用户名: 密码: 验证码:
安徽省矿山废弃地分布及矿山重金属处理实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源开采,尤其是金属矿产资源开采过程中,废石、尾矿、冶炼渣、矿坑排水、选冶废水、废气、烟尘中的重金属元素都是矿区环境的重要污染源。矿山固体废物通过风化、氧化、淋滤等作用导致固体中重金属元素逐渐释放,使地表水、土壤和地下水受到污染。水体和土壤中的重金属污染物不能被微生物分解,只能被富集和累积,所以,当重金属污染物累积到一定程度时,不但会影响生态物种,还会影响生态系统的结构与功能,污染农作物、水产品等;另外,矿山废弃地中以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,通过直接接触或食物链,从环境、粮食或蔬菜中富集到人体内,直接或间接的威胁人类健康。
     据不完全统计,截至2011年底,安徽省查明储量的金属矿山共960余处,累计查明储量129.9亿吨,其中基建和开采矿区500余处,停采和关闭矿区250处,未利用矿区210余处,对于金属矿山的修复治理尤其是重金属污染的修复治理工作,也就变得尤为重要。在金属矿产资源分布较多的六安、马鞍山、合肥、铜陵、池州等地,矿山废弃地中的重金属污染及酸性矿山废水相对来说也比较严重,主要的重金属污染元素为Cu、Cd、Hg、Pb、Zn、Cr等,尤其是Cd元素,其毒性最大,多年来一直是专家学者及政府关注的焦点。
     本课题组的前期研究表明,沉积型凹凸棒石粘土对部分重金属离子具有很好的去除效果;氢气还原针铁矿制备铁粉对降解硝态氮、亚硝态氮和除磷具有很好的性能,也表现出优越的还原活性;蒙脱石对重金属离子的去除效果也广为研究,并表现出很好的吸附效果。所以,为了研究矿物吸附法对去除重金属离子的作用效果,拓展凹凸棒石粘土、天然针铁矿和蒙脱石的应用领域,充分挖掘矿物的材料属性,为环境保护开发新的功能材料,进而更有效的防治矿山重金属污染,促进经济、社会、生态环境可持续协调发展。本文分析了安徽省矿产资源开发利用现状、安徽省金属矿产资源及矿山废弃地的分布特征,根据可能产生的重金属污染,研究了三种铁粉、两种凹凸棒石粘土和两种蒙脱石对八种重金属离子的去除效果及可能的去除机理。
     首先对安徽省矿产资源开发利用现状,尤其是金属矿产资源的开发利用现状数据进行了整理,利用Arcgis软件分析,研究了安徽省矿产资源及矿山废弃地的分布特征,确定了不同类型矿山废弃地修复治理的重点区域。重点结合矿产资源开采过程中和开采后可能产生的重金属污染,研究了天然针铁矿氢还原铁粉、合成针铁矿氢还原铁粉和商用铁粉、沉积型凹凸棒石粘土、热液型凹凸棒石粘土、钠基蒙脱石和钙基蒙脱石对模拟矿山重金属污染(Pb2+、Zn2+Cu2+、Co2+、Cd2+、Hg+、Ag+、Cr6+)的去除效果。实验中运用伪二级吸附动力学模型分析、Langmuir和Freundlich吸附等温式拟合、吸附热力学分析考察了吸附时间、重金属初始浓度、温度等因素对七种材料去除八种重金属离子的影响;并利用X-射线衍射(XRD)、场发射扫描电镜(FE-SEM/EDS)、透射电镜(TEM)、红外光谱(FT-ATR、FT-IES)、热分析(TG/DTG)、比表面积和孔结构等分析表征手段,对反应前后材料进行表征,探究了各种材料的晶体结构、成分、形貌特征及其去除重金属离子的可能机制。主要成果总结如下:
     1.通过对安徽省矿产资源开发利用情况进行分析,发现从累计查明储量分布情况来看,金属矿产资源储量从大到小依次为六安、马鞍山、合肥、铜陵、池州等,大部分为长江沿岸区域,这也是安徽省矿山废弃地分布较广以及重金属污染及酸性矿山排水的重点防治区域。
     2.通过XRD、TEM、SEM、TG/DTG等技术表征了天然针铁矿氢还原铁粉、合成针铁矿氢还原铁粉和商用铁粉。结果显示,氢还原天然针铁矿可制备纳米级铁粉,氢还原合成针铁矿可制备百纳米级铁粉,商用铁粉为微米级铁粉。
     3.研究了三种铁粉去除重金属离子的效果,考察了时间、初始浓度、温度的影响。对八种重金属离子的去除效果来说,HG-ZVI>NG-ZVI≈CIP。HG-ZVI在去除各种重金属离子上都优于NG-ZVI和CIP,NG-ZVI在去除Cr6+上优于CIP,但去除Cu2+差于CIP,分析认为比表面积是制约CIP处理效果的主要因素,天然针铁矿中含有的杂质、铁的类质同相替代以及颗粒团聚是制约NG-ZVI的主要因素。
     4.研究了三种铁粉去除八种重金属离子的可能机理。结果表明,三种铁粉对Cu2+均具有很好的还原作用,CIP可将Cu2+迅速还原为Cu单质,NG-ZVI、HG-ZVI先将Cu2+还原为Cu+,再进一步还原为Cu0;NG-ZVI和HG-ZVI可迅速将Ag+还原为Ag单质。HG-ZVI可降解Cr6+为Cr3+,从而降低毒性。三种铁粉对Pb2+、Zn2+、Co2+、Cd2+四种离子的去除主要通过吸附或沉淀作用实现。
     5.通过XRD、FE-SEM/EDS、FT-ATR及FT-IES等技术手段表征了沉积型凹凸棒石粘土和热液型凹凸棒石粘土。结果表明,沉积型凹凸棒石粘土含有少量的石英和白云石杂质,且为富Fe凹凸棒石粘土,具有高比表面积和总孔体积:热液型凹凸棒石粘土纯度高,基本不含杂质,比表面积和总孔体积远低于沉积型凹凸棒石粘土。
     6.研究了沉积型凹凸棒石粘土和热液型凹凸棒石粘土去除八种重金属离子的影响。结果表明,沉积型凹凸棒石粘土对重金属离子的去除远优于热液型凹凸棒石粘土,但两者对Cr6+的去除效果很差。分析认为,沉积型凹凸棒石粘土的富铁特性、高比表面积、总孔体积及短棒形貌为其去除重金属离子提供了有利条件,如吸附位、断面质子化诱导金属离子沉淀。吸附机理研究表明,沉积型凹凸棒石粘土主要通过诱导金属离子沉淀和吸附作用去除重金属离子。
     7.通过XRD、TG/DTG、BET等技术表征了钠基蒙脱石和钙基蒙脱石。结果表明,钙基蒙脱石纯度高于钠基蒙脱石,钠基蒙脱石中含有少量的长石和石英;钙基蒙脱石层间水多于钠基蒙脱石,层间距大于钠基蒙脱石;钙基蒙脱石比表面积和总孔体积均比钠基蒙脱石大。
     8.研究了钠基蒙脱石和钙基蒙脱石去除八种重金属离子的影响。结果表明,钠基蒙脱石对重金属离子的去除效果优于钙基蒙脱石,但两者对Cr6+的去除效果很差。分析认为,效果差异性与两种蒙脱石去除重金属离子的机理有关。通过吸附前后溶液pH动态检测、溶液Na+或Ca2+浓度变化及吸附后固体XRD表征,结果表明,钙基蒙脱石主要通过交换作用实现去除重金属离子,钠基蒙脱石主要通过交换作用和诱导沉淀作用去除重金属离子。
