用户名: 密码: 验证码:
基于自组装—自交联策略研究共轭亚油酸胶束和囊泡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭亚油酸(CLA)是天然存在的一类不饱和脂肪酸,具有抗癌、抗粥状动脉硬化、减脂等多种有益生理活性。目前国内外对于CLA的关注点主要集中在将其作为食品功能因子和营养保健因子等方面。CLA除了具有有益生理活性之外,其分子结构中的羧酸基团具有pH刺激响应性赋予CLA自组装活性,同时其分子结构中的共轭双键能够提供可聚合位点赋予CLA自交联活性。然而,目前从分子自组装角度研究CLA的胶体与界面化学性质以至开发与拓展其在非食用领域的应用价值仍然尚未涉猎。因此,研究CLA的有序自组装,有助于构建多种尺度和形貌的CLA有序自组装体;探讨CLA有序自组装体的自交联行为,有助于通过合适的交联反应增强CLA有序自组装体的胶体稳定性,对于拓宽其在药物载体、纳米材料模板合成乃至小分子有序自组装体直观表征领域的应用前景非常有意义。
     近年来,脂肪酸自组装行为的研究主要集中在饱和脂肪酸、单不饱和脂肪酸和非共轭多不饱和脂肪酸,对于共轭不饱和脂肪酸的自组装行为研究仍然空白。本文选择CLA为研究对象,利用自组装-自交联策略研究其有序自组装体。因此本论文关注的第一个问题是:CLA具有怎样的自组装规律和胶束-囊泡形貌转换规律?
     脂肪酸的pH响应性能够使其在不同的pH环境中自组装形成多种尺度和形貌的自组装体。其中脂肪酸胶束和脂肪酸囊泡是两类重要的脂肪酸自组装体。然而脂肪酸自组装体的pH依赖性、二价离子敏感性甚至浓度敏感性导致其存在胶体稳定性差的缺陷,不仅妨碍了对脂肪酸自组装体结构的明确表征,而且对于脂肪酸自组装体的应用研究也十分有限。因此本论文关注的第二个问题是:在CLA自组装成胶束和囊泡的基础上,利用其较高的自交联活性能否通过可控自交联过程获得清晰的球形胶束图像和构建非pH敏感型囊泡?
     脂肪酸囊泡与传统包埋缓释载体脂质体的结构类似,两者包封率基本相当;与此同时脂肪酸囊泡的原料脂肪酸价廉易得,安全性更高,解决了脂质体中天然磷脂成分复杂并且难以合成质量上乘的磷脂分子的缺点。因此脂肪酸囊泡在食品添加和药物载体领域具有良好的应用前景。但是脂肪酸自组装体胶体稳定性差的缺陷,限制了它们在食品添加和药物载体等应用领域的发展;同时脂肪酸胶束的应用仍有待开发。因此本论文关注的第三个问题是:自组装-自交联技术可能会为CLA自组装体拓展怎样的应用前景?
     围绕以上问题,本论文开展了以下几方面的主要工作:
     1、共轭亚油酸的合成与表征
     采用尿素包合法和碱异构化法从天然红花籽油合成CLA。优化包合提取条件和异构化反应条件尽可能提高中间体亚油酸(LA)和目标产物CLA的产率和纯度。结合FT-IR、UV、1H NMR确认目标产物的结构,通过GC分析目标产物的纯度。实验结果表明,采用尿素包合法,以混合脂肪酸:尿素:95%乙醇=1:2.5:8(w/w/v)分离富集,使LA的含量由混合脂肪酸原料中72.36wt%提高至97.60wt%。然后以KOH:LA:乙二醇=1:2:3(w/w/v)条件在170oC下进行碱异构化反应4h合成CLA,含量达96wt%。
     2、共轭亚油酸的pH响应自组装和形貌变化规律
     采用表面张力法系统研究不同pH、温度和离子强度下CLA的表面物理化学性质和自组装行为,确认CLA自组装的推动力。通过考察不同温度下CLA的自组装行为,计算其胶束化/囊泡化热力学参数。并且采用酸碱平衡滴定实验分析不同形貌CLA自组装体形成的pH范围。实验结果表明,CLA在pH13.0-10.0区间内自组装成胶束(CLA-micelle),在pH9.0-8.0范围内自组装成囊泡(CLA-ufasome)。而且比较CLA和文献报道的其它脂肪酸形成囊泡的适宜pH范围发现,除脂肪酸链长之外,脂肪酸分子中双键数目越多以及共轭性越强,形成囊泡的pH值越低。
     3、共轭亚油酸自组装体的自交联
     以兼具有益生理活性、pH响应自组装活性和较高自交联活性的CLA为分子砌块,首先通过简单的pH响应自组装获得共轭亚油酸胶束(CLA-micelle),然后采用微干扰的紫外辐照诱导方式对CLA-micelle实施胶束内化学绑定,制得了3-5nm的稳定自交联CLA胶束(CLA-FAM)。比较未交联的CLA-micelle的冷冻透射电子显微镜(cryo-TEM)图像和自交联CLA-FAM的透射电子显微镜(TEM)图像发现,自交联CLA-FAM基本维持了CLA-micelle的原始形貌,进一步佐证了CLA-micelle的球形小胶束结构。
     采用类似的自组装-自交联技术,通过紫外辐照对共轭亚油酸囊泡(CLA-ufasome)实施化学绑定制得粒径为10-20nm、双层膜厚度约为2.0nm的非pH敏感的自交联CLA囊泡(CLA-FAV)。利用cryo-TEM观察未交联CLA-ufasome的形貌为20nm左右的囊泡结构,这表明紫外辐照制备的自交联CLA-FAV基本保持了CLA-ufasome的原始脆弱形貌。而且自交联CLA-FAV双层膜中CLA分子呈肩并肩方式排列而非传统的尾对尾方式;综合实验结果和文献报道,认为脂肪酸囊泡双层膜厚度与其中的脂肪酸分子排列方式有关,而双层膜中脂肪酸分子采取何种排列方式则主要取决于脂肪酸分子中双键的位置、数目和共轭程度而并不是脂肪酸分子链长。
     4、自交联共轭亚油酸自组装体的应用
     采用高温热聚合引发手段,引发CLA胶束和本体相同时发生自交联反应,制备得到以20nm的CLA球体为联结单元的独特网状结构聚共轭亚油酸(PCLA);在此基础上,利用本实验室前期研究的极性聚合物表面氯金酸原位还原沉积方法,获得以CLA胶束为核的网状纳米金结构,而且该PCLA基网状纳米金比普通胶态金纳米颗粒具有更好的SERS效应和催化效果。实验结果表明,网状PCLA基底的模板作用和原位还原作用相结合是制得PCLA基网状纳米金的充分必要条件。本文开发了一种仅从简单的天然共轭不饱和脂肪酸出发,无需外加交联剂、化学还原剂和锚定试剂,无需预制备纳米金粒子,无需复杂的制备流程,就能获得聚合物基网状纳米金的方法。
     类似的,利用高温热聚合引发CLA-ufasome中CLA的共轭双键自交联实施囊泡内化学绑定,最终获得粒径为20-50nm、双层膜厚度为2.7±0.5nm的非pH敏感的自交联CLA-FAV。以两种不同聚合方式制得的自交联CLA-FAV为载体,包覆药物五氟尿嘧啶(5-FU)均表现出缓释效果。表明非pH敏感型自交联CLA-FAV在药物载体领域具有应用前景。
Conjugated linoleic acid (CLA) is a natural unsaturated fatty acid with excellentanticarcinogenic, antiatherogenic and anti-inflammatory functions. Over the past decades,CLA has been only concerned as food or medicine ingredients. But CLA also has twocharacteristics beside the bioactivity. One is the self-assembling activity which is attributed tothe pH response of the carboxyl group in the CLA molecule; the other is the self-crosslinkingactivity which is because that the double bonds in the CLA molecule can providepolymerizable sites. However, up to date, studies on the colloidal properties of CLA from theperspective of molecular assembly and further developing their application in non-food fieldsstill have not been dabbled. Thus, it is necessary to investigate the self-assembly of CLA andthe self-crosslinking behavior of the CLA self-assemblies. Since the self-assembly of CLA isbenefit to construct various CLA self-assemblies with different sizes and morphologies, andthe self-crosslinking of the CLA self-assemblies is favorable for improving their colloidalstability. Moreover, it plays an important role in expanding the application prospect in drugdelivery, templating synthesis of nanomaterials and even direct observation of molecularassemblies.
