用户名: 密码: 验证码:
电化学光电转换与储存的新构思与新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是当今社会所面临的一个重大问题。化石能源在目前的能源结构中占据了90%以上的比重,一方面,化石能源的利用产生了大量的污染性气体,对环境造成极大的破坏;另一方面,随着人类开采和利用的规模逐步提升,化石能源的短缺和枯竭正逐渐变为现实。因此,寻找一种安全的,绿色的可替代能源成为了一种必然。太阳能作为一种取之不尽、用之不竭的可再生能源,具有分布广泛,环保无污染等优势,被公认为最合适的替代能源。近年来,光电产业得到了大力的发展。硅太阳能电池效率高、稳定性好,但价格昂贵;染料敏化太阳能电池(DSSC)虽具有成本低、制造工艺简单、适宜大规模生产等优势,但也存在长期稳定性差等问题。总的来说,目前的太阳能的光电转换技术得到了长足的发展,但由于太阳能是一种间歇式、分散式的能源,难以进行直接储存,因而限制了其更为广泛的应用。本论文旨在探索基于DSSC的光-电-化学能量转换与储存体系,实现以化学能形式对太阳能进行直接储存,并且能够随时随地的将化学能转化为电能加以利用;另外,我们设计了一种基于DSSC的光促燃料电池系统,以有机废水为燃料,同时实现了废水的净化和电能的输出。主要研究内容和结果如下:
     1.本论文首次采用聚3,4-乙撑二氧噻吩(PEDOT)与染料敏化的Ti02复合电极作为光阳极,聚吡咯(PPy)为对电极,LiC104溶液为电解液,构造了一种新型的直接光充电电池(SRB)模型。该模型以固体导电聚合物PPy和PEDOT分别作为阴阳极储能材料,光充电120s,再以8pμA cm-2在无光条件下恒流放电到0.27V,循环10周,容量能够维持在5mAh g-1,基本没有衰减。结果表明,该SRB体系能够实现太阳能到化学能的直接转换和储存。
     2.为了适应大规模储能的要求,我们尝试将DSSC与氧化还原液流电池(RFB)相结合,构造了一个集光电转换与能量储存于一体的双室电池体系:光充电氧化还原液流电池(SRFB)。该体系利用了DSSC的光电转换功能,同时又兼具了RFB电池的流动充放电特性。实验中,我们以13-/I-和DMFc+/DMFc(全甲基二茂铁)为活性物质,光充电2400s,以30μA cm-1进行放电,得到了19.8mAng-1的放电容量,循环10周,性能稳定。另外,以TEMPO+/TEMPO (2,2,6,6-四甲基-1-哌啶酮)和BQ/BQ"(1,4-对苯醌)作为活性物质也实现了充放电的循环。该SRFB体系能够将太阳能直接转化为化学能-氧化还原活性电解液,并可将其分别储存,以实现化学储光;也可直接注入液流电池放电,实现了太阳能-化学能-电能高效直接的转换。该电池的反应室与储液室相对独立,可根据需要调整储液室的大小和位置,能够满足大规模储能的要求。同时,在正负两极室中的活性物质也可以进行灵活的选择以适应各种不同的需求。
     3.以染料敏化的Ti02电极作为光催化电极,空气电极作为对电极,甲基橙溶液作为目标污染物,组成了光促燃料电池(PFC)。在实验中,我们以20mg L-1的甲基橙水溶液作为污染物溶液,在40mW cm-2光照条件下,以50μA cm-2进行放电,放电电压为O.1V,光照120min后,甲基橙溶液的降解率高达98%以上。利用染料对太阳光宽的响应范围来实现更高效的利用太阳能实现有机污染物的降解,解决了传统TiO:粉末作为催化剂的低效率和沉降失效问题;利用空气电极上氧的还原实现了对电子的快速利用,提高了催化效率;另外,该模型是通过光电化学电池进行光催化降解有机物,因此,在降解有机物的同时,光电化学电池还能够对外进行电能的输出,真正的实现了变废为宝。
Seeking for sustainable energy is one of the most significant challenges in our modern society. The use of fossil energy resources has produced massive amount of pollution, destroys our environment and reduces the natural resources in the earth. Thus, it is necessary to find an alternative energy to the fossil fuel. Solar energy is recognized to be an ideal choice for the convenient, green and sustainable energy for the future. In the past decades, in addition to the Si photovoltaic cell, dye-sensitized solar cells (DSSC) have attracted much attention due to their advantages of efficiency, price and technological simplicity. However, solar energy is hardly to store because of its dispersity and intermittency, which limits its application in our daily life. Innovative solar storage technologies are urgently needed to meet the fast-growing demand for solar energy usage. In this thesis, we tried to explore an innovative light-electric-chemic conversion and storage system based on DSSC. In this system, solar energy could be directly converted to chemical energy, which could also be stored as redox-active electrolytes. In addition, we tried to design a photo-assisted fuel cell (PFC) based on photooxidation of organic pollutants, which can realize the sewage purification and power generation at the same time. The main results in this work are summarized as follows:
     1. A novel solar-rechargeable battery (SRB) was proposed and constructed by combining a bi-functional photo-electrode and an electron-storage counter electrode together. The bi-functional photo-electrode was fabricated by hybridizing a dye-sensitized TiO2photo-anode with a hole-storage electrode (poly (3,4-ethylenedioxythiophene), PEDOT), which can convert solar energy to electrical energy and store holes as well. And the counter electrode was consisted of ClO4-doped polypyrrole (PPy). The SRB cell can be photocharged at illumination for120s, and then electrochemically discharged at a constant current of8μA cm-2in the dark. After10cycles of charge-discharge, the discharging capacity maintained at5mAh g-1without decay. The results indicate that the SRB can realize a direct conversion and storage of solar energy into chemical energy.
