用户名: 密码: 验证码:
雷电回击电磁场建模与探测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷电灾害是自然界的重大危害之一。我国非常重视雷电防护,但是由于对雷电过程认识不足以及测量技术条件的限制,已有的雷电特征参数有限,现有的设计还不足以满足实际生产生活的需要。为了更深入的探索雷电现象、研究雷电特征,对雷电引起的灾害进行预防、实现雷电的预警和防护、加快雷电定位速度,需要建立更有效更符合雷电物理机制的模型,对雷电进行更准确有效的探测。基于此,本论文对雷电回击的电磁场建模和探测技术进行了深入的分析:首先对雷电流和雷电电磁场的建模技术进行了细致的研究,然后对于雷电地闪的探测设计了一套地闪探测系统,并通过测试证明了其合理性,最后提出了首次回击和继后回击的识别与分类的方法。本论文的主要研究内容和创新成果包括以下几个方面:
     1.对雷电的物理发展过程和特点进行了详细的分析,从理论上分析了不同回击过程产生不同的雷电流和电磁辐射的原因。
     2.对现有的雷电通道底部基电流模型进行了仿真,根据常见的几种模型具有不能直接设定峰值和峰值时间、可调参数较多、函数较复杂、部分函数模型不可积可微的缺点,提出了一种新的通道基电流分段函数模型。这种模型可以直接设定峰值,模型函数中不需要峰值修正系数,根据首次回击和继后回击波头时间的不同有针对性的仿真,函数中可调参数少,并且相互独立,在模拟上升沿和下降沿时可分别仿真其波形,改进了常用的基电流函数模型中修改一个参数会引起上升沿和下降沿波形同时变化的情况。然后根据近年国内外实测的自然雷电和人工引雷实验中获得的首次回击、继后回击和人工引雷雷电流的参数进行了仿真,结果证明该模型仿真的基电流波形各特征量与实测的雷电流相符,是一种理想的基电流仿真模型。结合回击电流工程模型可得到通道中各高度的雷电流模型,并通过仿真雷电辐射电磁场与实际测量电磁场比较,验证了该基电流模型的有效性,为后续的研究打下基础。
     3.针对雷电回击过程中首次回击与继后回击发展过程的不同,提出了采用有限扩散凝聚分形模型模拟闪电通道计算回击电磁场的方法,改进了现有的雷电辐射电磁场仿真时采用直线闪道的简化计算方法。该分形闪道与实际回击闪道更相符,并通过盒维数法比较实际的雷电回击闪道与模拟分形闪道的分形维数,确定首次回击闪道和继后回击闪道分形参数的值。并根据偶极子理论计算了分形闪道在各不同距离的地面测量点的回击电磁场,得到的电磁场符合实测雷电电磁场的基本特征,验证了该分形模型的有效性,证明了由于闪道的弯曲和分支会增加雷电辐射电磁场中的高频分量,得到首次回击中分支闪道比继后回击的弯曲闪道对高频成分影响更大的结论。
     4.设计实现了一套雷电地闪低频/甚低频电磁场探测系统,包括各组成部分的硬件和软件设计,并对设计的系统进行了工作测试,得到了较为理想的结果。有利于最终实现全能型雷电探测系统。
     5.针对现有的雷电探测系统中不区分首次回击和继后回击的缺点,提出了利用Laplace小波分析的方法,通过分析首次回击和继后回击的电场和磁场波形,得到雷电产生的电场和磁场在时域和频域内特征指标,时域中精确的波达时间可以有利于提高定位系统中的定位精度,并通过计算频域中初始场峰的主频,得到首次回击主频高于继后回击,该方法为实现雷电探测系统中首次回击与继后回击的识别和分类提供了支撑,并分析了回击过程的功率谱,反映了雷电回击电磁场的能量在不同频率段的分布。还分析了预击穿和先导过程等闪电事件频率和功率谱。结论证明Laplace小波分析是一种分析雷电电磁场时域和频域特性的有效工具。
The lightning is one of the most dangerous nature disasters. Our country has placedgreat importance on lightning protection. But those protections devised under existinglighting basic characters can not fully satisfy our production and life because of thelimitation of the recognition about lightning process and the lack of measurementtechnology. In order to investigate lightning deeply and basically, protect and predictlightning and the following dangers, and accelerate the lightning location process, we needto establish more convenient and reliable models about lightning and to detect lightningmore effectively and accurately. Based on these, the lightning modeling methods anddetecting technology have been studied deeply: at first the lightning current andelectromagnetic field models have been analyzed and simulated precisely, then acloud-to-ground(CG) lightning detecting system has been developed and the rationality hasbeen tested, at last a recognition method has been proposed to classify first and subsequentreturn stroke. The main contents and the creative results are below:
     1. The whole physical discharge process and the characteristics of lightning have beenanalyzed explicitly. The reason why lightning currents and electromagnetic fields aredifferent corresponding to different return strokes is investigated based on this theoreticallystudy.