     Recently, investigations of the self-assembling behaviors of fatty acids have beenfocused on that of saturated fatty acids, monounsaturated fatty acids and non-conjugatedpolyunsaturated fatty acids. However, the self-assembling behaviors of conjugatedunsaturated fatty acids are still not studied. In this dissertation, CLA is employed as theresearch object, and the micellization and vesiculation of CLA are investigated withself-assembly and self-crosslinking strategy. Therefore, the first concern in this dissertation is,how about the regulations of self-assembly and transformation from micelles to vesicles ofCLA?
     Fatty acids can self-assemble into various assemblies with different sizes andmorphologies due to their pH response. Among the self-assemblies, fatty acid micelle (FAM)and fatty acid vesicle (FAV) are two important assemblies of fatty acids. However, the directobservation and the applications of fatty acid assemblies are still hindered by the colloidalstability such as pH-, temperature-, divalent cation-and even concentration-sensitivity.Therefore, the second concern in this dissertation is, can we obtain an unambiguous image ofspherical micelle and construct a pH-insensitive vesicle through self-crosslinking in virtue ofthe self-crosslinking activity of CLA?
     The structure of FAV is similar to that of liposome, which is a common embedded andsustainable releasing system, and the encapsulation efficiency of FAV is equal to that ofliposome. Moreover, the ready availability of unsaturated fatty acids overcomes the weaknessof liposome, because the natural phospholipids are chemically heterogeneous and puresynthetic phospholipids are not yet available in reasonable quantities. Therefore, FAV has apromising prospect of application in the fields of food additives, drug delivery and sustainedrelease systems. However, the applications of FAV in the fields of food additives, drugdelivery and sustained release systems are still hindered by the colloidal stability. Likewise, the applications of FAM are unexplored. Thus, the third concern in this dissertation is, whichapplication will be expanded through self-assembly and self-crosslinking strategy?
     Aiming at the aforementioned concerns, this dissertation mainly focuses on thefollowing:
     1、Preparation and characterization of conjugated linoleic acid
     CLA was synthesized from safflower oil through urea inclusion and alkali isomerization.Optimizing the conditions of urea inclusion and alkali isomerization was to obtain linoleicacid (LA) and CLA with high yield and purity. The obtained CLA was characterized withFT-IR、UV、1H NMR and GC, respectively. The experimental results indicated that the contentof LA was up to97.60wt%from72.36wt%by urea inclusion when fatty acids mixture: urea:ethanol=1:2.5:8(w/w/v). CLA of96wt%were synthesized at170oC for4h when KOH:LA: ethylene glycol=1:2:3(w/w/v).
     2、The pH responsive self-assembly and transformation of various assemblies of conjugatedlinoleic acid
     The surface activities and self-assembling behaviors of the semi-synthetic CLA weresystematically investigated by tensiometry method at different pH values, temperatures andionic strength. In addition to the surface activity parameters, the thermodynamic parametersof micellization or vesiculation of CLA at different pH were calculated according to theself-assembling behaviors of CLA based on the pseudo-phase separation model. And then, thesuited pH ranges for self-assembling of CLA assemblies were analyzed by acid-base titration.The experimental results indicated that CLA could self-assemble into micelles and ufasomesin the ranges of pH13.0-10.0and pH9.0-8.0, respectively. It was found that pH, temperatureand ionic strength obviously influenced the surface activities of CLA, but pH is the prominentfactor affecting on the self-assembling of CLA. Moreover, the common driving forces of themicellization and vesiculation of the CLA solution are entropy increase. Furthermore, it wasfound that besides the hydrophobic chain lengths the numbers and the conjugation degrees ofthe double bonds are the factors influencing the suitable pH ranges, that is, the suited pHrange depends on the hydrophobicity of the fatty acid molecule, and more double bonds andhigher conjugation degrees in a fatty acid molecule result in lower pH range for vesicleformation.
     3、The self-crosslinking of conjugated linoleic acid assemblies
     CLA-micelles were self-assembled in response to pH variation using CLA with tripleactivities as a new molecular building block. The stable self-crosslinked CLA micelles(CLA-FAM) with diameter of3-5nm were obtained by chemical tethering the CLA-micellein virtue of intra-micellar crosslinking initiated by moderate UV irradiation. Based oncomparison of the cryo-TEM image of the non crosslinked CLA-micelles and the TEM imageof the self-crosslinked CLA-FAM, it was found that the self-crosslinked CLA-FAMmaintained the original and vulnerable morphology of CLA-micelle and provided theevidence for the small micellar structure of CLA-micelles.
     The pH-insensitive self-crosslinked CLA vesicles (CLA-FAV) with diameter of10-20nm and bilayer thickness of~2.0nm were prepared by intra-ufasomal crosslinking ofconjugated double bonds in CLA molecules through UV irradiation. In particular, the noncrosslinked CLA-ufasome was vesicle with diameter of~20nm imaged by cryo-TEM. Theexperimental results indicated that the self-crosslinked CLA-FAV obtained by UV irradiationmaintained the original and vulnerable morphology of CLA-ufasome. In addition, based onthe comparison of the bilayer thicknesses of different fatty acids, it was pointed out that themolecular arrangement in the bilayer membrane of the CLA-ufasome is side-by-side modelrather than the traditional tail-to-tail model. Moreover, it was found that the numbers andthe conjugation degrees of double bonds in an unsaturated fatty acid molecule rather than thehydrophobic chain length are the key factors to control the bilayer thickness of the ufasome.
     4、The application of the self-crosslinked CLA assemblies
     The networked poly(conjugated linoleic acid)(PCLA) aggregates were prepared at highpH through simple molecular self-assembly and thermal polymerization using CLA asmonomer. The morphology of the PCLA aggregates was a unique network structure with CLAspherical micelle of~20nm as junction unit, imaged by TEM. Subsequently, the Aunano-network with core of CLA micelle was synthesized through in situ reduction of gold atthe surface of the PCLA network. Moreover, the Au nano-network based on PCLA possessedbetter SERS and catalytic effect than the colloidal Au nanoparticles. It was suggested that it isnecessary to combine PCLA network with in situ reduction of gold at the surface of the PCLAnetwork in the synthesis process of the Au nano-network based on PCLA. The experimentalresults indicated that it explores a simple route for synthesis of Au nano-network based onpolymer sbustract which is only from a natural conjugated unsaturated fatty acid withoutcross-linker, reducing agents, anchoring agents and Au pre-nanoparticles.