     2. A solar-rechargeable redox flow battery (SRFB) was fabricated, which integrates solar sorption, photo-induced charge separation, and simultaneous regeneration of redox couples in a two-chambered cell, enabling solar energy to be stored as cathode-and anode-active solutions (chemical energy) separately in a controlled fashion for deferral redox flow battery applications. Here, I3-/I and DMFc+/DMFc (Decamethylferrocene) was used as the active electrolytes. The SRFB was photo charged for2400s. and then discharged at a constant current of30μAcm-2to0.1V in the dark, after10cycles of charge-discharge, the discharging capacity maintains at19.5mAh g-1with acceptable decay. The TEMPO+/TEMPO (2,2,6,6-TetramethylpiperidinE) and BQ/BQ-(1,4-benzoquinone) redox couples can also realize the solar-electric-chemical energy conversion and storage. This device has realized direct conversion of solar energy to electrical energy and made the large scale solar-chemical energy storage possible if the electrolytes are stored in large tanks.
     3. A photo-assisted fuel cell (PFC) was constructed by a dye-sensitized TiO2photo-anode and an air-cathode using a methyl orange (MO) aqueous solution as the target pollutant. In our experiment, under40mW cm-2light intensity,20mg L-1MO aqueous solution was used as the electrolyte. The PFC discharge at a constant current of50μA cm-2at0.1V. After120mins of illumination, the degradation ratio of MO reached up to98%. The dye-sensitized TiO2photo-anode made the pollutant degradation more efficiently and durably ascompared with the conventional TiO2power catalyst because of the wide absorption range of the dye and the confirm structure of the device. The air-electrode ensures the fast consumption of the electrons from the photo-anode, which also enhance the overall efficiency. In this device, we realized the sewage purification and power generation at the same time.
引文
[1]M. Gratzel, Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight, Chem.Inform.,2005,36
    [2]BP Statistical Review of World Energy,2012
    [3]J. G. J. Olivier, G. J. Jeroen, J. Wilson, Long-term trend in global CO2 emissions, PBL Netherlands Environmental Assessment Agency
    [4]王革华,新能源概论,北京,化学工业出版社2011
    [5]冯飞,新能源技术与应用概论,北京,化学工业出版社2011
    [6]李怀辉,硅半导体太阳能电池进展,材料导报A:综述2011,25,49
    [7]寿莎,对太阳能电池研究进展的探究,汽车节能2009,1,12
    [8]黄庆举,硅太阳能电池的应用研究与进展,材料开发与应用2009,24,93
    [9]T. M. Bruton, General trends about photovoltaics based on crystalline silicon, Sol. Energy Mater. Sol. Cells,2002,72,3
    [10]S. K. Sen, How modeling can attract experimentalists to improve solar cell's efficiency: Divide-and-conquer approach, Nonlinear Analysis:Theory, Methods & Applications, 2009,71,196
    [11]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 36), Prog. Photo. Res. Appl.,2010,18,346
    [12]许伟民,何湘鄂,太阳能电池的原理及种类,发电设备2011,25,137
    [13]A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Thin-film silicon solar cell technology, Prog. Photo. Res. Appl.,2004,12,113
    [14]张亮,太阳能电池的研发进展,应用技术2011,6,157
    [15]Fujishima, Akira, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972,238,37
    [16]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737
    [17]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993.115,6382
    [18]A. Hagfeldt. G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chem.Rev.,2010,6595
    [19]M. Gratzel, Photoelectrochemical cells, Nature,2001,414,338
    [20]M. Gratzel, The advent of mesoscopic injection solar cells, Prog. Photo. Res. Appl.,2006,14. 429
    [21]黄娟茹,染料敏化太阳能电池光阳极Ti02薄膜的研究进展,材料导报A.综述篇2011,25,134
    [22]F.-T. Kong, S.-Y. Dai, K.-J. Wang, Review of Recent Progress in Dye-Sensitized Solar Cells, Adv. OptoElectro.,2007
    [23]S. Lee, J. Young Kim, K. Sun Hong, H. Suk Jung, J.-K. Lee, H. Shin, Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode, Solar Energy Materials and Solar Cells,2006,90,2405
    [24]E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers, Journal of the American Chemical Society,2002,125,475