     9.三种材料去除重金属离子的研究可知,铁粉主要通过吸附、共沉淀作用去除Pb2+、Zn2+、 Co2+、Cd2+、还原作用参与HG-ZVI去除Cu2+、Ag+和Cr6+的过程,从而去除或降低其毒性,其作用机理与蒙脱石和凹凸棒石粘土不尽相同。凹凸棒石粘土以诱导沉淀和吸附作用、蒙脱石主要以诱导沉淀和交换作用去除重金属离子,蒙脱石去除效果优于凹凸棒石粘土。
Heavy metal derived from mine tailing, mine processing and metallurgy, and dust during the mining is the main pollution in mining area. Heavy metal can release from minerals after weathering, oxidation, and leaching and then step into surface water, soil, and ground water by irrigation, sedimentation, and permeation, which would result in the pollution of soil and groundwater. As we known, heavy metals are hard to be decomposed and easy to enrich and accumulate. This behavior will seriously affect the ecological species, the structure and function of ecosystem, and pollute the crops and aquatic products. In addition, heavy metals existing as different chemical state will indirectly or directly threaten human beings'life by food chains after they step into environments.
     According to the incomplete statistics, the quantity of metal mine identified metal mineral occurrence of Anhui province comes to960; identified storage comes to12.99billion ton, in which mining reaches500, stopped or closed comes to250, and unmining comes to210. Therefore, it is becoming more and more important to prevent and cure the heavy metal pollution. The metal mines mainly distribute in Luan, Maanshan, Hefei, Tongling, Chizhou city, etc, where Cu2+、Cd2+、Hg+、 Pb2+、Zn2+、Cr6+are found as the main metal pollutions and have been attracting the attention of experts, scholars, and governments.
     Sedimentary palygorskite is documented having a good adsorption capacity to heavy metals; iron powder prepared by reducing goethite possesses great reductive activity to nitrate and nitrite, and good adsorption capacity to phosphate. In addition, montmorillonite is also proved to be a good adsorbent to removal heavy metals. Therefore, in order to study the efficiency of mineral adsorption to remove heavy metals; to broaden the application field of palygorskite, goethite and montomorillonite, and explore the material properties of minerals; to explore new materials for environmental protection to effectively prevent and cure heavy metal pollutions of mining area and improve the sustainable development of economy, society and ecological environment. In the present work, we analysized the status of exploitation and utilization of Anhui metal mine resource and its distribution characteristics. Based on the possible pollution types of heavy metal, we studied the efficiency of three kinds of iron powders, two kinds of palygorskites and two kinds of montomorillonites to remove eight kinds of heavy metal ions from aqueous solution and the removal mechanism.