     Similarly, the other pH-insensitive self-crosslinked CLA-FAV were prepared byintra-ufasomal crosslinking of conjugated double bonds in CLA molecules through thermalpolymerization. The size distribution and the bilayer thickness of the self-crosslinkedCLA-FAV were imaged by TEM and being20-50nm and2.7±0.5nm, respectively.Furthermore, the experimental results of in vitro release of5-fluorouracil from the two aboveself-crosslinked CLA-FAV showed that the release process was slow and sustainable,indicating the pH-insensitive self-crosslinked CLA-FAV has a promising prospect ofapplication in the fields of food additives and drug delivery systems.
引文
[1] Schmid A, Collomb M, Sieber R, et al. Conjugated linoleic acid in meat and meat products: areview[J]. Meat Science,2006,73(1):29-41.
    [2] Cho H J, Kwon G T, Park J H Y. trans-10, cis-12Conjugated linoleic acid induces depolarization ofmitochondrial membranes in HT-29human colon cancer cells: a possible mechanism for inductionof apoptosis[J]. Journal of Medicinal Food,2009,12(5):952-958.
    [3] McCrorie T A, Keaveney E M, Wallace J M W, et al. Human health effects of conjugated linoleicacid from milk and supplements[J]. Nutrition Research Reviews,2011,24(2):206-227.
    [4] Crumb D, Vattem D. Conjugated linoleic acid (CLA)-an overview[J]. International Journal ofApplied Research in Natural Products,2011,4(3):12-15.
    [5] Meraz-Torres L, Hernandez-Sanchez H. Conjugated linoleic acid in dairy products: a review[J].American Journal of Food Technology,2012,7(4):176-179.
    [6] Furlan C P B, Marineli R d S, Marostica Junior M R. Conjugated linoleic acid and phytosterolscounteract obesity induced by high-fat diet[J]. Food Research International,2013,51(1):429-435.
    [7] Park Y, Kim J, Scrimgeour A G, et al. Conjugated linoleic acid and calcium co-supplementationimproves bone health in ovariectomised mice[J]. Food Chemistry,2013,140(1):280-288.
    [8] Villeneuve P, Lago R, Barouh N, et al. Production of conjugated linoleic acid isomers bydehydration and isomerization of castor bean oil[J]. Journal of the American Oil Chemists' Society,2005,82(4):261-269.
    [9] Yang L, Huang Y, Wang H Q, et al. Production of conjugated linoleic acids through KOH-catalyzeddehydration of ricinoleic acid[J]. Chemistry and Physics of Lipids,2002,119(1-2):23-31.
    [10] Bernas A, Kumar N, Laukkanen P, et al. Influence of ruthenium precursor on catalytic activity ofRu/Al2O3catalyst in selective isomerization of linoleic acid to cis-9, trans-11andtrans-10,cis-12-conjugated linoleic acid[J]. Applied Catalysis A-General,2004,267(1-2):121-133.
    [11] Bauer P, Horlacher P, Claus P. Direct isomerization of linoleic acid to conjugated linoleic acids(CLA) using gold catalysts[J]. Chemical Engineering and Technology,2009,32(12):2005-2010.
    [12] Chorfa N, Hamoudi S, Belkacemi K. Conjugated linoleic acid formation via heterogeneoushydrogenation/isomerization of safflower oil over mesostructured catalysts[J]. Applied CatalysisA-General,2010,387(1-2):75-86.
    [13] Chen C A, Sih C J. Chemoenzymatic synthesis of conjugated linoleic acid[J]. Journal of OrganicChemistry,1998,63(26):9620-9621.
    [14] Wang L M, Lv J P, Chu Z Q, et al. Production of conjugated linoleic acid by propionibacteriumfreudenreichii[J]. Food Chemistry,2007,103(2):313-318.
    [15] Demir A S, Talpur F N. Chemoenzymatic conversion of linoleic acid into conjugated linoleic acid[J].Journal of Agricultural and Food Chemistry,2010,58(3):1646-1652.
    [16] Berdeaux O, Voinot L, Angioni E, et al. A simple method of preparation of methyl trans-10, cis-12-and cis-9, trans-11-octadecadienoates from methyl linoleate[J]. Journal of the American OilChemists' Society,1998,75(12):1749-1755.
    [17] Chen C A, Lu W, Sih C J. Synthesis of9Z,11E-octadecadienoic and10E,12Z-octadecadienoic acids,the major components of conjugated linoleic acid[J]. Lipids,1999,34(8):879-884.
    [18] Delmonte P, Roach J A G, Mossoba M M, et al. Synthesis, isolation, and GC analysis of all the6,8-to13,15-cis/trans conjugated linoleic acid isomers[J]. Lipids,2004,39(2):185-191.
    [19] Goli S A H, Kadivar M, Keramat J, et al. Conjugated linoleic acid (CLA) production and lipase-catalyzed interesterification of purified CLA with canola oil[J]. European journal of lipid science andtechnology,2008,110(5):400-404.
    [20] Moreno M, Gomez M V, Cebrian C, et al. Sustainable and efficient methodology for CLA synthesisand identification[J]. Green Chemistry,2012,14(9):2584-2594.
    [21] Wang Q Y, Li X, Du K F, et al. Conjugated linoleic acid production by alkali isomerization oflinoleic acid from idesia polycarpa maxim. var. vestita diels oil[J]. Asian Journal of Chemistry,2013,25(7):3744-3748.
    [22] Liu X, Li H, Chen Y, et al. Method for screening of bacterial strains biosynthesizing specificconjugated linoleic acid isomers[J]. Journal of Agricultural and Food Chemistry,2012,60(38):9705-9710.
    [23] Kadamne J V, Castrodale C L, Proctor A. Measurement of conjugated linoleic acid (CLA) inCLA-rich potato chips by ATR-FTIR spectroscopy[J]. Journal of Agricultural and Food Chemistry,2011,59(6):2190-2196.
    [24] Nugteren D. Inhibition of prostaglandin biosynthesis by8cis,12trans,14cis-eicosatrienoic acidand5cis,8cis,12trans,14cis-eicosatetraenoic acid[J]. Biochimica et Biophysica Acta(BBA)-Lipids and Lipid Metabolism,1970,210(1):171-176.
    [25] Werner S A, Luedecke L O, Shultz T D. Determination of conjugated linoleic acid content andisomer distribution in three cheddar-type cheeses: effects of cheese cultures, processing, and aging[J].Journal of Agricultural and Food Chemistry,1992,40(10):1817-1821.
    [26] Yamasaki M, Kishihara K, Ikeda I, et al. A recommended esterification method for gaschromatographic measurement of conjugated linoleic acid[J]. Journal of the American Oil Chemists'Society,1999,76(8):933-938.
    [27] hman M, Wan H, Hamberg M, et al. Separation of conjugated linoleic acid isomers and parinaricfatty acid isomers by capillary electrophoresis[J]. Journal of Separation Science,2002,25(8):499-506.
    [28] Oikawa D, Akimoto Y, Mizobe Y, et al. Functions of CLA and ARA for prevention of CCl4-inducedfatty liver in mice[J]. Journal of Animal and Veterinary Advances,2010,9(22):2854-2858.
    [29] Singh V, Sachan N. Nutraceutical properties of milk and milk products: a review[J]. AmericanJournal of Food Technology,2011,6:864-869.
    [30] Martinez-Monteagudo S I, Saldana M D A, Torres J A, et al. Effect of pressure-assisted thermalsterilization on conjugated linoleic acid (CLA) content in CLA-enriched milk[J]. Innovative FoodScience&Emerging Technologies,2012,16:291-297.
    [31] Oraldi M, Maggiora M, Paiuzzi E, et al. CLA reduces inflammatory mediators from A427humanlung cancer cells and A427conditioned medium promotes differentiation of C2C12murine musclecells[J]. Lipids,2013,48(1):29-38.