    [25]H. S. Jung, J.-K. Lee, M. Nastasi, S.-W. Lee, J.-Y. Kim, J.-S. Park, K. S. Hong, H. Shin, Preparation of Nanoporous MgO-Coated TiO2 Nanoparticles and Their Application to the Electrode of Dye-Sensitized Solar Cells, Lungmuir,2005,21,10332
    [26]H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, N.-G. Park, Size-dependent scattering efficiency in dye-sensitized solar cell, Inorganica Chimica Acta,2008,361,677
    [27]C. Kim, K.-S. Kim, H. Y. Kim, Y. S. Han, Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell, Journal of Materials Chemistry,2008,18,5809
    [28]Q. z. L.L.Gao, langnuir,2003,19
    [29]A. Chemseddine, T. Moritz, Nanostructuring Titania:Control over Nanocrystal Structure, Size, Shape, and Organization, Eur. J. Inorg. Chem.,1999,1999,235
    [30]G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells,2006,90,2011
    [31]X. Chen, S. S. Mao, Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications, Chem.Inform.,2007,38
    [32]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett.,2005,6,215
    [33]A. Hagfeldt, M. Gratzel, Molecular Photovoltaics, Acc. Chem. Res.,2000,33,269
    [34]A. Fattori, L. M. Peter, H. Wang, H. Miura, F. Marken, Fast Hole Surface Conduction Observed for Indoline Sensitizer Dyes Immobilized at Fluorine-Doped Tin Oxide-TiO2 Surfaces,J.Phys. Chem. C,2010,114,11822
    [35]A. Mishra, M. K. R. Fischer, P. Bauerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules, Angew. Chem., Int. Ed.,2009, 48,2474
    [36]M. Fakis, E. Stathatos, G. Tsigaridas, V. Giannetas, P. Persephonis, Femtosecond Decay and Electron Transfer Dynamics of the Organic Sensitizer D149 and Photovoltaic Performance in Quasi-Solid-State Dye-Sensitized Solar Cells, J. Phys. Chem. C,2011,115,13429
    [37]J. Y. Kim, Y. H. Kim, Y. S. Kim, Indoline dyes with various acceptors for dye-sensitized solar cells, Curr.Appl.Phys.,2011,11, S117
    [38]M. Matsui, Y. Asamura, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Miura, Highly efficient substituted triple rhodanine indoline dyes in zinc oxide dye-sensitized solar cell, Tetrahedron, 2010,66,7405
    [39]Y. Sakuragi, X.-F. Wang, H. Miura, M. Matsui, T. Yoshida, Aggregation of indoline dyes as sensitizers for ZnO solar cells, J. Photochem. Photobiol., A,2010,216,1
    [40]G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary [small pi]-conjugated spacer, Chem. Commun.,2009,2198
    [41]K.-J. Hwang, W.-G. Shim, S.-H. Jung, S.-J. Yoo, J.-W. Lee, Analysis of adsorption properties of N719 dye molecules on nanoporous TiO2 surface for dye-sensitized solar cell, Appl. Surf. Sci.,2010,256,5428
    [42]P. Wang, C. Klein, J.-E. Moser, R. Humphry-Baker, N.-L. Cevey-Ha, R. Charvet, P. Comte, S. M. Zakeeruddin, M. Gratzel, Amphiphilic Ruthenium Sensitizer with 4,4'-Diphosphonic Acid-2,2'-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells,J. Phys. Chem. B,2004,108.17553
    [43]P. Wang, S.M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi. M. Gratzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater.,2003,2,498
    [44]O. Kohle, S. Ruile, M. Graetzel, Ruthenium(Ⅱ) Charge-Transfer Sensitizers Containing 4,4'-Dicarboxy-2,2'-bipyridine. Synthesis, Properties, and Bonding Mode of Coordinated Thio-and Selenocyanates, Inorg. Chem.,1996,35,4779
    [45]D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin, M. Gratzel, Organic Dye-Sensitized Ionic Liquid Based Solar Cells:Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers, Angew. Chem., Int. Ed.,2008,47,1923
    [46]李靖,李祥高,王世荣.染料敏化纳米晶太阳能电池中敏化剂的研究进展,化学通报,2010,12,1066
    [47]P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. Am. Chem. Soc.,2001,123.1613
    [48]Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Gratzel. The 2,2,6,6-Tetramethyl-l-piperidinyloxy Radical:An Efficient, Iodine-Free Redox Mediator for Dye-Sensitized Solar Cells, Adv. Funct. Mater.,2008,18,341
    [49]Z.-S. Wang, K. Sayama, H. Sugihara, Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3- Electrolyte,J. Phys. Chem. B,2005,109,22449
    [50]H. Nusbaumer, S. M. Zakeeruddin, J.-E. Moser, M. Gratzel, An Alternative Efficient Redox Couple for the Dye-Sensitized Solar Cell System, Chem.Euro.Jour.,2003,9,3756