     In this thesis, the status of exploitation and utilization of Anhui mine resources, especially for the metal mine resources, was analysized. The distribution characteristics of Anhui mine resources and mining wasteland were drawn using Arcgis software and the key zone of prevention and cure was confirmed. What was mostly important, the efficiency of iron powder prepared by reducing natural goethite and synthetic goethite, commercial iron powder, sedimentary palygorskite, hydrothermal palygorskite, Na-montomorillonite and Ca-montomorillonite to remove Pb2+、Zn2+、 Cu2+、Co2+、Cd2+、Hg+、Ag+、Cr6+was investigated based on the analysis results above. In addition, pseudo-second-order kinetic model, Langmuir and Freundlich isotherms, and adsorption dynamic were used to analysize the effect of adsorption time, heavy meatal initial concentration and adsoption temperature on removal of heavy metals using seven kinds of materials. The solution pH of some materials before and after adsoption was measured. Eventually, XRD, FE-SEM/EDS, TEM, FT-ATR, FT-IES, TG/DTG, BET, etc, were utilized to characterize the seven materials before and after adsorption, in order to study the the removal mechanism. The main conclusions obtained from the analysis and experiments are listed as follows:
     1. Based on the analysis of the status of exploitation and utilization of Anhui mine resources, it can conclude that the order of the metal mine storage is Luan city>Maanshan city>Hefei city>Tongling city>Chizhou city>Huangshan city. These city was speculated as the key prevention and cure area of heavy metal pollution.
     2. Iron powder prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (HG-ZVI), and commercial iron powder (CIP) were characterized using XRD, TEM, SEM, TG/DTG, etc. The results showed that NG-ZVI with a size of nano scale iron powder and HG-ZVI with a size of several hundreds of nanometer were prepared by reducing goethite in hydrogen. The CIP was a kind of micron scale iron powder.
     3. The effect of adsorption time, initial concentration, adsorption temperature on removal of heavy metals using three kinds of iron powder was investigated. Totally, the order of removal efficiency was HG-ZVI>NG-ZVI≈CIP. The adsorption capacity of HG-ZVI to eight heavy metals was higher that of NG-ZVI and CIP. The adsorption capacity of NG-ZVI to Cr6+was higher than that of CIP, however, The adsorption capacity of CIP to Cu2+was higher than that of NG-ZVI. It was suggested that the surface area was key factor limiting the activity of CIP, and the impurity, isomorphous substitution and aggregation were the factors affecting the activity of NG-ZVI.
     4. The removal mechanism showed that three kinds of iron have a reductive activity to Cu2+. Cu2+was reduced into Cu0by CIP, Cu2+was reduced into Cu+and then into Cu0by NG-ZVI or HG-ZVI. NG-ZVI and HG-ZVI can reduce Ag+into Ag0quickly, In addition, Cr6+can be degraded into Cr3+by HG-ZVI, which decreased the toxicity. Adsorption or/and precipitation is/are regarded as the main mechanism for three kinds of iron powder removal of Pb2+、Zn2+、 Co2+、Cd2+.
     5. Sedimentary palygorskite (SPG) and hydrothermal palygorskite (HPG) were characterized using XRD, FE-SEM/EDS, FT-ATR, FT-IES, etc. The results showed that SPG contained some quartz and dolomite, was kind of Fe-substituted palygorskite, and possessed large surface area and total pore volume. HPG was highly pure, however, had a lower surface area and total pore volume than that of SPG
     6. The effect of adsorption time, initial concentration, adsorption temperature on removal of heavy metals using SPG and HPG was investigated. The results showed that HPG had a better adsorption capacity to selected heavy metals than that of SPG. Nevertheless, the both palygorskite has a bad capacity to Cr6+. It was suggested that the characteristic of Fe substitution, large surface area and morphology of SPG provided benefit conditions for removal of heavy metals. The induced metal precipitation and adsorption were regarded as the main mechanism for removal of heavy metals by SPG.
     7. Na-montomorillonite (Na-M) and Ca-montomorillonite (Ca-M) were characterized by XRD, TG/DTG, and BET, etc. The results showed that Ca-M was purer than that of Na-M which contained some quartz and feldspar. The interlayer water of Ca-M was more than that of Na-M. The interlayer space, surface area and total pore volume of Ca-M were also larger than that of Na-M.