    [32] Ha Y L, Storkson J, Pariza M W. Inhibition of benzo (a) pyrene-induced mouse forestomachneoplasia by conjugated dienoic derivatives of linoleic acid[J]. Cancer Research,1990,50(4):1097-1101.
    [33] Ip C, Briggs S P, Haegele A D, et al. The efficacy of conjugated linoleic acid in mammary cancerprevention is independent of the level or type of fat in the diet[J]. Carcinogenesis,1996,17(5):1045-1050.
    [34] Belury M A, Nickel K P, Bird C E, et al. Dietary conjugated linoleic acid modulation of phorbolester skin tumor promotion[J]. Nutrition and Cancer,1996,26(2):149-157.
    [35] Chin S, Liu W, Storkson J, et al. Dietary sources of conjugated dienoic isomers of linoleic acid, anewly recognized class of anticarcinogens[J]. Journal of Food Composition and Analysis,1992,5(3):185-197.
    [36] Nagpal R, Yadav H, Puniya A K, et al. Conjugated linoleic acid: sources, synthesis and potentialhealth benefits-an overview[J]. Current Topics in Nutraceutical Research,2007,5(2-3):55-65.
    [37] Morigaki K, Walde P. Fatty acid vesicles[J]. Current Opinion in Colloid and Interface Science,2007,12(2):75-80.
    [38] Patel D, Jani R, Patel C. Ufasomes: a vesicular drug delivery[J]. Systematic Reviews in Pharmacy,2011,2(2):72-78.
    [39] Naik P V, Dixit S G. Ufasomes as plausible carriers for horizontal gene transfer[J]. Journal ofDispersion Science and Technology,2008,29(6):804-808.
    [40] Gebicki J, Hicks M. Ufasomes are stable particles surrounded by unsaturated fatty acidmembranes[J]. Nature,1973,243(5404):232-234.
    [41] Cistola D P, Hamilton J A, Jackson D, et al. Ionization and phase behavior of fatty acids in water:application of the Gibbs phase rule[J]. Biochemistry,1988,27(6):1881-1888.
    [42] Morigaki K, Walde P, Misran M, et al. Thermodynamic and kinetic stability. Properties of micellesand vesicles formed by the decanoic acid/decanoate system[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,213(1):37-44.
    [43] Gebicki J M, Hicks M. Preparation and properties of vesicles enclosed by fatty acid membranes[J].Chemistry and physics of lipids,1976,16(2):142-160.
    [44] Hargreaves W R, Deamer D W. Liposomes from ionic, single-chain amphiphiles[J]. Biochemistry,1978,17(18):3759-3768.
    [45] Namani T, Ishikawa T, Morigaki K, et al. Vesicles from docosahexaenoic acid[J]. Colloids andSurfaces B: Biointerfaces,2007,54(1):118-123.
    [46] Kaler E W, Murthy A K, Rodriguez B E, et al. Spontaneous vesicle formation in aqueous mixtures ofsingle-tailed surfactants[J]. Science,1989,245(4924):1371-1374.
    [47] Hanczyc M M, Fujikawa S M, Szostak J W. Experimental models of primitive cellular compartments:encapsulation, growth, and division[J]. Science,2003,302(5645):618-622.
    [48] Chen I A, Salehi-Ashtiani K, Szostak J W. RNA catalysis in model protocell vesicles[J]. Journal ofthe American Chemical Society,2005,127(38):13213-13219.
    [49] Deamer D, Singaram S, Rajamani S, et al. Self-assembly processes in the prebiotic environment[J].Philosophical Transactions of the Royal Society B: Biological Sciences,2006,361(1474):1809-1818.
    [50] Blochliger E, Blocher M, Walde P, et al. Matrix effect in the size distribution of fatty acid vesicles[J].Journal of Physical Chemistry B,1998,102(50):10383-10390.
    [51] Berclaz N, Bl chliger E, Müller M, et al. Matrix effect of vesicle formation as investigated bycryotransmission electron microscopy[J]. Journal of Physical Chemistry B,2001,105(5):1065-1071.
    [52] Rasi S, Mavelli F, Luisi P L. Cooperative micelle binding and matrix effect in oleate vesicleformation[J]. Journal of Physical Chemistry B,2003,107(50):14068-14076.
    [53] Rasi S, Mavelli F, Luisi P L. Matrix effect in oleate micelles-vesicles transformation[J]. Origins ofLife and Evolution of the Biosphere,2004,34(1-2):215-224.
    [54] Chen I A, Szostak J W. A kinetic study of the growth of fatty acid vesicles[J]. Biophysical Journal,2004,87(2):988-998.
    [55] Fukuda H, Goto A, Yoshioka H, et al. Electron spin resonance study of the pH-inducedtransformation of micelles to vesicles in an aqueous oleic acid/oleate system[J]. Langmuir,2001,17(14):4223-4231.
    [56] Dejanovic B, Mirosavljevic K, Noethig-Laslo V, et al. An ESR characterization of micelles andvesicles formed in aqueous decanoic acid/sodium decanoate systems using different spin labels[J].Chemistry and physics of lipids,2008,156(1-2):17-25.
    [57] Sakai T, Ikoshi R, Toshida N, et al. Thermodynamically stable vesicle formation andvesicle-to-micelle transition of single-tailed anionic surfactant in water[J]. Journal of PhysicalChemistry B,2013,117(17):5081-5089.
    [58] Deamer D W, Dworkin J P, Chemistry and physics of primitive membranes[J]. Prebiotic Chemistry,2005,259:1-27.
    [59] Walde P. Surfactant assemblies and their various possible roles for the origin (s) of life[J]. Origins ofLife and Evolution of Biospheres,2006,36(2):109-150.
    [60] Stano P, Wehrli E, Luisi P L. Insights into the self-reproduction of oleate vesicles[J]. Journal ofPhysics-Condensed Matter,2006,18(33): S2231-S2238.
    [61] Mansy S S, Szostak J W. Thermostability of model protocell membranes[J]. Proceedings of theNational Academy of Sciences of the United States of America,2008,105(36):13351-13355.
    [62] Chen I A, Walde P. From self-assembled vesicles to protocells[J]. Cold Spring Harbor Perspectivesin Biology,2010,2(7): a002107-a002121.
    [63] Walde P, Wick R, Fresta M, et al. Autopoietic self-reproduction of fatty acid vesicles[J]. Journal ofthe American Chemical Society,1994,116(26):11649-11654.
    [64] Morigaki K, Walde P. Giant vesicle formation from oleic acid/sodium oleate on glass surfacesinduced by adsorbed hydrocarbon molecules[J]. Langmuir,2002,18(26):10509-10511.
    [65] Monnard P A, Deamer D W. Preparation of vesicles from nonphospholipid amphiphiles[J].Liposomes, Pt B,2003,372:133-151.
    [66] BornéJ, Nylander T, Khan A. Vesicle formation and other structures in aqueous dispersions ofmonoolein and sodium oleate[J]. Journal of Colloid and Interface Science,2003,257(2):310-320.
    [67] Rogerson M L, Robinson B H, Bucak S, et al. Kinetic studies of the interaction of fatty acids withphosphatidylcholine vesicles (liposomes)[J]. Colloids and Surfaces B: Biointerfaces,2006,48(1):24-34.
    [68] Ruiz-Mirazo K, Stano P, Luisi P L. Lysozyme effect on oleic acid/oleate vesicles[J]. Journal ofLiposome Research,2006,16(2):143-154.