     2. The lightning channel-base current models have been simulated, and a new lightningchannel-base current piecewise-function model has been proposed to solve the problemswhich are general among those common channel-base current models, such as the peakfields and peak field time are uncertain, the model functions are complicate and theparameters are difficult to adjust, and some models have no integral and derivative. Withthis piecewise-function model, the peak field value and peak field time can be decideddirectly getting rid of the amplitude correction factor, the parameters are easy to adjust, andthe rising part and the decaying part of the current waveform are independent with eachother which are dependent in other models. Then the first return stroke, subsequent returnstroke and trigged lighting stroke were simulated based on the experiments of naturelightning and trigged lightning in recent years, the characters of the current waveforms arereasonably agreeable with those measurement results. At last, combined with lightningreturn stroke engineering models, the validity of this model was proved according thecalculation of the lightning electric and magnetic fields. The results indicate that the piecewise-function model is a desired model which can be convenient used in further study.
     3. Considering the different discharge process of first and subsequent return strokes, afractal model of lightning return stroke channel based on the diffusion limited aggregationmodel has been proposed to improve the usual vertical channel for calculating lightningelectric and magnetic fields. This fractal channel model conforms to the natural lightningchannel. The box counting method is used to calculate and compare the fractal dimensionsof natural channel and fractal lightning channel, and the fractal parameters are adjustedaccording to the fractal dimension variation range of first and subsequent return strokes.Besides, by using a dipole method, the vertical electric fields and the horizontal magneticfields at different distance on ground are derived. The simulated results are correspondingto the basic characteristics of experimental lightning electromagnetic fields, which indicatethe validation of the fractal model, and also show that the tortuous channel and branchesbring more high frequency components in electromagnetic fields, especially first returnstroke.
     4. The configuration of lightning CG lightning detecting system is presented in thisarticle, including the detailed hardware and software solutions of different functionmodules. The test has been made and the results show the reliability of this system.
     5. Because first and subsequent return strokes cannot be distinguished in those existinglightning detection systems, the Laplace wavelet has been used to analyze the electric andmagnetic field waveforms of first and subsequent return strokes. The characteristics of fieldwaveforms in time and frequency domains are presented. The precise time of arrival of theinitial peak field can be used to improve the lightning location accuracy. And the domainfrequencies of the initial peak field of first return strokes are higher than that of subsequentreturn strokes, which can be used to distinguish and classify first and subsequent returnstrokes in lightning detection system. The power spectrums are expressed to indicate thepower distribution in different frequency of the lighting electromagnetic field. Besides, thefrequency and power spectrum of other lightning events such as preliminary breakdownpulses and leaders are also analyzed The results show that the Laplace wavelet is aneffective tool and can be used to determine time and frequency of the lightningelectromagnetic field with greater accuracy.
引文
[1] P. Chowdhuri, J.G. Anderson, W.A. Chisholm, et al. Parameters of lightning strokes:a review. IEEE Transactions on Power Delivery.2005,20(1):3436~358.
    [2] Y.T. Lin, M.A. Uman, J.A. Tiller, et al. Characterization of lightning return strokeelectric and magnetic fields from simultaneous two-station measurements. J.Geophys. Res,1979,84(C10):6307~6314.
