用户名: 密码: 验证码:
350km/h及以上弓网动态行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弓网关系作为保证高速列车稳定受流、安全运行的关键技术之一,其相关技术的研究目前在国内外已十分重视。尤其是近年来,随着高速列车运营速度的不断提升,针对弓网关系的研究也发展较快。为实现新一代高速列车运营时速提升至350公里及以上,如何设计高速运行工况下的弓网系统,保证高速列车安全稳定的受流,将是非常严峻的考验和挑战。为此,本文在对现有国内外高速弓网系统的发展趋势及关键技术进行全面研究的基础上,开展时速350公里及以上的高速弓网关系研究,主要完成了以下几个方面的研究内容:
     首先,在接触网建模方法研究方面,分析了不同结构形式、单元类型和求解方法对接触网静态和动态性能的影响,确定了合理的接触网建模方法;在受电弓建模方法研究方面,建立了包括归算质量模型、多刚体模型、刚柔混合模型和全柔性模型的受电弓模型库,识别了不同受电弓模型的动态特性,包括:模态特性、频响特性和系统动力学特性等,确立不同受电弓模型的适用范围;在对接触网和受电弓建模方法研究的基础上,研究了高速运行条件下受电弓与接触网之间的耦合作用关系,建立了适用于高速滑动接触分析的弓网系统精确模型,特别是考虑了弓网纵向冲击和横向摆动、受电弓结构弹性振动、受电弓气流扰动、接触形貌特征等因素对弓网动力学特性的影响,从而对弓网动力学行为进行了研究和分析。其中,重点探讨了不同速度和运行方向等工况下,接触形貌特征和受电弓气流扰动对弓网动力学性能的影响,探明了在高速滑动条件下的弓网运动规律。
     其次,在接触网波动特性及双弓受流研究方面,在研究单根弦的波动特征基础上,辨识了复杂弹性链型悬挂接触网结构和单根弦结构差异对波动特性的影响,确定接触网结构的波长和波速等波动特性。然后,针对双弓重联运行时接触网振动波传播过程进行分析,建立了双弓运行时双弓间距的理论计算公式。在此基础上,通过双弓作用下的弓网动力学仿真计算,就双弓间距对弓网动力学性能的影响进行分析,确定了不同速度下的不利和有利双弓间距,并与计算公式得到的结果进行对比。结果表明:两种方法计算得到的双弓间距分布是基本一致的,同时通过双弓重联运行的线路试验,验证了建立的双弓间距计算公式的有效性。
     在高速弓网结构及参数优化匹配研究方面,通过研究弓网系统动力学性能以及频率特性与受电弓运行速度的匹配关系,探讨了弓网结构及参数优化设计的基本原则和流程。在此基础上,以设计运营速度350km/h的弓网系统为基础,通过接触网和受电弓结构及参数的优化匹配,提高接触网波速利用率并改善刚度不一致对受流质量的影响,提出适用于350km/h及更高速度等级下合理的弓网系统结构及参数。
     最后,在弓网动应力推断方法研究方面,基于高速铁路系统可靠性研究中的应力确定问题,提出一种基于混合模拟的应力推断方法,借助数值模拟建立系统各点的应力参数之间的互推关系,然后通过实物模拟测得一些已知点的应力数据,由此推断出其他未知点的应力参数,从而确定了整个结构的应力状态。
Pantograph-catenary relation is one of key technologies to assure the steady current-collection quality and the safe operation for the high-speed train. More and more attention has been paid to the related investigation. Especially in recent years, with increasing operational speeds of high-speed train, the investigation on pantograph-catenary relation develops rapidly. In order to satisfy the requirement of the running speed of350km/h or above, it is a serous challenge how to design the pantograph-catenary system and assure the steady current-collection quality. Therefore, based on the existing research for the development trends and the key technologies of pantograph-catenary system, in this paper the pantograph-catenary relation for the running speed of350km/h or above mainly has been investigated and the five main sections has been involved, as follows. Firstly, for the catenary modeling, the influence of structure layout, element type and solution method on the static and dynamic performance of the catenary was discussed, and the reasonable modeling method was put forward. As far as the pantograph modeling was concerned, several kinds of pantograph models were established, including lumped mass model, multi-rigid body model, rigid-flexible body model and full flexible body model. Furthermore, the characteristics of the modes, the frequencies and the dynamics for different pantograph models were identified, and the application extent of different pantograph models was determined, respectively. Based on the investigation on the dynamic modeling and simulation of pantograph and catenary system, the coupled relation between pantograph and catenary in higher speed was investigated and the more accurate model was established, considering the influence of the longitude impact and the lateral pendulum, the flexible deformation, the airflow disturbance, the appearance characteristic of contact surface on the dynamic performance of pantograph and catenary system. Furthermore, the dynamic behavior has been investigated. Especailly, at different operational speeds and directions, the influence of the airflow disturbance and the appearance characteristic on the dynamic performance is discussed in detail to determine the motion law of pantograph-catenary system in high speed sliding operation.