    [51]P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, M. Gratzel. A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells, J. Am. Chem. Soc.,2004,126,7164
    [52]H. Kusama, H. Arakawa, Influence of aminothiazole additives in I-/I3- redox electrolyte solution on Ru(Ⅱ)-dye-sensitized nanocrystalline TiO2 solar cell performance, Sol. Energy Mater. Sol. Cells,2004,82,457
    [53]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Commun.,2002,374
    [54]Y. Wang, Y. Sun, B. Song, J. Xi, Ionic liquid electrolytes based on 1-vinyl-3-alkylimidazolium iodides for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2008,92,660
    [55]Z. Fei, D. Kuang, D. Zhao, C. Klein. W. H. Ang, S. M. Zakeeruddin, M. Gratzel, P. J. Dyson, A Supercooled Imidazolium Iodide Ionic Liquid as a Low-Viscosity Electrolyte for Dye-Sensitized Solar Cells, Inorg. Chem.,2006,45,10407
    [56]P. Wang, S. M. Zakeeruddin, J.-E. Moser, M. Gratzel, A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells, J. Phys. Chem. B,2003, 107,13280
    [57]K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, P. M. Sirimanne, A dye-sensitized nano-porous solid-state photovoltaic cell, Semicond. Sci. Technol., 1995,10,1689
    [58]P. M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter, H. Tributsch, On the photo-degradation of dye sensitized solid-state TiO2 dye Cul cells, Semicond. Sci. Technol., 2003,18,708
    [59]V. P. S. Perera, K. Tennakone, Recombination processes in dye-sensitized solid-state solar cells with Cul as the hole collector, Sol. Energy Mater. Sol. Cells,2003,79,249
    [60]T. Taguchi, X.-t. Zhang, I. Sutanto, K.-i. Tokuhiro, T. N. Rao, H. Watanabe, T. Nakamori, M. Uragami, A. Fujishima, Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film, Chem. Commun.,2003,2480
    [61]G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera, K. Tennakone, Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films:enhancement of the efficiency, J. Photochem. Photobiol., A,2004,164, 183
    [62]G. R. R. A. Kumara, A. K., G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. D. Silva, K. Tennakone, Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide., Sol. Energy Mater. Sol. Cells,2001,69,195
    [63]V. P. S. Perera, M. K. I. Senevirathna, P. K. D. D. P. Pitigala, K. Tennakone, Doping CuSCN films for enhancement of conductivity:Application in dye-sensitized solid-state solar cells, Sol. Energy Mater. Sol. Cells,2005,86,443
    [64]J. Bandara, H. Weerasinghe, Solid-state dye-sensitized solar cell with p-type NiO as a hole collector, Sol. Energy Mater. Sol. Cells,2005,85,385
    [65]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature,1998,395,583
    [66]L. Schmidt-Mende, S. M. Zakeeruddin, M. Gratzel, Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye, Appl. Phys. Lett.. 2005,86,1
    [67]C. S. Karthikeyan, M. Thelakkat, Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance, Inorg. Chim. Acta, 2008,361,635
    [68]J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H.-W. Schmidt. D. Haarer, Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material, Synth. Met.,1997,89.215
    [69]M.T.Haubner, Macromol.Symp.,1997,125,157
    [70]M. Thelakkat, J. Hagen, D. Haarer, H. W. Schmidt, Poly(triarylamine)s- synthesis and application in electroluminescent devices and photovoltaics, Synth. Met.,1999,102, 1125
    [71]D. Poplavskyy, J. Nelson, Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound, J. Appl. Phys.,2003,93,341
    [72]Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells, Synth. Met.,2002,131,185
    [73]K. Manseki. W. Jarernboon, Y. Youhai, K.-J. Jiang, K. Suzuki, N. Masaki, Y. Kim, J. Xia, S. Yanagida, Solid-state dye-sensitized solar cells fabricated by coupling photoelectrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) with silver-paint on cathode, Chem. Commun.,2011,47,3120
    [74]X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, S. Ramakrishna, An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material, Adv. Mater.,2010,22, E150
    [75]侯仲轲,陈立功,薛福华,宋健,有机低分子凝胶因子,化学通报,2005,9,643