    [3]陈家宏,童雪芳,谷山强等.雷电定位系统测量的雷电流幅值分布特性.高电压技术,2008,34(9):1893~1897.
    [4]陈家宏,张勤,冯万兴,方玉河.中国电网雷电定位系统与雷电监测网.高电压技术,2008,34(3):425~431.
    [5]陈家宏,冯万兴,王海涛等.雷电参数统计方法.高电压技术,2007,33(10):6~10.
    [6]陈维江,陈家宏,谷山强等.中国电网雷电监测与防护亟待研究的关键技术.高电压技术,2008,34(10):2009~2015.
    [7] K.L. Cummins, E.P. Krider, M.D. Malone. The US national lightning detectionnetword and application of cloud-to-ground lightning data by electric power utilities.IEEE Trans. EMC.,1998,40(4):465~480.
    [8] F. Heidler, C. Hopf. Measurenment results of the electric fields in cloud-to-groundlightning in nearby Munich, Germany. IEEE Trans. EMC,1998,40(4):436~443.
    [9] G. Diendorfer, W. Schulz, V.A. Rakov. Lightning characteristics based on data fromthe Austrian lightning locating system. IEEE Trans. EMC.,1998,40(4):452~464.
    [10]王道洪,郄秀书,郭昌明等.雷电与人工引雷.上海:上海交通大学出版社,2000.25~75.
    [11]范丽思,张希军,魏光辉.800kV雷电电磁脉冲场模拟器的研制.高电压技术,2007,33(12):36~38,96.
    [12]张飞舟,陈亚洲,魏明等.雷电电流的脉冲函数表示.电波科学学报.2002,17(1):51~53.
    [13]王琳,陈亚洲,万浩江等.雷电斜向放电通道电磁场建模及计算.微波学报.2012,28(2):16~21.
    [14]田明宏,盛松林,魏明等.基于DU模型雷电回击电磁场的计算.高电压技术.2002,13(9):34~36.
    [15]孟青,吕海涛,姚雯等.地面电场资料在雷电预警技术中的应用.气象,2005,31(9):30~33.
    [16]樊灵孟,张义军.人工引雷试验中雷电电流测量分析.高电压技术.2000,26(4):50~52.
    [17]沐俊山,雷治平,张存华.雷电监测预警系统的原理及应用.导弹试验技术.2004,33(4):60~62.
    [18]田明宏,魏光辉,刘尚合等.基于IEC标准雷电后续回击电磁场的计算.电子学报.2003,31(6):951~954.
    [19] M.A. Uman. All about lightning. Dover publications. New York.1986:73~80.
    [20] N.I. Petrov, F.D. Alessandro. Theoretical analysis of the processes involved inlightning attachment to earthed structures. J. Physics D: Applied Physics,2002,35(14):1788~1795.
    [21] T.C. Marshall, M. Stolzenburg. Voltage inside and just above thunderstorms. J.Geophy. Res.,2001,106(D5):4757~1365.
    [22] S. Narasimhan, S. Nayar. Shedding light on the weather. Proc. IEEE Conf.Computer Vision and Pattern Recognition,2003:665~672.
    [23] C.E. Bruce, R.H. Golde. The lightning discharge. J. Instn. Elect. Eng.,1941,88(P2):487~520.
    [24] F. Heidler. Traveling current source model for LEMP calculation.1985, Proc.6thInt. Zurich Symp. Electromagn. Compat., Zurich, Switzerland,157~162.
    [25] C.A. Nucci, G. Diendorfer, M.A. Uman et al. Lightning return stroke currentmodels with specified channel base current: A review and comparison. J. Geophys.Res.,1990,95:395~408.
    [26] V. Cooray, R. Montano, V. Rakov. A model to represent negative and positivelightning first strokes with connecting leaders. J. Electrostatics.2004,60:97~109.
    [27] V.A. Rakov, M.A. Uman, J.A. Versaggi et al. Electric fields close to triggeredlightning. In: Proc. EMC’94ROMA. Int. Symp. Electromagn. Compat. Rome Italv,1994,33~37.
    [28] M.A. Uman, D.K. McLain. Magnetic field of the lightning return stroke. J.Geophys. Res.,1969,74:6899~6910.