     8. The effect of adsorption time, initial concentration, adsorption temperature on removal of heavy metals using Na-M and Ca-M was investigated. The results showed that Na-M had a better adsorption capacity to selected heavy metals than that of Ca-M. Nevertheless, the both montomorillonite had a bad capacity to Cr6+, which was contributed to the different removal mechanism. The solution pH before and after adsorption was measured at a short interval. The adsorbed Na-M and Ca-M were characterized using XRD and the concentration of Na+and Ca2+before and after adsorption was detected using ICP-MS. The results showed that ion exchange was the mian mechanism for removal of heavy metals by Ca-M; however, induced metals precipitation was regarded as the other mechanism for removal of heavy metals besides ion exchange.
     9. All the results showed that adsorption and precipitation were proposed as the mian mechanism for removal of Pb2+、Zn2+、Co2+、Cd2+by iron powder. Besides, reduction participated the removal process of Cu2+、Ag+and Cr6+by HG-ZVI. The removal mechanism of iron powder was different from that of montomorillonite and palygorskite. Adsorption and induced precipitation were suggested as the mian mechanism of palygorskite, while ion exchange and induced precipitation were regarded as the mechanism of montomorillonite. In addition, the removal capacity of Na-M was higher that that of SPG.
引文
[1]安徽省重要矿产资源的战略研究[R].安徽省国土资源厅,2010.
    [2]赵默涵.矿山废弃地土壤基质改良研究[J].中国农学通报,2008,24(12):128-131.
    [3]张波,赵曜.矿山废弃地治理中植物修复作用的研究[J].山西建筑,2011,37(2):189-190.
    [4]李江峰.北京矿山废弃地生态恢复质量评价研究——以北京首云铁矿为例[D].北京林业大学,2010.
    [5]李海英,顾尚义,吴志强.矿山废弃土地复垦技术研究进展[J].矿业工程,2007,5(2):43-46.
    [6]魏艳,侯明明,王宏镔,等.矿业废弃地的生态恢复与重建研究[J].矿业快报,2006,(11):36-39.
    [7]张倩.矿业废弃地的生态恢复概述[J].江苏环境科技,2008,21(增刊1):142-144.
    [8]麦少芝,徐颂军,梁志娇.矿业废弃地的特点及其环境影响[J].云南地理环境研究,2005,17(3):23-27.
    [9]蒋家超,招国栋,赵由才.矿山固体废物处理与资源化[M].2007,北京:冶金工业出版社.
    [10]李明顺,唐绍清,张杏辉,等.金属矿山废弃地的生态恢复实践与对策[J].矿业安全与环保,2005,(4):16-18.
    [11]武雄,韩兵,管清花,等.北京市固体矿山生态环境现状及修复对策[J].地学前缘,2008,15(5):324-329.
    [12]张建彪,闫美芳,上官铁梁.山西采煤的主要生态问题及恢复和重建对策[J].安徽农业科学,2008,36(24):10668-10670.
    [13]卞正富.我国煤矿区土地复垦与生态重建研究[J].资源产业,2005,7(2):18-24.
    [14]刘英琴.矿山废弃地植被恢复技术研究[J].湖南有色金属,2010,26(4):50-53.
    [15]钟顺清.矿区土壤污染与修复[J].资源开发与市场,2007,23(6):532-534.
    [16]党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展,2001,16(1):86-91.
    [17]刘敬勇,矿区土壤重金属污染及生态修复[J].中国矿业,2006,15(12):66-69.
    [18]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备,2001,2(2):41-46.
    [19]胡振琪,卞正富,成枢,等.土地复垦与生态重建[M].2008,徐州,中国矿业大学出版社.
    [20]王永生,黄洁,李虹.澳大利亚矿山环境治理管理、规范与启示[J].中国国土资源经济,2006,11:36-42.
    [21]郭利刚.我国煤矿、金属矿损毁土地复垦潜力研究[D].中国地质大学(北京),2011.
    [22]梁留科,常江,吴次芳,等.德国煤矿区景观生态重建/土地复垦及对中国的启示[J].经济地理,2002,22(6):711-715.
    [23]李树枝.加拿大安大略省矿产资源管理及对我国的启示[J].国土资源情报,2006,(3): 29-34.
    [24]曹献珍.国外绿色矿业建设对我国的借鉴意义[J].矿产保护与利用,2011,(5-6):19-23.
    [25]胡振琪.中国土地复垦与生态重建20年:回顾与展望[J].科技导报,2009,27(17):25-29.
    [26]孔令俊,魏俊浩,毕志超.我国矿山复垦问题及对策探析[J].安徽农业科学,2009,37(21):10100-10101,10184.
    [27]Zhang Z Q, Lan C Y, Wong M H. Revegetation of Pb/Zn mine tailings:germination and seedling establishment of plants[J]. Land Contamination & Reclamation,1996,4(4):269-279.
    [28]汪建,李晓明.我国尾矿库污染综合防治研究现状[J].黑龙江科技信息,2012,(3):87.
    [29]朱琳.矿山生态修复技术方法研究[J].广州化工,2011,39(15):31-33.
    [30]沈建新.有色金属矿山生态修复工程设计与思考[J].有色冶金设计与研究,2009,30(6):47-52.