    [69] Dowling M B, Lee J H, Raghavan S R. pH-Responsive jello: gelatin gels containing fatty acidvesicles[J]. Langmuir,2009,25(15):8519-8525.
    [70] Markvoort A J, Pfleger N, Staffhorst R, et al. Self-reproduction of fatty acid vesicles: a combinedexperimental and simulation study[J]. Biophysical Journal,2010,99(5):1520-1528.
    [71] Rendon A, Gil Carton D, Sot J, et al. Model systems of precursor cellular membranes: long-chainalcohols stabilize spontaneously formed oleic acid vesicles[J]. Biophysical Journal,2012,102(2):278-286.
    [72] Lee J H, Danino D, Raghavan S R. Polymerizable vesicles based on a single-tailed fatty acidsurfactant: a simple route to robust nanocontainers[J]. Langmuir,2009,25(3):1566-1571.
    [73] Apel C L, Deamer D W, Mautner M N. Self-assembled vesicles of monocarboxylic acids andalcohols: conditions for stability and for the encapsulation of biopolymers[J]. Biochimica EtBiophysica Acta-Biomembranes,2002,1559(1):1-9.
    [74] Namani T, Walde P. From decanoate micelles to decanoic acid/dodecylbenzenesulfonate vesicles[J].Langmuir,2005,21(14):6210-6219.
    [75] Renoncourt A, Bauduin P, Nicholl E, et al. Spontaneous vesicle formation of an industrial single-chain surfactant at acidic pH and at room-temperature[J]. ChemPhysChem,2006,7(9):1892-1896.
    [76] Sprague E D, Duecker D C, Larrabee C. The effect of a terminal double bond on the micellization ofa simple ionic surfactant[J]. Journal of Colloid and Interface Science,1983,92(2):416-421.
    [77] Larrabee C, Sprague E D. Aggregation of sodium undecanoate and sodium10-undecenoate in waterat37°C: Vapor pressure osmometry[J]. Journal of Colloid and Interface Science,1986,114(1):256-260.
    [78] Rodriguez J, Schulz P, Puig J. Low-concentration aqueous solutions of undecenoic acid and sodiumundecenoate[J]. Colloid and Polymer Science,1999,277(11):1072-1078.
    [79] Morrow B H, Koenig P H, Shen J K. Atomistic simulations of pH-dependent self-assembly ofmicelle and bilayer from fatty acids[J]. Journal of chemical physics,2012,137(19):194902-194906.
    [80] Ishimaru M, Toyota T, Takakura K, et al. Helical aggregate of oleic acid and its dynamics in water atpH8[J]. Chemistry Letters,2005,34(1):46-47.
    [81] Cao Q, Yu L, Zheng L Q, et al. Rheological properties of wormlike micelles in sodium oleatesolution induced by sodium ion[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2008,312(1):32-38.
    [82] Han Y, Feng Y, Sun H, et al. Wormlike micelles formed by sodium erucate in the presence of atetraalkylammonium hydrotrope[J]. Journal of Physical Chemistry B,2011,115(21):6893-6902.
    [83] Koshy P, Aswal V K, Venkatesh M, et al. Unusual scaling in the rheology of branched worm-likemicelles formed by cetyltrimethylammonium bromide and sodium oleate[J]. Journal of PhysicalChemistry B,2011,115(37):10817-10825.
    [84] Aramaki K, Hoshida S, Arima S. Formation of wormlike micelles with natural-sourced ingredients(sucrose fatty acid ester and fatty acid) and a viscosity-boosting effect induced by fatty acid soap[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,396:278-282.
    [85] González Y I, Kaler E W. Cryo-TEM studies of worm-like micellar solutions[J]. Current Opinion inColloid and Interface Science,2005,10(5):256-260.
    [86] Friedrich H, Frederik P M, Sommerdijk N A. Imaging of self-assembled structures: interpretation ofTEM and cryo-TEM images[J]. Angewandte Chemie International Edition,2010,49(43):7850-7858.
    [87] Kuntsche J, Horst J C, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) forstudying the morphology of colloidal drug delivery systems[J]. International Journal ofPharmaceutics,2011,417(1-2):120-137.
    [88] Danino D. Cryo-TEM of soft molecular assemblies[J]. Current Opinion in Colloid and InterfaceScience,2012,17(6):316-329.
    [89] Gaillard C, Douliez J P. Cryo-TEM and AFM for the characterization of vesicle-like nanoparticledispersions and self-assembled supramolecular fatty-acid-based structures: a few examples[J].Current Microscopy Contributions to Advances in Science and Technology,2012,2:912-922.
    [90] Newcomb C J, Moyer T J, Lee S S, et al. Advances in cryogenic transmission electron microscopyfor the characterization of dynamic self-assembling nanostructures[J]. Current Opinion in Colloidand Interface Science,2012,17(6):350-359.
    [91] Ruozi B, Belletti D, Tombesi A, et al. AFM, ESEM, TEM, and CLSM in liposomal characterization:a comparative study[J]. International Journal of Nanomedicine,2011,6:557-560.
    [92] Almgren M, Edwards K, Karlsson G. Cryo transmission electron microscopy of liposomes andrelated structures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000,174(1):3-21.
    [93] Frederik P M, Hubert D. Cryoelectron microscopy of liposomes[J]. Methods in Enzymology,2005,391:431-448.
    [94] Mondain-Monval O. Freeze fracture TEM investigations in liquid crystals[J]. Current Opinion inColloid and Interface Science,2005,10(5):250-255.
    [95] Xu W, Wang X, Zhong Z, et al. Influence of counterions on lauric acid vesicles and theoreticalconsideration of vesicle stability[J]. Journal of Physical Chemistry B,2013,117(1):242-251.
    [96] Monnard P A, Apel C L, Kanavarioti A, et al. Influence of ionic inorganic solutes on self-assemblyand polymerization processes related to early forms of life: implications for a prebiotic aqueousmedium[J]. Astrobiology,2002,2(2):139-152.
    [97] Kline S R. Polymerization of rodlike micelles[J]. Langmuir,1999,15(8):2726-2732.
    [98] Kuntz D M, Walker L M. Solution behavior of rod-like polyelectrolyte-surfactant aggregatespolymerized from wormlike micelles[J]. Journal of Physical Chemistry B,2007,111(23):6417-6424.
    [99] Biggs S, Labarre M, Hodges C, et al. Polymerized rodlike micelle adsorption at the solid-liquidinterface[J]. Langmuir,2007,23(15):8094-8102.
    [100] Abe M, Tsubone K, Koike T, et al. Polymerizable cationic gemini surfactant[J]. Langmuir,2006,22(20):8293-8297.
    [101] Abe M, Koike T, Nishiyama H, et al. Polymerized assemblies of cationic gemini surfactants inaqueous solution[J]. Journal of Colloid and Interface Science,2009,330(1):250-253.
    [102] Sakai K, Izumi K, Sakai H, et al. Polymerizable gemini surfactants at solid/solution interfaces:Adsorption and polymerization on melamine formaldehyde particles and capsule fabrication[J].Journal of Colloid and Interface Science,2010,343(2):491-495.
    [103] Gerber M J, Walker L M. Controlling dimensions of polymerized micelles: micelle template versusreaction conditions[J]. Langmuir,2006,22(3):941-948.
    [104] Alkilany A M, Nagaria P K, Wyatt M D, et al. Cation exchange on the surface of gold nanorods witha polymerizable surfactant: polymerization, stability, and toxicity evaluation[J]. Langmuir,2010,26(12):9328-9333.
    [105] Liu S, González Y I, Kaler E W. Structural fixation of spontaneous vesicles in aqueous mixtures ofpolymerizable anionic and cationic surfactants[J]. Langmuir,2003,19(26):10732-10738.