    [76]W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes, J. Phys. Chem. B,2003,107,4374
    [77]P. Wang, N. Mohmeyer, H.-W. Schmidt, S. M. Zakeeruddin, M. Gratzel, Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-Obenzylidene-D-sorbitol derivatives as low molecular weight organic gelators, J. Mater. Chem.,2004,14,1905
    [78]H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, Solid-State Composite Electrolyte LiI/3-Hydroxypropionitrile/SiO2 for Dye-Sensitized Solar Cells, J. Am. Chem. Soc.,2005,127, 6394
    [79]H. W. Han, W. Liu, J. Zhang, X. Z. Zhao, A Hybrid Polyethylene oxide)/Poly(vinylidene fluoride)/TiO2 Nanoparticle Solid-State Redox Electrolyte for Dye-Sensitized Nanocrystalline Solar Cells, Adv. Funct. Mater.,2005,15,1940
    [80]郭力,戴松元,王孔嘉,方霞琴,史成武,潘旭,P(VDF-HFP)基凝胶电解质染料敏化纳米TiO2薄膜太阳电池,高等学校化学学报,2005,26,1934
    [81]L. Wang, S. Fang, Y. Lin, X. Zhou, M. Li, A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors, Chem. Commun.,2005,5687
    [82]T. Kato, A. Okazaki, S. Hayase, Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells:The comparison of nano-particle cross-linkers with polymer cross-linkers, J. Photochem. Photobiol, A,2006,179,42
    [83]S. Shimano, H. Zhou, I. Honma, Preparation of Nanohybrid Solid-State Electrolytes with Liquidlike Mobilities by Solidifying Ionic Liquids with Silica Particles, Chem. Mater.,2007, 19,5216
    [84]H. Usui, H. Matsui, N. Tanabe, S. Yanagida, Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes, J. Photochem. Photobiol, A,2004,164,97
    [85]P. Wang, S. M. Zakeeruddin, M. Gratzel, Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells, J. Fluorine Chem.,2004,125, 1241
    [86]Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen. Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells, Electrochem. Commun., 2007,9,596
    [87]K. Suzuki. M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized Chem. Lett.,2003,32,28
    [88]A. Kay, M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cells,1996,44,99
    [89]Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida,I-/I3- redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells,J. Photochem. Photobiol., A,2004,164,153
    [90]T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe, Properties of several types of novel counter electrodes for dye-sensitized solar cells,J. Electroanal. Chem.,2004,574,77
    [91]K.-M. Lee, W.-H. Chiu, H.-Y. Wei, C.-W. Hu, V. Suryanarayanan, W.-F. Hsieh, K.-C. Ho, Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells, Thin Solid Films,2010,518,1716
    [92]Q. W. Jiang, G. R. Li, X. P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells, Chem. Commun.,2009,6720
    [93]D. Yan-Ye, Y. Nan-Fu, L. Guo-Ran, G. Xue-Ping, Carbon Nanotubes with Ni2P Nanoparticles as a Counter Electrode in Dye-sensitized Solar Cells,J. Electrochem.,2012,18,301
    [94]W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, J. H. Kim, Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes, Chem. Commun.,2012,48,9501
    [95]J. Turner, G. Sverdrup, M. K. Mann, P.-C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, D. Blake, Renewable hydrogen production, Int.J. Energy. Res.,2008,32,379
    [96]A. Steinfeld, Solar thermochemical production of hydrogen—a review, Sol.Energy,2005,78, 603
    [97]王宝辉,吴红军,刘淑芝,盖翠萍,太阳能分解水制氢技术研究进展化工进展2006,25.733
    [98]A. Steinfeld. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions, Int. J. Hydrogen Energy,2002,27,611
    [99]王.冯进来,李宝玉,王志涛,新型太阳能制氢系统的分析与研究进展,江西能源,2004,2,12
    [100]李雯,宋倩雯,张念慈,曹逸坤,许享,郭贝贝,潘欣语,李永峰,光发酵制氢的研究现状与发展化要进属2010,29,79
    [101]管英富,邓麦村,金美芳.虞星炬,张卫,微藻光生物水解制氢技术,中国生物工程杂质,2003,23,8
    [102]曾.王海英,微藻生物制氢技术,实用技术,2005,60
    [103]T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energy,2002,27, 991
    [104]A.J.Nozik, p-n photoelectrolysis cells, Appl. Phys. Lett.,1976,29,150
    [105]H. Tributsch, Photovoltaic hydrogen generation, Int. J. Hydrogen Energy,2008,33,5911
    [106]H.Morisaki, Appl. Phys. Lett.,1976,29,338
    [107]A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev.,2009,38,253
    [108]R. M. Navarro Yerga, M. C. Alvarez Galvan, F. del Valle, J. A. Villoria de la Mano, J. L. G. Fierro, Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation, Chem.Sus.Chem.,2009,2,471