    [31]彭建,蒋一军,吴健生,等.我国矿山开采的生态环境效应及土地复垦典型技术[J].地理科学进展,2005,24(2):38-47.
    [32]胡振琪,杨秀红,鲍艳,等.论矿区生态环境修复[J].资源与环境,2005,(1):38-43.
    [33]杨振意,薛立,许建新.采石场废弃地的生态重建研究进展[J].生态学报,2012,32(16):5264-5274.
    [34]王霖琳,胡振琪,赵艳玲,等.中国煤矿区生态修复规划的方法与实例[J].金属矿山,2007,(5):17-20.
    [35]郭达志,金学林,盛业华.矿区地表塌陷与治理的遥感应用研究[J].能源环境保护,1996,8(6):9-10.
    [36]胡振琪,杨秀红.金属矿山污染土地修复研究[J].金属矿山,2004,(增刊):39-41.
    [37]崔斌,王凌,张国印,等.土壤重金属污染现状与危害及修复技术研究进展[J].安徽农业科学,2012,40(1):373-375,447.
    [38]常冬寅,程从坤,张红梅,等.矿山废弃地重金属污染及酸性废水防治分析——以铜陵新桥硫铁矿为例[J].中国国土资源经济,2013,26(9):35-40.
    [39]Goulding K W T, Blake L. Land use, liming and the mobilization of potentially toxic metals[J]. Agriculture[J]. Ecosystems and Environment,1998,67:135-144.
    [40]Mckinley J D. Chemical analysis of contaminated soil strengthened by the additions of lime[J]. Engineering Geology,2001,60(4):181-192.
    [41]M A Karim and L.I. Khan, Removal of heavy metals from sandy soil using CEHIXM process[J]. Journal of Hazardous,2001.81(2):83-102.
    [42]张溪,周爱国,甘义群,等.金属矿山土壤重金属污染生物修复研究进展[J].环境科学与技术,2010,33(3):106-112.
    [43]Sriprang R. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia[J]. Joumal of Biotechnology,2002, 99(3):279-293.
    [44]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [45]骆永明.强化植物修复的螯合诱导技术及其环境风险[J].土壤,2000,32(2):57-61,74.
    [46]Tordoff G M, Baker A J M, Willis A J. Current approaches to the revegetation and reclamation of metalliferous mine wastes[J]. Chemosphere,2000,41:219-228.
    [47]俞协治,成杰明.蚯蚓对土壤中铜、镉生物有效性的影响[J].生态学报,2003,23(5):922-927.
    [48]Mulligan C N, Yong R N, Gibbs B F, Remediation technologies for metal-contaminated soils and groundwater:an evaluation[J]. Engineer Geology,2001,60:193-207.
    [49]赵庆龄,张乃弟,路文如.土壤重金属污染研究回顾与展望-基于三大学科的研究热点与前沿分析[J].环境科学与技术,2010,33(7):102-106,137.
    [50]何振立.污染及有益元素的土壤化学平衡[M].1998,北京:中国环境科学出版社.
    [51]周启星,黄国宏.环境生物地球化学及全球环境变化[M].2001,北京:科学出版社.
    [52]吴欢,周兴.矿山废弃地生态恢复研究[J].广西师范学院学报(自然科学版),2003,20(增刊):32-36.
    [53]束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    [54]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学,2005.
    [55]郭炎,王凯荣,胡荣桂.湘中某锰矿区农田锰污染状况与改良途径[J].农业环境保护,1993,12(5):230-232.
    [56]凌乃规.桂东北地区水果生产基地重金属含量状况调查[J].农业环境保护,1993,12(4):179-180,178.
    [57]Goncalves M M. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source[J]. Chemosphere,2007,69(11): 1815-1820.
    [58]Chang I S, Kim B H. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition[J]. Chemosphere,2007,68(2):218-26.
    [59]黎少杰,陈天虎,周跃飞,等.Zn(Ⅱ)对生物质碳源处理酸性矿山排水中厌氧微生物活性影响[J].环境科学,2012,33(1):293-298.
    [60]Labrenz M, Druschel G K, Thomsen E T, et al. Sphalerite(ZnS) deposits forming in natural biofilms of sulfate—reducing bacteria[J]. Science,2000,290(5497):1744-1747.
    [61]万由令,李龙海.玉米芯为碳源实现酸性矿山废水生物处理[J].工业安全与环保,2004,30(5):11-15.
    [62]鲁安怀.环境矿物材料在土壤,水体,大气污染治理中的应用[J].岩石矿物学杂志,1999,18(4):292-300.
    [63]李晶,尹小龙,张虹,等.天然矿物材料处理重金属废水研究进展[J].能源环境保护,2012,26(2):5-8.
    [64]Stathi P, Litina K, Gournis D, et al., Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation[J]. J Colloid Interface Sci,2007,316(2): 298-309.
    [65]郭轶琼,宋丽.重金属废水污染及其治理技术进展[J].广州化工,2010,38(4):18-20.