    [106] Zhu Z, Xu H, Liu H, et al. Stabilization of catanionic vesicles via polymerization[J]. Journal ofPhysical Chemistry B,2006,110(33):16309-16317.
    [107] Liu S, Gonzalez Y I, Danino D, et al. Polymerization of wormlike micelles induced by hydrotropicsalt[J]. Macromolecules,2005,38(6):2482-2491.
    [108] Zhu Z, González Y I, Xu H, et al. Polymerization of anionic wormlike micelles[J]. Langmuir,2006,22(3):949-955.
    [109] Chatjaroenporn K, Baker R W, FitzGerald P A, et al. Structure changes in micelles and adsorbedlayers during surfactant polymerization[J]. Journal of Colloid and Interface Science,2009,336(2):449-454.
    [110] Storrs R W, Tropper F D, Li H Y, et al. Paramagnetic polymerized liposomes: synthesis,characterization, and applications for magnetic resonance imaging[J]. Journal of the AmericanChemical Society,1995,117(28):7301-7306.
    [111] Mueller A, O’Brien D F. Supramolecular materials via polymerization of mesophases of hydratedamphiphiles[J]. Chemical reviews,2002,102(3):727.
    [112] Gomes J F P d S, Sonnen A F-P, Kronenberger A, et al. Stable polymethacrylate nanocapsules fromultraviolet light-induced template radical polymerization of unilamellar liposomes[J]. Langmuir,2006,22(18):7755-7759.
    [113] Jung Y K, Kim T W, Jung C, et al. A polydiacetylene microchip based on a biotin-streptavidininteraction for the diagnosis of pathogen infections[J]. Small,2008,4(10):1778-1784.
    [114] Yavlovich A, Singh A, Tarasov S, et al. Design of liposomes containing photopolymerizablephospholipids for triggered release of contents[J]. Journal of Thermal Analysis and Calorimetry,2009,98(1):97-104.
    [115] Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools[J]. Accounts ofChemical Research,2011,44(10):1071-1079.
    [116] Chiaramoni N S. Lipid-polymer membranes as carrier for L-tryptophan: molecular and metabolicproperties[J]. Biophysical Journal,2013,104(2):243A-243A.
    [117] Yan X, An X. Thermal and photic stimuli-responsive polydiacetylene liposomes with reversiblefluorescence[J]. Nanoscale,2013,5(14):6280-6283.
    [118] Guo C, Liu S, Jiang C, et al. A promising drug controlled-release system based on diacetylene/phospholipid polymerized vesicles[J]. Langmuir,2009,25(22):13114-13119.
    [119] Qin G, Li Z, Xia R, et al. Partially polymerized liposomes: stable against leakage yet capable ofinstantaneous release for remote controlled drug delivery[J]. Nanotechnology,2011,22(15):155605-155619.
    [120] Zhang X, Wang M, Wu T, et al. In situ gamma ray-initiated polymerization to stabilize surfacemicelles[J]. Journal of the American Chemical Society,2004,126(21):6572-6573.
    [121]刘方.在温和条件下可聚合的表面胶束[D]:[硕士学位论文].长春:吉林大学,2007.
    [122] Durairaj B, Blum F D. Synthesis and dynamics of oligomeric micelles[J]. Langmuir,1989,5(2):370-372.
    [123] Chu D Y, Thomas J. Photophysical characterization of polyelectrolytes in the form of polymerizedmicelles from an ionic surfactant with a terminal double bond[J]. Macromolecules,1991,24(9):2212-2216.
    [124] Arai K. Copolymerizations of sodium10-undecenoate with styrene and sodium acrylate[J]. DieMakromolekulare Chemie,1993,194(7):1975-1981.
    [125] Denton J M, Duecker D C, Sprague E D. Size and solution behavior of sodium10-undecenoateoligomers[J]. Journal of Physical Chemistry,1993,97(3):756-762.
    [126] Roy S, Dey J. Self-organization and microstructures of sodium11-acrylamidoundecanoate inwater[J]. Langmuir,2003,19(23):9625-9629.
    [127] Spontaneously formed vesicles of sodium N-(11-acrylamidoundecanoyl)-glycinate and L-alaninate inwater[J]. Langmuir,2005,21(23):10362-10369.
    [128] Nayak R R, Roy S, Dey J. Characterization of polymeric vesicles of poly(sodium11-acrylamidoundecanoate) in water[J]. Colloid and Polymer Science,2006,285(2):219-224.
    [129] Hitzman C J, Elmquist W F, Wattenberg L W, et al. Development of a respirable, sustained releasemicrocarrier for5‐fluorouracil: in vitro assessment of liposomes, microspheres, and lipid coatednanoparticles[J]. Journal of Pharmaceutical Sciences,2006,95(5):1114-1126.
    [130] Nounou M M, El-Khordagui L K, Khalafallah N A, et al. In vitro release of hydrophilic andhydrophobic drugs from liposomal dispersions and gels[J]. Acta Pharmaceutica,2006,56(3):311-324.
    [131] Soni V, Kohli D, Jain S. Transferrin-conjugated liposomal system for improved delivery of5-fluorouracil to brain[J]. Journal of Drug Targeting,2008,16(1):73-78.
    [132] Alvi I A, Madan J, Kaushik D, et al. Comparative study of transfersomes, liposomes, and niosomesfor topical delivery of5-fluorouracil to skin cancer cells: preparation, characterization, in-vitrorelease, and cytotoxicity analysis[J]. Anti-Cancer Drugs,2011,22(8):774-782.
    [133] Sugahara K N, Teesalu T, Karmali P P, et al. Coadministration of a tumor-penetrating peptideenhances the efficacy of cancer drugs[J]. Science,2010,328(5981):1031-1035.
    [134] Zakir F, Vaidya B, Goyal A K, et al. Development and characterization of oleic acid vesicles for thetopical delivery of fluconazole[J]. Drug Delivery,2010,17(4):238-248.
    [135] Dhillon V, Sharma S, Jain S, et al. Formulation characterization and evaluation of new topical5-fuby drug entrapment in oleic acid vesicles[J]. American Journal of PharmTech Research,2011,1(2):1-16.
    [136] Verma S, Bhardwaj A, Vij M, et al. Oleic acid vesicles: a new approach for topical delivery ofantifungal agent[J]. Artificial Cells, Nanomedicine, and Biotechnology,2014,42(2):95-101.
    [137] Bandyopadhyay P. Fatty alcohols or fatty acids as niosomal hybrid carrier: Effect on vesicle size,encapsulation efficiency and in vitro dye release[J]. Colloids and Surfaces B: Biointerfaces,2007,58(1):68-71.
    [138] Loudet C, Diller A, Grélard A, et al. Biphenyl phosphatidylcholine: a promoter of liposomedeformation and bicelle collective orientation by magnetic fields[J]. Progress in Lipid Research,2010,49(3):289-297.
    [139] Huang C, Lucas B, Vervaet C, et al. Unbreakable codes in electrospun fibers: digitally encodedpolymers to stop medicine counterfeiting[J]. Advanced Materials,2010,22(24):2657-2662.
    [140]张伟光,姜国玉,康慧珏.磷脂与脂质体技术[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [141] Teschke O, de Souza E F. Liposome structure imaging by atomic force microscopy: verification ofimproved liposome stability during adsorption of multiple aggregated vesicles[J]. Langmuir,2002,18(17):6513-6520.
    [142] Furukawa R, Yamada Y, Takenaga M, et al. Octaarginine-modified liposomes enhance theanti-oxidant effect of lecithinized superoxide dismutase by increasing its cellular uptake[J].Biochemical and Biophysical Research Communications,2011,404(3):796-801.