     Then, in research for wave propagation characteristics of catenary and current-collection quality with double pantographs, based on the wave propagation characteristics of the single chord, the influence of the structure difference between catenary and chord was analyzed, and the wave propagation characteristics of catenary including wave length, wave velocity, etc. has been determined. Then, the wave propagation of the catenary under action of double pantographs was investigated, and the formula of space between two pantographs was established. Furthermore, the influence of the space between two pantographs on the dynamic performance of pantograph and catenary system was analyzed by means of the simulation under the action of double pantographs. The favorable and unfavorable space was determined, and a comparison of the space with the data obtained by the formula was carried out. The results show that the agreement between the simulation results and the formula data is generally good. Meanwhile, by the field test with double pantographs, it is proved that the space between two pantograph based on the formula is reasonable.
     In the respects of optimization for the structure and parameters of pantograph and catenary system, the match relation of dynamic performance and frequency distribution with the running speed of pantograph was first investigated. The fundamental principle and the process of the optimaztion were discussed. Furthermore, by means of the optimization for the structure and parameters of pantograph and catenary system, the utilization rate of wave propagation for the catenary is raised and the influence of stiffness difference on current-collection quality is improved. Therefore, the reasonable structure and design parameters of pantograph and catenary system for the running speed of350km/h or above have been obtained.
     Finally, based on the existing investigation of structural intensity and failure of the railway system, a new method to determine the stress is put forward to overcome the deficiency of conventional simulation and experiment method. Through the numerical simulation, the inference relation of the stress between various locations was obtained. Then, with the experiment, some stresses of the whole structure were measured. Accordingly, other stresses were determined through the inference relation. Furthermore, all the stresses of the structure were obtained and the strength evaluation was exactly carried out.
引文
[1]张卫华,沈志云.接触网动态研究.铁道学报,1991,13(4):26-33
    [2]中国电气化局集团有限公司.电气化铁道接触网.中国电力出版社.2004:337-395
    [3]吴天行.弓网高速动态受流仿真研究.铁道学报,1996,18(4):55-61
    [4]戴南山.高速受流性能探讨.电力机车技术,2001,24(1):17-18
    [5]于万聚.高速电气化铁路接触网.西南交通大学出版社,2005:234-286
    [6]张卫华,沈志云.高速受电弓/接触网系统的动力学研究.西南交通大学学报,1991,26(1):105-111
    [7]张卫华,沈志云.受电弓动力学研究.铁道学报,1993,15(1):23-30
    [8]张卫华.准高速接触网动态性能的研究.西南交通大学学报,1997,32(2):187-192
    [9]张卫华.受电弓一接触网系统动态特性的研究.西南交通大学硕士学位论文,1988
    [10]Collina A, Melzi S. Effect of Contact Strip-Contact Wire Interaction on Current Transfer at High Sliding Speed In The Mid-High Frequency Range [C]//AIMETA Italian Association for Theoretical and Applied Mechanics. Proceedings of 5th International Conference on Tribology, Parma:AITC-AIT committee,2006:20-22.