    [66]Reynolds G W, Hoff J T, Gillham R W. Sampling bias caused by materials used to monitor halocarbons in groundwater[J]. Environmental Science & Technology,1990,24(1): 135-142.
    [67]Wang C B, Zhang W X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs[J]. Environmental Science & Technology,1997,31(7): 2154-2156.
    [68]Chuang F W, Larson R A, Wessman M S. Zero-Valent Iron-Promoted Dechlorination of Polychlorinated Biphenyls[J]. Environmental Science & Technology,1995,29(9):2460-2463.
    [69]Ghauch A. Rapid removal of flutriafol in water by zero-valent iron powder[J]. Chemosphere, 2008,71(5):816-826.
    [70]Mantha R, Taylor K E, Biswas N, et al. A Continuous System for FeO Reduction of Nitrobenzene in Synthetic Wastewater[J]. Environmental Science & Technology,2001,35(15): 3231-3236.
    [71]Fan J, Guo Y H, Wang J J, et al. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles[J]. Journal of Hazardous Materials,2009, 166(2-3):904-910.
    [72]Zhang X, Lin Y M, Chen Z L.2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron. Journal of Hazardous Materials[J].2009,165(1-3):923-927.
    [73]Naja G, Halasz A, Thiboutot S, et al. Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Using Zerovalent Iron Nanoparticles[J]. Environmental Science & Technology,2008, 42(12):4364-4370.
    [74]Cheng R, Wang J L, Zhang W X. Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized F0 [J]. Journal of Hazardous Materials,2007,144(1-2):334-339.
    [75]Zhang X, Lin Y M, Shan X Q, et al. Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2010,158(3):566-570.
    [76]Cheng I F, Muftikian R, Fernando Q, et al. Reduction of nitrate to ammonia by zero-valent iron[J]. Chemosphere,1997.35(11):2689-2695.
    [77]Liu H B, Chen T H, Chang D Y, et al. Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite[J]. Materials Chemistry and Physics,2012,133(1): 205-211.
    [78]Uzum, C, Shahwan T, Eroglu A E, et al. Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions[J]. Chemical Engineering Journal,2008,144(2):213-220.
    [79]Karabelli D, Uzum, C, Shahwan T, et al. Batch Removal of Aqueous Cu2+ Ions Using Nanoparticles of Zero-Valent Iron:A Study of the Capacity and Mechanism of Uptake[J]. Industrial & Engineering Chemistry Research,2008,47(14):4758-4764.
    [80]Li X Q, Zhang W X. Sequestration of Metal Cations with Zerovalent Iron Nanoparticles-A Study with High Resolution X-ray Photoelectron Spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C,2007,111(19):6939-6946.
    [81]Scott T B, Popescu I C, Crane R A, et al. Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants[J]. Journal of Hazardous Materials, 2011,186(1):280-287.
    [82]Miehr R, Tratnyek P G, Bandstra J Z, et al. Diversity of Contaminant Reduction Reactions by Zerovalent Iron:Role of the Reductate[J]. Environmental Science & Technology,2004,38(1): 139-147.
    [83]Schneeweiss O, Pilip J, David B, et al. Iron nanoparticles prepared from natural ferrihydrite precursors:kinetics and properties[J]. Journal of Nanoparticle Research,2011,13(11): 5677-5684.
    [84]陈天虎,史晓莉,彭书传,等.水悬浮体系中凹凸棒石与Cu2+作用机理[J].高校地质学报,2004,10(3):385-392.
    [85]彭书传,李辉夫,陈天虎,等.纯凹凸棒石吸附Cu2+的实验研究[J].安徽农业大学学报, 2005,32(2):212-215.
    [86]林少华,徐鹏,周培国.凹凸棒石对水中Cu2+的吸附研究[J].森林工程,2011,27(1):72-74.
    [87]胡振琪,杨秀红,高爱林.粘土矿物对重金属镉的吸附研究[J].金属矿山,2004,336(6):53-55.
    [88]Shirvani M, Shariatmadari H, Kalbasi M, et al. Sorption of cadmium on palygorskite, sepiolite and calcite:Equilibria and organic ligand affected kinetics[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,287(1-3):182-190.
    [89]Shirvani M, Kalbasi M, Shariatmadari H, et al. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions:Isotherm hysteresis[J]. Chemosphere,2006, 65(11):2178-2184.
    [90]杨秀敏,胡桂娟.凹凸棒石修复镉污染的土壤[J].黑龙江科技学院学报,2004,14(2):80-82.
    [91]范迪富,黄顺生,廖启林,等.不同剂量凹凸棒石粘土对镉污染菜地的修复实验[J].江苏地质,2007,31(4):323-328.
    [92]宋金如,罗明标,王黎.凹凸棒石吸附铅的性能及含铅废水处理研究[J].东华理工学院学报,2006,29(1):74-78.
    [93]Fan Q H, Li Z, Zhao H G, et al. Adsorption of Pb(II) on palygorskite from aqueous solution: Effects of pH, ionic strength and temperature [J]. Applied Clay Science,2009,45(3):111-116.