    [29] M.A. Uman, E.P. Krider. A Review of Natural Lightning: Experimental Data andModeling. IEEE Trans EMC,1982,24(2):79~112.
    [30] M.K. Halder, M.A. Uman. Lightning induced voltage on power lines: Theory.IEEE Trans. Power App. Sys.,1984,103(9):2502~2518.
    [31] V.A. Rakov, M.A. Uman. Review and evaluation of lightning return stroke modelsincluding some aspects of their application. IEEE Trans. EMC.,1998,40(4):403~426.
    [32]李东铭.雷电电磁场以及架空导线雷电感应过电压计算分析[博士学位论文].华中科技大学,2011.
    [33]祝宝友,马明,陶善昌.地闪回击通道几何结构对VLF/VHF辐射场特征的影响.高原气象.2003,22(6):246-251.
    [34] D.M. LeVine, M. Kao. The effects of current risetime on radiation from tortuouslightning channels. Proc.8th. Int. Conf. Atmospheric Electricity, Uppsala, Sweden,1988:509~514.
    [35] G. Vecchi, D. Labate, F. Canavero. Fractal approach to lightning radiation on atortuous channel. Radio Science,1994,29:691~704..
    [36] D.M. LeVine, R. Meneghini. Electromagnetic fields radiated from a lightningreturn stroke: application of an exact solution to Maxwell’s equations. J. GeophyRes,1978,83(5):2377-2384.
    [37]任顺平,迟建平,庄洪春等.分形闪道及其电磁场辐射仿真.电网技术,1999,23(4):11~18.
    [38]许伟,陈水明,何金良.采用分形方法的二维和三维雷电放电仿真模型及其应用.中国电机工程学报.2010,30(22):127~124.
    [39]何金良,董林,张薛巍等.输电线路防雷分析分形模型及其统计特性.高电压技术.2010,36(6):1333~1340.
    [40]李建标.雷电先导分形模型及线路耐雷性能评估方法的研究[博士学位论文].重庆大学,2012.
    [41]张其林,冯建伟,赵中阔等.分形闪电通道模型的建立及其电磁辐射特征.大气科学学报.2010,33(6):719~724.
    [42]大气探测与雷电防护研究进展.中国气象科学研究院年报,2010:15~23.
    [43] K. L. Cummins, M. J. Murphy. An overview of lightning locating systems: history,techniques, and data uses, with an in-depth loot at the U. S. NLDN. IEEE Trans.EMC.,2009,51(3):499~518.
    [44] R. B. Rodrigues, V. M. F, Mendes, and J. P. S. Catalao. Lightning data observedwith lightning location system in Portugal. IEEE Trans. EMC.,2010,25(2):870-875.
    [45] S. M. Chen, Y. Du, L. M. Fan, H. M. He, and D. Z. Zhong. Short papers--Alightning location system in China: Its performances and applications. IEEE Trans.EMC.,2002,44(4):555-560.
    [46] S. M. Chen, Y. Du, L. M. Fan. Lightning data observed with lightning lacationsystem in Guang-Dong province, China. IEEE Trans. EMC.,2004,19(3):1148-1153.
    [47] F. de la Rosa, R. Velazquez. Review of ground flash density measuring devicesregarding power system applications. IEEE Trans. Power Del.,1989,4(2):921~926.
    [48] T.E. Mcdermott, V.J. Longo. Advanced computational methods in lightningperformance—the EPRI lightning protection design workstation. In Proc. IEEEPower Engineering Soc. Winter Meeting,2000,4:2425-2430.
    [49]雷电防护.第一部分:总则. IEC62305-1.2006.
    [50]盛剑霓.电磁场数值分析.西安:西安交通大学出版社.1994.100~200.
    [51] R. Moini, B. Kordi, G. Rafi, V.A. Rakov. A new lightning return stroke modelbased on antenna theory. J. Geophys. Res.,2000,105(D24):29693-29702.
    [52] K. Berger, R.B. Anderson, H. Kroninger. Parameters of lightning flashes. Electra,1975,80:223-237.