    [11]张卫华,梅桂明,陈良麒.接触线弛度及表面不平顺对接触受流的影响分析[J].铁道学报,2000,22(6):50-54.
    [12]Wu T X, Brennan M J. Dynamic stiffness of a railway overhead wire system and its effect on pantograph-catenary system dynamics [J]. Journal of Sound and Vibration, 1999; 219(3):483-502.
    [13]Arnold M, Simeon B. Pantograph and catenary dynamics:A benchmark problem and its numerical solution [J]. Applied Numerical Mathematics,2000; 34(4):345-362.
    [14]Park Tong-Jin, Han Chang-Soo, Jang Jin-Hee. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle [J]. Journal of Sound and Vibration,2003(2); 266:235-260.
    [15]Mitsuo ABOSHI, Katsushi MANABE. Analyses of contact force fluctuation between catenary and pantograph [J]. Quarterly Report of RTRI,2000; 41(4):182-187.
    [16]Metrikine A V, Bosch A L. Dynamic response of a two-level catenary to a moving load [J]. Journal of Sound and Vibration,2006; 292(3-5):676-693.
    [17]Manabe K, Morikawa T, Hikita M. On dynamics of overhead equipment and multi-pantograph system [J]. Quarterly Reports of RTRI,1986,27 (1):21-25
    [18]孟祥奎.接触网设计值得注意的一个问题—多弓共振[J].铁道工程学报,2002,(3):64-66.
    [19]蔡成标,翟婉明.高速铁路受电弓-接触网系统动态性能仿真研究[J].铁道学报,1997,19(5):38-43.
    [20]S Iwnicki. Future trends in railway engineering. Mechanical Engineering Science.2009, 223(12):2743-2750.
    [21]Raghunathan S R, Kin D H, Setoguchi T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences,2002,38(6-7):469-514.
    [22]Chris Baker. The flow around high speed trains. Journal of wind engineering and industrial aerodynamics.2010,98(6-7):277-298.
    [23]Jerry Evans, Mats berg. Challenges in simulation of rail vehicle dynamics. Vehicles System Dynamics,2009,47(8):1023-1048.
    [24]C J Baker. Current and recent international work on railway aerodynamics. School of engineering university of Birmingham,2003:1-30.
    [25]Masahiro SUZKI. Unsteady aerodynamics force acting on high speed trains in tunnel. QR of RTRI.2001,42(2):89-93.
    [26]M.Bocciolone, F.Resta,D.Rocchi, A.Tosi, A.Collina. Pantograph aerodynamic effects on the pantograph-catenary interaction[J]. Vehicle System Dynamics,2006,44(suppl):560-570.
    [27]严隽耄.车辆工程(第二版)[M].北京:中国铁道出版社,2003.
    [28]Mitsuru IKEDA, Kazushige YOSHIDA, Masahiro SUZUKI. A Flow Control Technique Utilizing Air Blowing to Modify the Aerodynamic Characteristics of Pantograph for High-Speed Train [J]. Journal of Mechanical Systems for Transportation and Logistics2008,1(3):264-271.
    [29]Masahiro SUZUKI, Mitsuru IKEDA, Tatsuya KOYAMA. Flow Control on Pantograph with Air Intake and Outlet [J].Quarterly Report of RTRI,2007,48(4):236-239.
    [30]Masahiro SUZUKI, Mitsuru IKEDA, Kazushige YOSHIDA. Study on Numerical Optimization of Cross-sectional Pan head Shape for High-Speed Train [J]. Journal of Mechanical Systems for Transportation and Logistics 2008,1(1):100-110.