    [94]池亚玲,陈元涛,邵大冬,等.时间、固液比、pH值、离子强度、腐殖酸等因素对钴离子在凹凸棒石上吸附的影响[J].核化学与放射化学,2012,34(6):347-351.
    [95]He M Y, Zhu Y, Yang H, et al. Adsorption of cobalt(II) ions from aqueous solutions by palygorskite[J]. Applied Clay Science,2011,54(3-4):292-296.
    [96]秦好静,张秀丽,杨志强,等.两种凹凸棒石吸附水中锰的研究[J].非金属矿,2011,34(1):72-74.
    [97]范晓为,林少华,何蕙君.凹凸棒石对水中Fe2+的吸附特性研究[J].环境科学与管理,2010,35(11):77-79,90.
    [98]王红艳.硝酸改性凹凸棒石粘土及吸附Cu2+的工艺研究[J].工业用水与废水,2005,(4):59-61.
    [99]邓爱军.凹凸棒石吸附水中Cr(Ⅵ)的研究[J].安徽化工,1999,(3):15-16.
    [100]蔡龙飞,陈国树.凹凸棒石粘土动态法分离钍(Ⅳ)的研究[J].江西科学,2003,(2):84-86.
    [101]张宇,赵剑英.凹凸棒石处理含镍废水的研究[J].江苏化工,1997,(1):48-49.
    [102]史晓莉.凹凸棒石表面特性及其与重金属离子的界面作用[D].合肥工业大学,2005.
    [103]Alvarez-Ayuso E, Garcia-Sanchez A. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J]. Environmental Pollution,2003,125(3):337-344.
    [104]Mario B, Federica C, Daniela B, et al. Mechanisms of Pb(II) sorption and desorption at some clays and goethite-water interfaces[J]. Agronomie,2003,23(3):219-225.
    [105]Fan Q H, Wu W S, Song X P, et al. Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV) on attapulgite[J]. Radiochimica Acta,2008,96(3):159-165.
    [106]Galan E. Properties and applications of palygorskite-sepiolite clays[J]. Clay Minerals,1996, 31(4):443-453.
    [107]Murray H H. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview[J]. Applied Clay Science,2000,17(5-6):207-221.
    [108]Potgieter J H, Potgieter-Vermaak S S, Kalibantonga P D. Heavy metals removal from solution by palygorskite clay[J]. Minerals Engineering,2006,19(5):463-470.
    [109]Alvarez-Ayuso E, Garcia-Sanchez A. Removal of cadmium from aqueous solutions by palygorskite[J]. Journal of Hazardous Materials,2007,147(1-2):594-600.
    [110]Chen H, Wang A. Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay[J]. Journal of Colloid and Interface Science,2007,307(2):309-316.
    [111]Fan Q H, Tan X L, Li j x, et al. Sorption of Eu(III) on Attapulgite Studied by Batch, XPS, and EXAFS Techniques[J]. Environmental Science & Technology,2009,43(15):5776-5782.
    [112]Wu W S, Fan Q H, Xu J Z, et al. Sorption-desorption of Th(IV) on attapulgite:Effects of pH, ionic strength and temperature[J]. Applied Radiation and Isotopes,2007,65(10):1108-1114.
    [113]Naseem R, Tahir S S. Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent[J]. Water Research,2001,35(16):3982-3986.
    [114]沈学优,陈曙光,王烨,等.不同粘土处理水中重金属的性能研究[J].环境污染与防治,1998,20(3):15-18.
    [115]Kapoor A, Viraraghavan T. Use of Immobilized Bentonite in Removal of Heavy Metals from Wastewater[J]. Journal of Environmental Engineering,1998,124(10):1020-1024.
    [116]何宏平,郭九皋,谢先德,等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2):231-235.
    [117]何宏平,郭九皋,朱建喜,等.蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J].岩石矿物学杂志,2001,20(4):573-578.
    [118]何宏平.蒙脱石等粘土矿物与金属离子的作用特征及机理研究[D].中科院广州地球化学研究所,1999.
    [119]郭堃梅,马毅杰,韩和平.膨润土对Pb2+的吸附性能及影响吸附的主要因素[J].环境科学学报,2000,20(5):654-656.
    [120]杨华明,张华,张向超,等.Ca-基膨润土制备重金属废水吸附剂的研究[J].金属矿山,2004,339(9):57-59.
    [121]李虎杰.膨润土对重金属离子的吸附作用[J].中国矿业,2005,14(2):44-46.
    [122]王宜鑫,赵斌,陈小峰,等.钠基膨润土对重金属离子的吸附特征[J].工业用水与废水,2007,38(5):55-58.
    [123]施惠生,刘艳红.膨润土对重金属离子Pb2+, Zn2+, Cr6+, Cd2+的吸附性能[J].建筑材料学报,2006,9(5):507-510.
    [124]朱霞萍,白德奎,李锡坤,等.镉在蒙脱石等粘土矿物上的吸附行为研究[J].岩石矿物学杂志,2009,28(6):643-648.
