on growth but reducesbeta-lactamase induction in Escherichia coli. [J] J Bacteriol. 1999,181: 7192–7198.
    [17] Koch AL, Doyle RJ.Inside-to-outside growth andturnover of the wall of gram-positive rods. [J].J Theor Biol .1985,117: 137–157.
    [18] Pooley HM. Turnover and spreading of old wall duringsurface growth of Bacillus subtilis. [J]. J Bacteriol .1976,125: 1127–1138.
    [19] Seto H ,Tomasz A .Protoplast formation and leakage ofintramembrane cell components: induction by thecompetence activator substance of pneumococci. [J]. J Bacteriol .1975,121: 344–353.
    [20] Moscoso M, Claverys JP.Release of DNA into themedium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. [J]. Mol Microbiol. 2004,54: 783–794.
    [21] Dagkessamanskaia A, Moscoso M, Henard V, et al. Interconnection of competence, stress and CiaR regulons inStreptococcus pneumoniae: competence triggers stationaryphase autolysis of ciaR mutant cells.[J].Mol Microbiol.2004,51: 1071–1086.
    [22] Steinmoen H, Teigen A, Havarstein LS.Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. [J]. J Bacteriol. 2003,185: 7176–7183.
    [23] Guiral S, Mitchell TJ, Martin B, et al. Competence-programmed predation of noncompetent cells inthe human pathogen Streptococcus pneumoniae: geneticrequirements. [J].Proc Natl Acad Sci .2005,102: 8710–8715.
    [24] Claverys JP, Havarstein LS. Cannibalism and fratricide: mechanisms and raisons d’etre. [J].Nat Rev Microbiol .2007,5: 219–229.
    [25] Takahashi J, Komatsuzawa H, Yamada S, et al. Molecularcharacterization of an atl null mutant of Staphylococcus aureus. [J].Microbiol Immunol. 2002,46: 601–612.
    [26] Garcia P, Gonzalez MP, Garcia E, et al. LytB, a novel pneumococcal murein hydrolase essential for cellseparation. [J].Mol Microbiol.1999, 31: 1275–1277.
    [27] Heidrich C, Ursinus A, Berger J, et al. Effects of multiple deletions of murein hydrolases on viability,septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. [J]. J Bacteriol. 2002,184: 6093–6099.
    [28] Chastanet A , Losick R. Engulfment during sporulation inBacillus subtilis is governed by a multi-protein complexcontaining tandemly acting autolysins. [J]. Mol Microbio. l2007, 64: 139–152.
    [29] Abanes-De Mello A, Sun YL, Aung S, et al. Acytoskeleton-like role for the bacterial cell wall duringengulfment of the Bacillus subtilis forespore. [J]. Genes Dev.12002,6: 3253–3264.
    [30] Chastanet A , Losick R. Engulfment during sporulation inBacillus subtilis is governed by a multi-protein complexcontaining tandemly acting autolysins. [J].Mol Microbiol .2007,64:139–152.
    [31] Smith TJ, Foster SJ. Characterization of the involvementof two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. [J]. J Bacteriol. 1995,177: 3855–3862.
    [32] Reichenbach H. The ecology of the myxobacteria. [J]. Environ Microbiol. 1999,1:15–21.
    [33] Kaiser D. Coupling cell movement to multicellular development in myxobacteria. [J].Nat Rev Microbiol. 2003,1: 45–54.
    [34] Kaiser D.Signaling in myxobacteria. [J]. Annu Rev Microbiol. 2004,58: 75–98. [35 Sogaard-Andersen L. Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. [J]. Curr Opin Microbiol. 2004,7: 587–593.
    [36] Singh BN. Myxobacteria in soils and compost; their distribution, number and lytic action on bacteria. [J]. J Gen Microbiol .1947,1: 1–10.
    [37] Draft MJ, Burnham JC, Yamamoto Y. Lysis of Phormidium iridum by Myxococcus fulvus in continuous ?ow cultures. [J]. J Appl Bacteriol. 1985,59: 73–80.
    [38] Vollmer W, Pilsl H, Hantke K, et al. Pesticin displays muramidase activity. [J]. J Bacteriol. 1997,179:1580–1583.
    [39] Costerton JW, Cheng KJ, Geesey GG, et al. Bacterial biofilms in nature and disease. [J]. Annu Rev Microbiol. 1987,41: 435–464.
    [40] Heilmann C, Hussain M, Peters G, et al. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. [J].Mol Microbiol 1997,24:1013–1024.
    [41] Mercier C, Durrieu C, Briandet R, et al. Positive role of peptidoglycan breaks in lactococcal biofilm formation. [J]. Mol Microbiol. 2002,46:235–243.
    [42] Ahn SJ, Burne RA.The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. [J].J Bacteriol .2006,188: 6877–6888.
    [43] Mengin-Lecreulx D, Lemaitre B. Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. [J].J Endotoxin Res. 2005,11: 105–111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700