    [31]张弘,于正平,吴鸿标.受电弓空气动力学模型及风洞试验研究[J].中国铁道科学,1995,16(1):37-49.
    [32]蔡国华.高速列车受电弓低速风洞试验技术[J].铁道工程学报,2006,(4):67-70.
    [33]蔡国华.高速列车受电弓气动力特性测量[J].流体力学实验与测量,2004,18(1):53-56.
    [34]吴积钦,钱清泉.受电弓与接触网系统电接触特性.中国铁道科学,2008,29(3):106-109.
    [35]吴积钦.弓网系统电弧的产生及其影响,接触网,2008(2):27-29
    [36]Collina Andrea. Bruni Stefano. Numerical simulation of pantograph-overhead equipment interaction.Vehicle System Dynamics.2002.38(4):261-291
    [37]Lars Drugge. Tobias Larsson and Annika Stensson. Modeling and simulation of catenary-pantograph interaction. Vehicle System dynamics Supplement.1999. 33:490-501
    [38]Konig Andreas. Resch Uwe. Numerical simulation of the pantograph/ catenary system. Eisenbahningenieur. Mar.1995.46(3):162
    [39]Fujii Y. Manabe K. Computer simulation for dynamics of overhead catenary-pantograph system. Proceedings of the International Conference on Computer Aided Design. Manufacture and Operation in the Railway and other Advanced Mass Transit Systems.2. Technology.1992. p51
    [40]Eppinginger S D. O'Coimer N D. Seering W P. Modeling and experimental evaluation of asymmetric pantograph dynamics. J. Of dynamics Systems. Measurement and Control-Traps. Asme.1988.110:168-174.
    [41]Armbruster K. Modeling and dynamics of pantograph-catenary systems for high speed trains. Master'S Thesis, Massachusetts Institute Of Technology, Cambridge. MA,1983
    [42]O'Connor D N. Modeling and simulation of pantograph-catenary systems. Master'S Thesis,
    [43]Vinayagalingam T. Computer evaluation of controlled pantographs for current collection from simple catenary overhead equipment at high speed. Journal of Dynamics Systems, Measurement and Control,1983,105:287-294.
    [44]Diana G. Bruni S. Collina A. Fossati F. Resta F. High speed railways:pantograph and overhead lines modelling and simulation. Proceedings of the International Conference on Computer Aided Design.Manufacture and Operation in The Railway and Other Advanced Mass Transit Systems.1998:847-856.
    [45]Petri K. Wallaschek J. Analytical models for the dynamics of catenary-pantograph systems. Applied Mathematics and Mechanics.1996.76(suppl 5):381
    [46]蔡成标,翟婉明,高速铁路接触网静态刚度分析,西南交通大学学报,1996,31(2):185-190.
    [47]蔡成标,翟婉明,高速铁路接触网振动特性分析.西南交通大学学报,1997,32(5):497-501.
    [48]李丰良等.接触网的力学模型及运动微分方程.长沙铁道学院学报,1996,14(2):90-93.
    [49]吴天行.接触网的有限元计算与分析.铁道学报,1996,18(3):44-49
    [50]SHAN Q, ZHAI W M. A macroelement method for catenary mode analysis [J]. Computers and Structures,1998,69(6):767-772.
    [51]安孝廉.受电器.北京:中国铁道出版社,1984:34-44
    [52]Wu T X, Brennan M J. Basic analytical study of pantograph-catenary system dynamics [J]. Vehicle System Dynamics,1998,30(6):443-456.
    [53]G. POETSCH, J. EVANS, R. MEISINGER, W. KORTUM, W. BALDAUF, A. VEITL & J. WALLASCHEK. Pantograph/Catenary Dynamics and Control. Vehicle System Dynamics.1997,28(2-3):159-195.
    [54]Jian Li, Overhead Line Simulation Research for Wire Tensile Forces Optimization, Proceedings of the 1st International Workshop on High-Speed and Intercity Railways Lecture Notes in Electrical Engineering,2012, Volume 147,309-317.