    [125]林青云,章钢娅,龚华.添加钠基蒙脱石对重金属污染土壤的影响[J].安徽农业科学,2009,37(21):10090-10092,10114.
    [126]杜培鑫,万华仙,孙红娟.蒙脱石对Sr, Cs, Pb等重金属离子吸附作用的研究[J].非金属矿,2012,35(4):57-60.
    [127]Sen G S ,Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite:a review[J]. Phys Chem Chem Phys,2012, (14):6698-6723.
    [128]de Pablo L, Chavez M L, Abatal M. Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite[J]. Chemical Engineering Journal, 2011,171(3):1276-1286.
    [129]Abollino O, Aceto M, Malandrino M, et al. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances[J]. Water Research,2003,37(7): 1619-1627.
    [130]周宏春,王瑞江,陈仁义,等.中国矿产资源形势与对策研究[M].2005,北京:科学出版社.
    [131]安徽省采矿废弃地现状调查[R].安徽省土地勘测规划院,2011.
    [132]雷为民.简析安徽省矿产资源储量分布现状及发展展望[J].科技文汇,2011,(3):194-195,203.
    [133]徐晓春,王军,李援,等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.
    [134]徐晓春,陈芳,王军,等.铜陵矿山酸性排水及固体废弃物中的重金属元素[J].岩石矿物学杂志,2005,24(6):591-597.
    [135]何准.基于硫酸盐还原菌生物矿化的尾矿库原位修复技术研究[D].合肥工业大学,2009.
    [136]张楠.模拟铜陵尾矿库内酸性矿山排水环境下的SRB原位修复研究[D].合肥工业大学,2011.
    [137]黎少杰.秸秆为缓释碳源的厌氧微生物处理矿山酸性排水研究[D].合肥工业大学,2011.
    [138]徐鸿志,常江.安徽省主要土壤重金属污染评价及其评价方法研究[J].土壤通报,2008,39(2):411-415.
    [139]周涛发,袁峰.安徽省矿山城市固体矿产资源利用的环境负效应及防治对策[J].上海地质,2001,(增刊):25-28.
    [140]王晓辉,张之源,潘成荣,等.安徽省矿山生态环境问题及治理对策研究[J].安徽大学学报(自然科学版),2007,31(4):90-94.
    [141]宋蕾,美国土地复垦基金对中国废弃矿山修复治理的启示[J].经济问题探索,2010(4):p.87-90.
    [142]Liu H B, Chen T H, Zou X H, et al. Effect of Al content on the structure of Al-substituted goethite:a micro-Raman spectroscopic study[J]. Journal of Raman Spectroscopy,2013, 44(11):1609-1614.
    [143]Zhang Y Y, Jiang H, Zhang Y, et al. The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution[J]. Chemical Engineering Journal,2013,229:412-419.
    [144]Yan W L, Lien H L, Koel B E, et al. Iron nanoparticles for environmental clean-up:recent developments and future outlook[J]. Environmental Science:Processes & Impacts,2013, 15(1):63-77.
    [145]Liendo M A, Navarro G E, Sampaio C H. Nano and Micro ZVI in Aqueous Media:Copper Uptake and Solution Behavior[J]. Water, Air, & Soil Pollution,2013,224(5):1541-1548.
    [146]Li X Y, Zhang M, Liu Y B, et al. Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI) [J]. Water Quality, Exposure and Health,2013,5(1):31-40.
    [147]Kim S A, Seralathan K K, Lee K J, et al. Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite[J]. Chemical Engineering Journal,2013,217: 54-60.
    [148]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].2004,北京:科学出版社.
    [149]陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨[J].高校地质学报,2000,6(2):265-270.
    [150]郑自立,田煦.苏皖凹凸棒石矿物红外光普特征研究[J].岩石学报,1990,(2):80-87.
    [151]Neaman A, Singer A. Kinetics of hydrolysis of some palygorskite-containing soil clays in dilute salt solutions[J]. Clays and Clay Minerals,2000,48(6):708-712.
    [152]孙红娟,彭同江,陈彦翠.层间阳离子对蒙脱石结构与水化膨胀性能的影响[J].非金属矿,2011,34(1):11-13.
    [153]Liu Z R, Uddin M A, Sun Z X. FT-IR and XRD analysis of natural Na-bentonite and Cu(Ⅱ)-loaded Na-bentonite[J]. Spectrochim Acta A Mol Biomol Spectrosc,2011,79(5): 1013-1016.
    [154]杨秀敏,胡振琪,李宁,等.钠基膨润土对重金属离子Cu2+,Zn2+,Cd2+的吸附实验[J].煤炭学报,2009,34(6):819-822.
    [155]Sverjensky D A, Sahai N. Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water[J]. Geochimica et Cosmochimica Acta, 1996,60(20):3773-3797.
    [156]Sahai N, Sverjensky D A. Solvation and electrostatic model for specific electrolyte adsorption[J]. Geochimica et Cosmochimica Acta,1997,61(14):2827-2848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700