    [109]A. J. Bard, Photoelectrochemistry, Science,1980,207,139
    [110]S. Sato, J. M. White, Reactions of water with carbon and ethylene over illuminated Pt/TiO2, Chem. Phys. Lett.,1980,70,131
    [111]T. Kawai, T. Sakata, Conversion of carbohydrate into hygrogen fuel by a photo catalytic process, Nature,1980,286,474
    [112]B. Ohtani, K. Iwai, S.-i. Nishimoto, S. Sato, Role of Platinum Deposits on Titanium(Ⅳ) Oxide Particles:Structural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions, J. Phys. Chem. B,1997,101,3349
    [113]T. Ohno, S. Saito, K. Fujihara, M. Matsumura, Photocatalyzed Production of Hydrogen and Iodine from Aqueous Solutions of Iodide Using Platinum-Loaded TiO2 Powder, Bull. Chem. Soc. Jpn.,1996,69,3059
    [114]D. Dvoranova, V. Brezova, M. Mazur, M. A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal., B,2002,37,91
    [115]R. Vogel, P. Hoyer, H. Weller, Quantum-Sized PbS, CdS. Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors, J. Phys. Chem.,1994,98. 3183
    [116]V. Sukharev, R. Kershaw, Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water,J. Photochem. Photobiol., A,1996,98,165
    [117]I. Bedja, P. V. Kamat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites, J. Phys. Chem.,1995,99,9182
    [118]A. Haesselbarth, A. Eychmueller, R. Eichberger, M. Giersig, A. Mews, H. Weller. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids, J. Phys. Chem.,1993,97, 5333
    [119]K. R. Gopidas, M. Bohorquez, P. V. Kamat, Photophysical and photochemical aspects of coupled semiconductors:charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems,J. Phys. Chem.,1990,94,6435
    [120]郑先君,付永,魏丽芳,许培援.谢冰.魏明宝,纳米TiO2光催化产氢的研究进展,2007,24,
    [121]张晓杰,李树本,吕功煊,染料敏化光催化还原水制氢,分子催化2010,24,569
    [122]G. Hodes, J. Manassen, D. Cahen, Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature,1976,261,403
    [123]Y. Yonezawa, M. Okai, M. Ishino, H. Hada, A Photochemical Storage Battery with an n-GaP Photoelectrode. Bull.Chem.Soc.Jpn.,1983,56,2873
    [124]S. Licht, G. Hodes, R. Tenne, J. Manassen, A light-variation insensitive high efficiency solar cell. Nature,1987,326,863
    [125]T. Miyasaka, T. N. Murakami, The photocapacitor:An efficient self-charging capacitor for direct storage of solar energy, Appl. Phys. Lett.,2005,86,196102
    [126]T. N. Murakami, N. Kawashima, T. Miyasaka, A high-voltage dye-sensitized photocapacitor of a three-electrode system, Chem. Commun.,2005,3346
    [127]H.-W. Chen, C.-Y. Hsu, J.-G. Chen, K.-M. Lee, C.-C. Wang, K.-C. Huang, K.-C. Ho, Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. J. Power Sources,2010,195,6225
    [128]C.-Y. Hsu, H.-W. Chen, K.-M. Lee, C.-W. Hu, K.-C. Ho, A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films, J. Power Sources,2010,195,6232
    [129]H. Nagai, H. Segawa, Energy-storable dye-sensitized solar cell with a polypyrrole electrode, Chem. Commun.,2004,974
    [130]Y. Saito, A. Ogawa, S. Uchida, T. Kubo, H. Segawa, Energy-storable Dye-sensitized Solar Cells with Interdigitated Nafion/Polypyrrole–Pt Comb-like Electrodes, Chem. Lett., 2010,39,488
    [131]Y. Saito, S. Uchida, T. Kubo, H. Segawa, Surface-oxidized tungsten for energy-storable dye-sensitized solar cells, Thin Solid Films,2010,518,3033
    [132]A. Hauch, A. Georg, U.O. Krasovec, B. Orel, Photovoltaically Self-Charging Battery, J. Am. Chem. Soc.,2002,149, A1208
    [1]刘粤会,刘平安,x射线衍射分析原理与应用,化学工业出版社,2006,
    [2]黄惠忠,纳米材料分析,化学工业出版社,2003,3
    [3]章晓中,电子显微分析,清华大学出版社,2008
    [4]蔡元霸,梁玉仓,纳米材料的概述、制备及其结构表征,结构化学,2001,20,425
    [5]何为,唐先忠,王守绪,王磊,线性扫描伏安法与循环伏安法实验,教学研究,2006
    [6]查全性,电极过程动力学,科学出版社,2002
    [7]徐进,锂电池充放电特性分析和测试,中国西部科技,2011,33,3
    [8]章应辉,吴扬,紫外-可见吸收光谱研究4-羟基苯基卟啉及其二酸离子的聚集行为,南开大学学报2004,37,1
    [9]吴敏,朱霞石,β-环糊精交联树脂-紫外可见吸收光谱分析对硝基酚,分析化学研究简报,2009,37,1691
    [1]X.-P. Gao, H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci.,2010,3.174
    [2]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature,2001,414,359
    [3]T. L. Gibson, N. A. Kelly, Solar photovoltaic charging of lithium-ion batteries, J. Power Sources,2010,195,3928