    [55]J. R. Ockendon, A. B. Tayor, The dynamics of a current collection system for an electric locomotive, Proceeding of the Royal Society of London A211 (1971) 336-357.
    [56]K. Manabe, Periodical dynamic stabilities of a catenary-pantograph system, Quarterly Report of Railway Dynamic 30 (1998) 443-456.
    [57]W H Zhang, G M Mei, J Zeng. A Study of Pantograph/Catenary System Dynamics with Influence of Presag and Irregularity of Contact Wire. Proc. Vehicle System Dynamics, 2002,37(Suppl.):593-604.
    [58]Zhang W H, Liu Y, Mei G M. A Study on Dynamic Stress of Catenary. Proc.18th IAVSD-Symposium on the Dynamics of Vehicles on Roads and Tracks, Kanagawa, Japan, August 2003:334-336.
    [59]Lopez-Garcia O, Carniceroa A, Torresb V. Computation of the initial equilibrium of railway overheads based on the catenary equation [J]. Engineering Structures,2006, 28(10):1387-1394.
    [60]Zhang W H, Liu Y, Mei G M. Evaluation of the coupled dynamical response of a pantograph-catenary system contact force and stresses. Vehicle System Dynamics.2006, 44(8):645-658.
    [61]K Lee, Analysis of dynamic contact between overhead wire and pantograph of a high-speed electric train, Proc. IMechE. Part F:J. Rail and Rapid Transit,2007,221: 157-166.
    [62]Lopez-Garcia, A. Carnicero, J L Marono. Influence of stiffness and contact modelling on catenary-pantograph system dynamics. Journal of Sound and Vibration,2007,299: 806-821.
    [63]Jin-Woo Kim, Ho-Chol Chae, Bum-Seok Park, Seung-Yeol Lee, Chang-Soo Han, Jin-Hee Jang. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force. Journal of Sound and Vibration[J], 2007,303 (3-5):405-427.
    [64]Jesus Benet, Angelines Alberto, Enrique Arias, Tomas Rojo. A Mathematical Model of the Pantograph-Catenary Dynamic Interaction with Several Contact Wires. IAENG International Journal of Applied Mathematics.2007,37(2):10.
    [65]Yong Hyeon Cho. Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper. Journal of Sound and Vibration [J],2008,315(3):433-454.
    [66]周宁,张卫华.基于直接积分法的弓网耦合系统动力学研究.中国铁道科学[J].2008,29(6):71-76.
    [67]Benedetto Allotta, Luca Pugi, Fabio Bartolini. Design and Experimental Results of an Active Suspension System for a High-Speed Pantograph. IEEE/ASME TRANSACTIONS ON MECHATRONICS,2008,13(5):548-557.
    [68]ZHOU N, ZHANG W H. Investigation of the Influence of Pan-head Elasticity on Pantograph-Catenary Dynamic Performance.21st International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD'09),17-21 August,2009.
    [69]Zhou N, Li R P, Zhang W H. Investigation of the Influence of the Space between Two Pantographs on the Dynamic Performance of Pantograph and Catenary system.3rd International Conference on Integrity, Reliability and Failure. Porto,20-24 July 2009.
    [70]张卫华,周宁,李瑞平,梅桂明,宋冬利.时速350公里及以上高速列车双弓受流技术研究与应用.第七届世界高速铁路大会论文集(上册),2010.12.7-9,中国铁道出版社,北京.
    [71]周宁,张卫华,王冬.受电弓等效模型参数识别及动态性能测试.西南交通大学学报.2011,46(3):398-403.
    [72]W H ZHANG, N ZHOU, R P LI, G M MEI, D L SONG. Pantograph and catenary system with double pantographs for high-speed trains at 350 km/h or higher. Journal of Modern Transportation,2011,19(1):7-11.