    [143] Mahale N B, Thakkar P D, Mali R G, et al. Niosomes: novel sustained release nonionic stablevesicular systems-an overview[J]. Advances in Colloid and Interface Science,2012,183-184:46-54.
    [144] Hua Y, Sinha R, Martineau M, et al. A common origin of synaptic vesicles undergoing evoked andspontaneous fusion[J]. Nature Neuroscience,2010,13(12):1451-1453.
    [145] Marianecci C, Paolino D, Celia C, et al. Non-ionic surfactant vesicles in pulmonary glucocorticoiddelivery: characterization and interaction with human lung fibroblasts[J]. Journal of ControlledRelease,2010,147(1):127-135.
    [146] Mai Y, Eisenberg A. Controlled incorporation of particles into the central portion of vesicle walls[J].Journal of the American Chemical Society,2010,132(29):10078-10084.
    [147]张贵民.纳能托超微载体系统的透皮性能研究[J].日用化学工业,2001,31(2):17-21.
    [148] Zhang L, Eisenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J]. Science,1995,268(5218):1728-1731.
    [149] Honda S, Yamamoto T, Tezuka Y. Topology-directed control on thermal stability: micelles formedfrom linear and cyclized amphiphilic block copolymers[J]. Journal of the American ChemicalSociety,2010,132(30):10251-10253.
    [150] Yang Y Q, Guo X D, Lin W J, et al. Amphiphilic copolymer brush with random pH-sensitive/hydrophobic structure: synthesis and self-assembled micelles for sustained drug delivery[J]. SoftMatter,2012,8(2):454-464.
    [151] Bonacucina G, Cespi M, Misici-Falzi M, et al. Colloidal soft matter as drug delivery system[J].Journal of Pharmaceutical Sciences,2009,98(1):1-42.
    [152] Gebicki J, Allen A O. Relationship between critical micelle concentration and rate of radiolysis ofaqueous sodium linoleate[J]. Journal of Physical Chemistry,1969,73(7):2443-2445.
    [153]朱步瑶,吴立军,黄建滨,等.十一烯酸钠与十一酸钠水溶液的表面化学[J].物理化学学报,1998,14(11):1025-1029.
    [154]李勇慧,黄建滨,王传忠,等.易水解类表面活性剂的表面与胶团性质[J].物理化学学报,2001,17(11):972-977.
    [155] Phoeung T, Aubron P, Rydzek G, et al. pH-Triggered release from nonphospholipid LUVsmodulated by the pKa of the included fatty acid[J]. Langmuir,2010,26(15):12769-12776.
    [156] Bo T, Xu W, Jing W, et al. Study on the supramolecular multirecognition mechanism ofbeta-naphthol/beta-cyclodextrin/anionic surfactant in a tolnaftate hydrolysis system[J]. Journal ofPhysical Chemistry B,2006,110(17):8877-8884.
    [157]Walde P, Namani T, Morigaki K, et al. Formation and properties of fatty acid vesicles (liposomes)[J].Liposome Technology,2006,1:1-19.
    [158]王明锋.表面胶束的形态控制与稳定化途径[D]:[硕士学位论文].长春:吉林大学,2004.
    [159] Ahn H J, Thiyagarajan P, Jia L, et al. An optimal substrate design for SERS: dual-scalediamond-shaped gold nano-structures fabricated via interference lithography[J]. Nanoscale,2013,5(5):1836-1842.
    [160] Bhuvana M, Narayanan J S, Dharuman V, et al. Gold surface supported spherical liposome-goldnano-particle nano-composite for label free DNA sensing[J]. Biosensors and Bioelectronics,2013,41:802-808.
    [161] Jia K, Bijeon J L, Adam P M, et al. Large scale fabrication of gold nano-structured substrates viahigh temperature annealing and their direct use for the LSPR detection of atrazine[J]. Plasmonics,2013,8(1):143-151.
    [162] Wn k M, Górzny M, Ward M, et al. Fabrication and characterization of gold nano-wires templatedon virus-like arrays of tobacco mosaic virus coat proteins[J]. Nanotechnology,2013,24(2):025605.
    [163] Chen Y, Jiang B, Xiang Y, et al. Target recycling amplification for sensitive and label-freeimpedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites[J]. ChemicalCommunication,2011,47(48):12798-12800.
    [164] Gong J, Miao X, Zhou T, et al. An enzymeless organophosphate pesticide sensor using Aunanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction[J]. Talanta,2011,85(3):1344-1349.
    [165] Zhao J, Lin F, Yi Y, et al. Dual amplification strategy of highly sensitive thrombin amperometricaptasensor based on chitosan-Au nanocomposites[J]. Analyst,2012,137(15):3488-3495.
    [166] Zhang J, Liu X, Wu S, et al. One-pot fabrication of uniform polypyrrole/Au nanocomposites andinvestigation for gas sensing[J]. Sensors and Actuators B: Chemical,2013,186:695-700.
    [167] Chen C D, Yeh Y T, Wang C. The fabrication and photo-induced melting of networked goldnanostructures and twisted gold nanorods[J]. Journal of Physics and Chemistry of Solids,2001,62(9):1587-1597.
    [168] Nikolov A, Nedyalkov N, Nikov R, et al. Processing conditions in pulsed laser ablation of gold inliquid for fabrication of nanowire networks[J]. Applied Surface Science,2014,302:243-249.
    [169] Vossmeyer T, Stolte C, Ijeh M, et al. Networked gold-nanoparticle coatings on polyethylene: chargetransport and strain sensitivity[J]. Advanced Functional Materials,2008,18(11):1611-1616.
    [170]王磊,党永强,张敏,等.蜂毒素在功能化金纳米粒子表面的吸附及构象变化[J].高等学校化学学报,2009,30(1):135-139.
    [171] Gao S, Zhang H, Liu X, et al. Room-temperature strategy for networked nonspherical goldnanostructures from Au (III)[G-2] CO2H dendrimer complex[J]. Journal of Colloid and InterfaceScience,2006,293(2):409-413.
    [172]骆姣,董明南,张友玉.新型三维网状纳米金复合物的制备及表征[J].湖南师范大学自然科学学报,2010,33(3):62-66.
    [173]李亮,张衡益,赵金,等.以C60为媒介的网状金纳米粒子聚集体的构筑[J].高等学校化学学报,2013,34(7):1640-1645.
    [174]彭红珍.功能纳米界面的构建及其在生物传感中的应用[D]:[硕士学位论文].南昌:南昌大学,2007.
    [175] Mallick K, Witcomb M J, Scurrell M S. Gold in polyaniline: recent trends[J]. Gold Bulletin,2006,39(4):166-174.
    [176] Dey A, Kaushik A, Arya S K, et al. Mediator free highly sensitive polyaniline-gold hybridnanocomposite based immunosensor for prostate-specific antigen (PSA) detection[J]. Journal ofMaterials Chemistry,2012,22(29):14763-14772.
    [177] Afzal A B, Akhtar M J, Nadeem M, et al. Investigation of structural and electrical properties ofpolyaniline/gold nanocomposites[J]. Journal of Physical Chemistry C,2009,113(40):17560-17565.
    [178] Wang Z, Yuan J, Li M, et al. Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite[J]. Journal of Electroanalytical Chemistry,2007,599(1):121-126.
    [179] Premlal B, Cranney M, Vonau F, et al. Surface intercalation of gold underneath a graphenemonolayer on SiC (0001) studied by scanning tunneling microscopy and spectroscopy[J]. AppliedPhysics Letters,2009,94(26):263115.