    [4]N. A. Kelly, T. L. Gibson, Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion,J. Power Sources,2011,196,10430
    [5]M. Sharon, P. Veluchamy, C. Natarajan, D. Kumar, Solar rechargeable battery—principle and materials, Electrochim. Acta,1991,36,1107
    [6]A. Hauch, A. Georg, U. O. Krasovec. B. Orel, Photovoltaically Self-Charging Battery,J. Electrochem. Soc.,2002,149, A1208
    [7]Y. Saito, S. Uchida, T. Kubo, H. Segawa, Surface-oxidized tungsten for energy-storable dye-sensitized solar cells, Thin Solid Films,2010,518,3033
    [8]H. Nagai, H. Segawa, Energy-storable dye-sensitized solar cell with a polypyrrole electrode, Chem. Commun.,2004,974
    [9]Y. Saito, A. Ogawa, S. Uchida, T. Kubo, H. Segawa, Energy-storable Dye-sensitized Solar Cells with Interdigitated Nafion/Polypyrrole–Pt Comb-like Electrodes, Chem. Lett., 2010,39,488
    [10]T. N. Murakami, N. Kawashima, T. Miyasaka, A high-voltage dye-sensitized photocapacitor of a three-electrode system, Chem. Commun.,2005,3346
    [11]C.-Y. Hsu, H.-W. Chen, K.-M. Lee, C.-W. Hu, K.-C. Ho, A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films, J. Power Sources,2010,195,6232
    [12]J. Melas-Kyriazi, I. K. Ding, A. Marchioro, A. Punzi, B. E. Hardin, G. E. Burkhard, N. Tetreault, M. Gratzel, J.-E. Moser, M. D. McGehee, The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells, Adv. Energy Mater.,2011,1,407
    [13]X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, S. Ramakrishna, An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material, Adv. Mater.,2010,22, E150
    [14]T. Park, S. A. Haque, R. J. Potter, A. B. Holmes, J. R. Durrant, A supramolecular approach to lithium ion solvation at nanostructured dye sensitised inorganic/organic heterojunctions, Chem. Commun.,2003,2878
    [15]W. Zhang, Y. Cheng, X. Yin, B. Liu, Solid-State Dye-Sensitized Solar Cells with Conjugated Polymers as Hole-Transporting Materials, Macromol. Chem. Phys.,2011,212,15
    [16]G. A. Sotzing, J. R. Reynolds, P. J. Steel, Poly(3,4-ethylenedioxythiophene) (PEDOT) prepared via electrochemical polymerization of EDOT,2,2-Bis(3,4-ethylenedioxythiophene) (BiEDOT), and their TMS derivatives, Adv. Mater.,1997, 9,795
    [1]T. L. Gibson. N. A. Kelly, Solar photovoltaic charging of lithium-ion batteries, J. Power Sources,2010,195,3928
    [2]N. A. Kelly, T. L. Gibson, Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion, J. Power Sources,2011,196,10430
    [3]H.-W. Chen, C.-Y. Hsu, J.-G. Chen, K.-M. Lee, C.-C. Wang, K.-C. Huang, K.-C. Ho, Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods, J. Power Sources,2010,195,6225
    [4]A. Hauch, A. Georg, U. O. Krasovec, B. Orel, Photovoltaically Self-Charging Battery, J. Electrochem. Soc.2002,149, A1208
    [5]C.-Y. Hsu, H.-W. Chen, K.-M. Lee, C.-W. Hu, K.-C. Ho, A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films, J. Power Sources,2010,195,6232
    [6]T. Miyasaka, T. N. Murakami, The photocapacitor:An efficient self-charging capacitor for direct storage of solar energy, Appl. Phys. Lett.,2004,85,3932
    [7]H. Nagai, H. Segawa, Energy-storable dye-sensitized solar cell with a polypyrrole electrode, Chem.Commun.,2004,974
    [8]Y. Saito, A. Ogawa, S. Uchida, T. Kubo. H. Segawa, Energy-storable Dye-sensitized Solar Cells with Interdigitated Nafion/Polypyrrole–Pt Comb-like Electrodes, Chem. Lett., 2010,39,488
    [9]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737
    [10]M. K. Nazeeruddin, A. Kay,1. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,J. Am. Chem. Soc. 1993,115,6382
    [11]J. L. Zhenguo Yang, Suresh Baskaran, Carl H. Imhoff, and Jamie D. Holladay, Enabling Renewable Energy and the FutureGrid with Advanced Electricity Storage, J. Miner. Metal. Mater. Soc.,2010,62,14
    [12]D. You, H. Zhang, J. Chen, A simple model for the vanadium redox battery, Electrochim. Acta, 2009,54,6827
    [13]K.-L. Huang, X.-g. Li, S.-q. Liu, N. Tan, L.-q. Chen, Research progress of vanadium redox flow battery for energy storage in China, Renewable Energy,2008,33,186