    [73]G Bucca, A Collina, RManigrasso, F Mapelli, D Tarsitano. Analysis of electrical interferences related to the current collection quality in pantograph-catenary interaction. Proc IMechE Part F:J. Rail and Rapid Transit.2011,225(5):483-500.
    [74]Zhou N, Zhang W H. Investigation on Dynamic Performance and Parameter Optimization Design of Pantograph and Catenary System. Finite element in analysis and design.2011,47(3):288-295.
    [75]Yong Hyeon Cho, Kiwon Lee, Young Park, Bubyoung Kang, Ki-nam Kim. Influence of contact wire pre-sag on the dynamics of pantograph-railway catenary. International Journal of Mechanical Sciences [J],2010,52(11):1471-1490.
    [76]梅桂明,张卫华,受电弓/接触网系统动力学模型及特性,交通运输工程学报,2002年2卷1期,20-25.
    [77]李丰良,孙焰,粟谦.TSG3受电弓的归算质量[J].铁道学报,1998,20(2):55-58.
    [78]李丰良,李敏,唐建湘.受电弓的建模与参数测试.中南大学学报(自然科学版)[J],2006,37(1):194-199.
    [79]Yu D, Lo K L. Analysis on catenary current-collection theory. Proceedings of the Universities Power Engineering Conference,2000:44-45.
    [80]Aboshi Mitsuo, Nkaai Issei, Kinoshita Hiorkazu. Current collection characteristics and improvement methods of high-tension overhead catenary systems. Electrical Engineering in Japanjun.1998,123(4):67-76.
    [81]梅桂明,张卫华.不同结构类型接触网动态特性研究.交通运输工程学报,2002,2(2):27-31
    [82]刘红娇.受电弓机构几何参数优化与主动控制的研究.西南交通大学硕士学位论文,2002
    [83]黄标.基于虚拟样机技术的受电弓/接触网系统研究[D].成都:西南交通大学,2004.
    [84]刘怡,张卫华,梅桂明,受电弓/接触网垂向耦合运动中接触网动应力研究,铁道学报,2003年25卷4期,23-26.
    [85]郭京波,杨绍普.高速铁路弓网系统受流稳定性与lyapunov指数.中国安全科学学报,2005(3)
    [86]郭京波,杨绍普.高速铁路接触网-受电弓系统受流稳定性.动力学与控制学报,2004,3:60-63.
    [87]陈恩利,杨绍普等,多频激励下滞后非线性悬挂受电弓的亚谐共振,<工程力学>增刊,199:779-784.
    [88]陈恩利,邢海军,滞后非线性受电弓在多频激励下的共振与分叉问题,石家庄铁道学院学报,2000,13(3):44-47
    [89]韩福景,杨绍普.参数激励下受电弓系统的分岔与混沌.石家庄铁道学院学报,2004(1)
    [90]原华,原华,毕继红,周全智.刚性悬挂接触网弓网耦合仿真研究.低温建筑技术[J].2007,116(2):51-53.
    [91]于正平,张弘,吴鸿标,昌月朝.高速电气化铁路接触网-受电弓系统的研究.中国铁道科学[J].1999,20(1):59-72.
    [92]于正平等.中速及高速电力机车气动外形方案.机车电传动,1998(5-6).
    [93]NAGASAKA S, ABOSHI M. Measurement and Estimation of Contact Wire Unevenness. QR of RTRI,2004,45(2):86-91.
    [94]翟婉明,蔡成标.机车-轨道耦合振动对受电弓-接触网系统动力学的影响[J].铁道 学报,1998,20(1):32-38.
    [95]Zhai W M, Cai C B. Effect of locomotive vibration on pantograph-catenary system dynamics. Vehicle System Dynamics Supplement,1998,28:47-58.
    [96]He D H, Manory Rafael R, Grady Norm. Wear of railway contact wires against current collector materials. Wear,1998,215:146-155.
    [97]Takayuki USUDA. Estimation of wear and strain of contact wire using contact force of pantograph. QR of RTRI,2007,48(3):170-175.