    [53] F. Heidler, W. Zischank, Z. Flisowski, et al. Parameters of lightning current givenin IEC62305-background, experience and outlook. The29th Int. Conf. LightningProtection, Uppsala, Sweden,2008. Jun..
    [54] V. Javor, P.D. Ranci. Application of one suitable lightning return-stroke currentmodel. Proc. Eur. Int. Symp. Electromagn. Compat. Eur.2006, Barcelona, Spain,2006, Sep..
    [55] C.A. Warren, R. Ammon, G. Welch. A survey of distribution reliabilitymeasurement practices in the U.S.. IEEE Trans. Power Del.,1999,14(1):250~255.
    [56] D.E. Parrish. Lightning-caused distribution circuit breaker operations. IEEE Trans.Power Del.,1991,6(4):1395~1401.
    [57] V.A. Rakov. Lightning parameters for engineering applications (keynote speech).2010Asia-Pacific international symposium on electromagnetic compatibility.Beijing,2010:1120~1123.
    [58]张义军,杨少杰,吕伟涛等.2006-2011年广州人工触发闪电观测试验和应用.应用气象学报.2012,23(5):512~522.
    [59] V.A. Rakov, A.A.Dulzon. Calculated electromagnetic fields of lightning returnstroke.1987, Tekh. Elektrodinam,1:87~89.
    [60] C.A. Nucci, C. Mazzetti, F. Rachidi et al.. On lightning return stroke models forLEMP calculations.1988, Proc.19th Int. Conf. Lightning Protection, Graz,Australia.
    [61] C.D. Weidman, E.P. Krider. The fine structure of lightning return stroke waveforms.J. Geophys. Res.,1978,87:6239~6247;1982, correction,87:7351.
    [62] J.C. Willett, D.M. LeVine, V.P. Idone, Lightning-channel morphology revealed byreturn-stroke radiation field waveforms. J. Geophys. Res.1995,100,2727-2738.
    [63] J.C. Willett, E.P. Krider, C. Leteinturier. Submicrosecond field variations duringthe onset of first return strokes in cloud-to-ground lightning. J. Geophys. Res.,1998,103,9027-9034.
    [64] R.D. Hill. Analysis of irregular paths of lightning channels. J. Geophys Res.,1968,73(6):1897-1905.
    [65] T.A. Witten, L.M. Sander. Effective harmonic fluid approach to low energyproperties of one dimensional quantum fluids. Phys. Rev. Let.,1981,47:1831~1840.
    [66]曾嵘,耿屹楠,李雨等.高压输电线路先导发展绕击分析模型研究.高电压技术.2008,34(10):2041~2046.
    [67] V. Cooray. Derivation of return stroke parameters from the electric and magneticfield derivations. J. Geophys. Res.,1989,16:61~64.
    [68] D.M. LeVine, R. Meneghini. Simulation of radiation from lightning return strokes:The effect of tortuosity. Radio Sci.,1978,13:801~809.
    [69]宋庭新.基于网格计算的雷电电磁环境仿真[博士学位论文].华中科技大学.2005.
    [70] F. Rachidi, W. Janischewskyj, A.M. Hussein, et al.. Current and electromagneticfield associated with lightning-return strokes to tall towers. IEEE Trans. EMC,2001,43(3):356~367.
    [71]刘辛.光频段雷电探测技术的研究[博士学位论文].华中科技大学.2010.
    [72]刘敏.现有雷电定位方法的应用分析.四川电力技术.2008,31(2):6~9.
    [73]樊灵孟,李志锋,何宏明等.雷电定位系统定位误差分析.高电压技术.2004,30(7):61~63.
    [74] N.R. Thomson. Experimental daytime VLF ionospheric parameters. J. Atmos. Terr.Phys.,1993,55:172~184.
    [75] A.P. Zhao, J. Juntunen, A.V. Raisanen. Generalized material-independent PMLabsorbers for the FDTD simulation of electromagnetic waves in arbitraryanisotropic dielectric and magnetic media. IEEE Microwave Guided Wave Lett.,1998,8(3):52~54.