    [14]L. Joerissen, J. Garche, C. Fabjan, G. Tomazic, Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems, J. Power Sources, 2004,127,98
    [15]A. Parasuraman, T. M. Lim, C. Menictas, M. S. Kazacos, Review of Material Research and Development for Vanadium Redox Flow Battery Applications, Electrochim. Acta,2012,
    [16]N. G. Connelly, W. E. Geiger, Chemical Redox Agents for Organometallic Chemistry, Chem. Rev.,1996,96,877
    [17]C. P. d. Leon, A. Frias-Ferrer, J. G.-G. b, D. A. Szanto, F. C. Walsh, Redox flow cells for energy conversion, J. Power Sources,2006,160,716
    [18]Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 2010,195,4375
    [19]C. Fujimoto, S. Kim, R. S.**, X. Wei, L. Li, Z. G. Yang, Vanadium redox fl ow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s, Electrochem. Commun.,2012,20,48
    [20]M. K. Nazeeruddin, P. Pe'chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Graltzel, Engineering of Efficient Panchromatic Sensitizers for NanocrystallineTiO2-Based Solar Cells, J. Am. Chem. Soc.,2001,123,1613
    [21]S. Ngamsinlapasathian, S. Pavasupree, Y. Suzuki, S. Yoshikawa, Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method, Sol. Energy Mater. Sol. Cells,2006,90,3187
    [22]E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Gratzel, J.-E. Moser, Enhanced Electron Collection Efficiency in Dye-Sensitized Solar Cells Based on Nanostructured TiO2 Hollow Fibers, Nano Lett.,2010,10,1632
    [23]Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Gratzel; WILEY-VCH Verlag: 2008; Vol.18. p 341.
    [24]J. Min, J. Won, Y. S. Kang, S. Nagase, TEMPO D149 Benzimidazole derivatives in the electrolyte of new-generation organic dye-sensitized solar cells with an iodine-free redox mediator. J. Pholochem. Photobiol., A,2011 9,219,148
    [25]M. G. A Hagfeldt, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 1995,95,49
    [1]S. B. Amor, G. Baud, J. P. Besse, M. Jacquet, Structural and optical properties of sputtered Titania films, Mater. Sci. Eng., B,1997,47,110
    [2]A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C,2000,1,1
    [3]T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films,1999,351,260
    [4]陈颖,黄英,王艳丽,TiO2纳米棒光催化降解甲基橙的研究,材料开发与应用,2011,26,22
    [5]乔秀丽,赵谦,田军,TiO2光催化活性的研究,高师理科学刊,2005,25,47
    [6]T. Kawai, T. Sakata, Conversion of carbohydrate into hygrogen fuel by a photo catalytic process, Nature,1980,286,474
    [7]S. Sato, J. M. White, Reactions of water with carbon and ethylene over illuminated Pt/TiO2, Chem. Phys. Lett.,1980,70,131
    [8]A. Haesselbarth, A. Eychmueller, R. Eichberger, M. Giersig, A. Mews, H. Weller, Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids, J. Phys. Chem.,1993, 97,5333
    [9]R. Vogel, P. Hoyer, H. Weller, Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors, J. Phys. Chem.,1994, 98,3183
    [10]I. Bedja, P. V. Kamat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites, J. Phys. Chem.,1995,99,9182
    [11]T. Ohno, S. Saito, K. Fujihara, M. Matsumura, Photocatalyzed Production of Hydrogen and Iodine from Aqueous Solutions of Iodide Using Platinum-Loaded TiO2 Powder, Bull. Chem. Soc.Jpn.,1996,69,3059
    [12]V. Sukharev, R. Kershaw, Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water, J. Photochem. Photobiol., A,1996,98,165
    [13]B. Ohtani, K. Iwai, S.-i. Nishimoto, S. Sato, Role of Platinum Deposits on Titanium(Ⅳ) Oxide Particles:Structural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions, J. Phys. Chem. B,1997,101,3349
    [14]D. Dvoranova, V. Brezova, M. Mazur, M. A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal.,B,2002,37,91
    [15]高婷,仉春华,黄文静,冯佳琪,林雪鈺,Ag/TiO2-PVA复合膜的光降解性能研究,绿色科技,2012,5,147
    [16]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737
    [17]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 1993,115,6382
    [18]蔡玲,WO3/TiO2复合电极光电催化降解甲基橙性能研究,全国优秀硕博士论文,2009,
    [19]武正簧,周丽,TiO2薄膜光催化降解甲基橙和亚甲基蓝,化学工程师2002,1,1
    [20]张晶晶,王立敏,董淼,负载杂多酸/TiO2可见光下降解甲基橙,天津工业大学学报,2008,27,45
    [21]赵晓兰,张鹏,徐瑞芬,胡伟康,纳米TiO2对甲基橙的吸附及光催化降解,北京工业大学学报,2003,30,10
    [22]朱燕,郁志勇,孙震,李洁,过氧化氢存在下甲基橙光化学反应产物的鉴定,甘肃科学学报,2004,16,44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700