    [98]Bucca G, Collina A. A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system. Wear,2009,266(1-2):46-59.
    [99]丁涛,王鑫,陈光雄,杨红娟,朱旻昊.不同弹簧刚度下不锈钢/浸金属碳摩擦副的受流质量与磨损性能的关系.机械工程材料,2011,35(1):33-35.
    [100]丁涛,何宏高,陈光雄,朱旻昊.弹性条件下浸金属碳/不锈钢载流摩擦磨损性能.西南交通大学学报,2009,44(4):558-563.
    [101]贾步超,丁涛,陈光雄.两种气体环境中的不锈钢/浸金属碳带电摩擦磨损的试验研究.润滑与密封,2008,33(6):35-37.
    [102]卜俊,丁涛,陈光雄.温度对受电弓滑板材料磨损的影响润滑与密封,2010,35(5):22-25.
    [103]丁涛,王鑫,陈光雄,朱旻昊.有无电流条件下温度对碳/铜摩擦副摩擦磨损性能的影响.中国机械工程,2010,21(7):843-847.
    [104]翟洪祥,汪长安.Ti3SiC2材料在受电弓滑板中的应用研究[J].机车电传动,2003(B12):43-45
    [105]黄振莺,翟洪祥,刘新,艾明星,周炜.Ti_3SiC_2系材料的载流磨损特性及机理.稀有金属材料与工程[J],2007,36(增刊2):434-437.
    [106]黄振莺,翟洪祥,张宏兵,张华.载流条件下Ti3SiC2陶瓷材料的摩擦学特性.稀有金属材料与工程[J],2008,37(增刊1):213-216.
    [107]刘新,翟洪祥,黄振莺.钛铝碳陶瓷载流滑动下的摩擦磨损行为.硅酸盐学报[J],2007,35(7):852-855.
    [108]Mitsuo ABOSHI, Katsushi MANABE. Analyses of contact force fluctuation between catenary and pantograph [J]. Quarterly Report of RTRI,2000; 41(4):182-187.
    [109]Takamasa HAYASAKA. Effect of reduced reflective wave propagation on overhead contact line in overlap section. QR of RTRI,2004,45(2):68-73.
    [110]周宁,张卫华.双弓作用下弓网动力学性能.西南交通大学学报,2009,44(4):552-557.
    [111]柴田,腾彦.东北新干线”疾风”号低噪声受电弓.国外铁道车辆[J].2005,42(6):29-32.
    [112]Masahiro SUZUKI, Mitsuru IKEDA, Tatsuya KOYAMA. Flow control for pantographs using air intake and outlet. Journal of mechanical systems for transportation and logistics [J],2008,1(3):272-280.
    [113]Mitsuru IKED A, Takehisa TAKAISHI, Perforated pantograph horn aeolian tone suppression mechanism. QR of RTRI [J].2004,45(3),168-174.
    [114]C NOGER, J C PATRAT, J PEUBE, J L PEUBE. AEROACOUSTICAL STUDY OF THE TGV PANTOGRAPH RECESS Journal of Sound and vibration [J].2000,231(3): 563-575.
    [115]蔡国华.高速客车模型气动特性实验研究.实验流体力学[J],2007,21(4):27-31.
    [116]张建辉,杨炯,姚勇.高速列车受电弓减阻的风洞试验研究铁道科学与工程学报[J].2010,7(6):116-121.
    [117]孙艳军,梅元贵.国外动车组受电弓的气动噪声介绍.铁道机车车辆[J].2008,28(5):32-35.
    [118]欧阳鹏,柳萍,王月明,李伟.受电弓导流板气动特性的二维数值研究.电力机车与城轨车辆[J].2010,33(6):17-20.
    [119]杨桢.基于空气动力学的受电弓高速受流研究.电气化铁道[J].2009,(3):17-20.