    [76]闪电定位系统实验考核办法.中华人民共和国气象行业标准.2006.
    [77]谢从刚.基于多普勒天气雷达和SAFIR3000与ADTD闪电定位系统的雷电监测[硕士学位论文].南京信息工程大学.2007.
    [78]廖学静,肖先勇,唐启红,黄小佳等.采用小波能量谱的输电线路暂态扰动的模糊识别方法.高电压技术.2009,35(10):2486-2491.
    [79]吴昊,肖先勇,沈睿佼.小波能量谱和神经网络法识别雷击与短路故障.高电压技术.2007,33(10):64-68.
    [80] F.H. Silveira, S. Visacro. On the lightning-induced voltage amplitude first versussubsequent negative strokes. IEEE Trans. EMC.2009,51(3):741~747.
    [81] D.M. LeVine. Review measurements of the RF spectrum of radiation fromlightning. Meteorol. Atmos. Phys.,1987,37:195~204.
    [82] J.E.Nanevicz,, E.F. Vance, J.M. Hamm. Observation of lightning in the frequencyand time domains. Lightning Electromagnetic,(Ed.), Robert Gardner7,pp.267~286.
    [83] G.I. Serhan, M.A. Uman, D.G. Childers, Y.T. Lin. The RF spectra of first andsubsequent lightning return strokes in the1-to200-km range. Radio Sci.1980,15:1089-1094.
    [84] J.C. Willett, J.C. Bailey. C. Leterinturier, E.P. Krider. Lightning electromagneticradiation field spectra in the interval of0.2-20MHz[J]. J. Geophys. Res.1990,95:20367~20387.
    [85] K. Sheshyekani, M. Hazrati, P. Sattari, et al.. Real-time detection of lightningelectromagnetic field data: a wavelet approach. In: Proceedings of the17thInternational Zurich Symposium on Electromagnetic Compatibility (EMC Zurich2006). Singapore,2006, Feb.27-Mar.3.
    [86] F.J Mirada. Wavelet Analysis of Lightning Return Stroke. J. Atmos. Sol. Terr. Phys.2008,70:1401~1407.
    [87] S.R. Sharma, V. Cooray, M. Fernando, F.J. Miranda. Temporal Features ofDifferent Lightning Events Revealed from Wavelet Transform. J. Atmos. Sol. Terr.Phys.2011,73:507-515.
    [88]苟学强,张义军,董万胜.基于小波的雷暴强放电前地面电场的多重分形分析.物理学报.2006,55(2):957~961.
    [89] C. Torrence, P. Gilbert. A practical guide to wavelet analysis, Bull. Amer. Meteor.Soc.,1998,79:61~78.
    [90]杨江天,赵明元.基于车辆总线和Laplace小波的机车轴承诊断系统.铁道学报.2011,33(8):23~27.
    [91] C.F. Lawrence, L. Rick, J.B. Martin. Correlation filtering of modal dynamics usingthe Laplace wavelet. Proc.16th international modal analysis conference. California,1998:868~877.
    [93] R.L. Dowden, J.B. Brundell, C.J. Rodger. VLF lightning location by time of grouparrival (TOGA) at multiple sites. J. Atmos. Sol. Terr. Phys.,2002,64,817~830.
    [92] N.A. Ahmad, M. Fernando, Z.A. Baharudin, et al.. The first electric field pulse ofcloud and cloud-to-ground lightning discharge. J. Atmos. Sol. Terr. Phys.2010,72:143~150.
    [94] R. Thottappillil, M.A. Uman. Comparison of lightning return stroke models. J.Geophys. Res.,1993,98(D12):22903~22914.
    [95] W. Janischewskyj, A.M. Hussein, J.S. Chang. Characteristics of CN Towermulti-stroke flashes. Proceeding of the10th Int. Symp. High Voltage Engineering.Montreal, Canada,1997.29~34.
    [96] Abel-Rahman, W. Janischewskyj, A.M. Hussein, F. Rachidi, et al., Statistical
    analysis of magnetic field due to CN tower multi-stroke flashes. Proceeding of24th
    Int. Conf. Lightning Protection. Bermingham, U. K..1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700