    [180] Hu Y, Jin J, Wu P, et al. Graphene-gold nanostructure composites fabricated by electrodepositionand their electrocatalytic activity toward the oxygen reduction and glucose oxidation[J].Electrochimica Acta,2010,56(1):491-500.
    [181] Park G, Lee K G, Lee S J, et al. Synthesis of graphene-gold nanocomposites via sonochemicalreduction[J]. Journal of Nanoscience and Nanotechnology,2011,11(7):6095-6101.
    [182] Biris A R, Pruneanu S, Pogacean F, et al. Few-layer graphene sheets with embedded goldnanoparticles for electrochemical analysis of adenine[J]. International Journal of Nanomedicine,2013,8:1429-1438.
    [183] Chegel V I, Raitman O A, Lioubashevski O, et al. Redox-switching of electrorefractive,electrochromic, and conductivity functions of Cu2+/polyacrylic acid films associated withelectrodes[J]. Advanced Materials,2002,14(21):1549-1553.
    [184] Katz E, Willner I. A biofuel cell with electrochemically switchable and tunable power output[J].Journal of the American Chemical Society,2003,125(22):6803-6813.
    [185] Sheeney-Haj-Ichia L, Cheglakov Z, Willner I. Electroswitchable photoelectrochemistry byCu2+-polyacrylic acid/CdS-nanoparticle assemblies[J]. Journal of Physical Chemistry B,2004,108(1):11-15.
    [186]唐艳红,曹宇,沈国励,等.借助聚丙烯酸制备铜粒子修饰电极并用于双氧水的电催化性能研究[J].化学学报,2009,67(12):1291-1296.
    [187] Tang Y, Cao Y, Wang S, et al. Surface attached-poly (acrylic acid) network as nanoreactor to in-situsynthesize palladium nanoparticles for H2O2sensing[J]. Sensors and Actuators B: Chemical,2009,137(2):736-740.
    [188]雷涌.几种无机/有机纳米复合材料的电化学酶传感器研究[D]:[硕士学位论文].长沙:湖南大学,2011.
    [189] Fang Y, Pang P P, Lai Z Y. pH-Responsive self-assembly of partially hydrolyzed polyacrylamide inaqueous solution[J]. Chemistry Letters,2011,40(10):1074-1076.
    [190]方云.均聚物/表面活性剂或无规共聚物的水相自组装及微反应器应用[D]:[博士学位论文].上海:复旦大学,2011.
    [191] Karuna M S L, Devi B L A P, Prasad P S S, et al. Synthesis of sulfated sodium salts of1-alkylamino-3-alkyloxy-2-propanols and N,N-di-(2-hydroxy-3-alkyloxy propyl) alkylamines aspotential surfactants[J]. Journal of Surfactants and Detergents,2009,12(2):117-123.
    [192] Rais F, Baati R, Damak N, et al. The use of a eutectic mixture of olive pomace oil fatty amides toeasily prepare sulfated amides applied as lime soap dispersants[J]. Journal of the American OilChemists' Society,2008,85(9):869-877.
    [193] Ansari W H, Fatma N, Panda M, et al. Solubilization of polycyclic aromatic hydrocarbons by novelbiodegradable cationic gemini surfactant ethane-1,2-diyl bis (N, N-dimethyl-N-hexadecylammoniumacetoxy) dichloride and its binary mixtures with conventional surfactants[J].Soft Matter,2013,9(5):1478-1487.
    [194] Darke W, McBain J, Salmon C. The ultramicroscopic structure of soaps[J]. Proceedings of the RoyalSociety of London. Series A,1921,98(694):395-409.
    [195] Lin Z, Cai J, Scriven L, et al. Spherical-to-wormlike micelle transition in CTAB solutions[J]. Journalof Physical Chemistry,1994,98(23):5984-5993.
    [196] Silvander M, Karlsson G, Edwards K. Vesicle solubilization by alkyl sulfate surfactants: a cryo-TEMstudy of the vesicle to micelle transition[J]. Journal of Colloid and Interface Science,1996,179(1):104-113.
    [197] Mu J H, Li G Z, Wang Z W. Effect of surfactant concentration on the formation and viscoelasticityof anionic wormlike micelle by the methods of rheology and freeze-fracture TEM[J]. RheologicaActa,2002,41(6):493-499.
    [198]纪云,张晓红,郭荣.明胶和阳离子表面活性剂CTAB的相互作用[J].化学学报,2004,62(4):345-350.
    [199] Jiang Z, Liu J, Sun K, et al. pH-and Concentration-induced micelle-to-vesicle transitions inpyrrolidone-based Gemini surfactants[J]. Colloid and Polymer Science,2014,292(3):739-747.
    [200]王晶,孙春生,刘雪锋,等.山莓状金-树脂微球的制备及SERS性能[J].高等学校化学学报,2013,34(3):563-566.
    [201] Liu X F, Sun C H, Linn N C, et al. Wafer-scale surface-enhanced Raman scattering substrates withhighly reproducible enhancement[J]. Journal of Physical Chemistry C,2009,113(33):14804-14811.
    [202] Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with theappearance of nonmetallic properties[J]. Science,1998,281(5383):1647-1650.
    [203] Zeng J, Zhang Q, Chen J, et al. A comparison study of the catalytic properties of Au-basednanocages, nanoboxes, and nanoparticles[J]. Nano Letters,2009,10(1):30-35.
    [204] Jain S, Bates F S. On the origins of morphological complexity in block copolymer surfactants[J].Science,2003,300(5618):460-464.
    [205] Huang X, Cao M, Wang J, et al. Controllable organization of a carboxylic acid type geminisurfactant at different pH values by adding copper (II) ions[J]. Journal of Physical Chemistry B,2006,110(39):19479-19486.
    [206] van Nostrum C F. Covalently cross-linked amphiphilic block copolymer micelles[J]. Soft Matter,2011,7(7):3246-3259.
    [207] Zhu Z, Xu H, Liu H, et al. Stabilization of catanionic vesicles via polymerization[J]. Journal ofPhysical Chemistry B,2006,110(33):16309-16317.
    [208] Becucci L, Papini M, Verardi R, et al. Phospholamban and its phosphorylated form requirenon-physiological transmembrane potentials to translocate ions[J]. Soft Matter,2012,8(14):3881-3888.
    [209] Budin I, Debnath A, Szostak J W. Concentration-driven growth of model protocell membranes[J].Journal of the American Chemical Society,2012,134(51):20812-20819.
    [210]Yan Q, Zhou R, Fu C, et al. CO2-Responsive polymeric vesicles that breathe[J]. Angewandte Chemie,2011,123(21):5025-5029.
    [211] van Hest J C. Materials science: pulsating vesicles[J]. Nature,2009,461(7260):45-47.
    [212] Yu S, Azzam T, Rouiller I, et al. Breathing vesicles[J]. Journal of the American Chemical Society,2009,131(30):10557-10566.
    [213] Yan B, Han D, Boissière O, et al. Manipulation of block copolymer vesicles using CO2: dissociationor breathing [J]. Soft Matter,2013,9(6):2011-2016.
    [214] Dong R, Zhu B, Zhou Y, et al. Breathing vesicles with jellyfish-like on-off switchable fluorescencebehavior[J]. Angewandte Chemie International Edition,2012,51(46):11633-11637.
    [215] Stevenson S A, Blanchard G. Investigating internal structural differences between micelles andunilamellar vesicles of decanoic acid/sodium decanoate[J]. Journal of Physical Chemistry B,2006,110(26):13005-13010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700