    [120]宋洪磊,吴俊勇,吴燕,郑积浩,郑琼林.空气动力作用对高速受电弓受流特性影响研究.电气化铁道[J].2010,(1):28-32.
    [121]吴燕,吴俊勇,郑积浩.基于有限元和空气动力学模型的高速受电弓动态性能仿真.西南交通大学学报.2009,44(6):855-859.
    [122]韩通新.弓网受流中出现连续火花的原因分析.铁道机车车辆,2003,23(3):58-61.
    [123]吴积钦.弓网系统电弧侵蚀接触线时的热分析.铁道学报,2008,30(3):31-34.
    [124]张卫华.机车车辆动态模拟[M].北京:中国铁道出版社,2006.
    [125]Haber R B, Abel J F. Initial equilibrium solution methods for cable reinforced membranes:Part (I)-formulations [J]. Computer Methods in Applied Mechanics and Engineering,1982,30(3):263-284.
    [126]Bruno D, Leonardi A. Nonlinear structural models in cableways transport systems [J]. Simulation Practice and Theory,1999,7(3):207-218.
    [127]Newmark, N. M., A method of computation for structural dynamics, Journal of Engineering Mechanics,1959,85:67-94.
    [128]吴积钦,受电弓与接触网系统,成都:西南交通大学出版社,2010年12月.
    [129]李瑞平,周宁,张卫华,梅桂明,陈珍宝.受电弓气动抬升力计算方法与分析.铁道学报,2012,34(8):26-32.
    [130]Madshus C and Kaynia A. High speed railway lines on soft ground:dynamic response of rail-embankment-soil system. NGI Report 515177-1, Norwegian Geotechnical Institute; 1998.
    [131]Koh, C.G., Ong, J.S.Y., Chua, D.K.H. and Feng, J., Moving element method for train-track dynamics. Int J Numer Methods Eng. v56.1549-1567.
    [132]Bode, C, Hirschauer, R. and Savidis, S.A., Three-dimensional time domain analysis of moving loads on railway tracks on layered soils. In:Chouw, N., Schmid, G. (Eds.), Wave 2000, A.A. Balkema, Rotterdam, pp.3-12.
    [133]L. Andersen, S. R. K. Nielsen and S. Krenk, Numerical methods for analysis of structure and ground vibration from moving loads, Computers and Structures,2007, v85.43-58.
    [134]H. Martikka, Optimum design of locomotive frames using fuzzy goals and FE methods, design optimization 2000, v31.411-415.
    [135]PMehmet Sezer and Aysegul Akyuz-Dascioglu, A Taylor method for numerical solution of generalized pantograph equations with linear functional argument, Journal of Computational and Applied Mathematics 2007, v200.217-225.
    [136]孙常新,梁波等.秦沈客运专线路基动应力响应分析.兰州铁道学院学报.第22卷.第4期.2003.110-113.
    [137]Q Xin, HZ Ling, and TJ Long,Application of Magnetoelastic Technology to the Measurement of Stresses in Rails for High-Speed Trains 2004, v32.11946
    [138]张国祥,方万进.高速铁路钢轨动应力测试分析.交通科技与经济.2005年第1期.总第27期.43-44.
    [139]徐铸.固体实验力学的重构方法.第七届全国实验力学学术会议论文集(二).北京大学出版社.1992.1102-1105.
    [140]洪宝宁,徐铸.重构正交各向异性应力场和应变场.南京建筑工程学院学报.第32卷.第1期.1995,63-66.
    [141]林玉祥,卢良玉等.辽宁及邻区应力场模拟中远场应力的确定.东北地震研究.第16卷.第3期.2000.47-50.
    [142]许才军,陶本藻等.大地测量反演线弹性构造应力场.测绘学报.第25卷.第1期.1996.17-24.
    [143]许才军,晁定波等.用大地测量资料反演青藏高原构造应力场的初步尝试.测绘学报.第26卷.第2期.1997.95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700