棉花有益突变体的创制及突变性状的分子遗传学鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用EMS化学诱变、~(14)N重离子注入及~(60)Coγ射线辐照3种诱变方式处理冀棉20、农大156和农抗2号棉花品种,利用四分位法和系谱选择法筛选到植物学性状、产量性状和纤维品质性状突变体并采用SSR标记对突变体进行分子水平鉴定。筛选得到的有益突变体不仅可以丰富棉花种质资源同时也为相应基因的分离和克隆提供了研究材料。主要研究内容与结果如下:
     1.采用1.5%甲基磺酸乙酯(EMS)处理农大156种子幼胚获得棕纤维、无棉酚腺体突变体。对M_1代浅棕纤维材料的进一步遗传分析,证实纤维颜色是由1对基因控制(1白色:2浅棕色:1深棕);纤维颜色与纤维品质性状明显负相关,随着纤维颜色加深纤维长度逐渐变短、强力逐渐变低、麦克隆值逐渐变大、伸长率逐渐提高。在基因组SSR标记的DNA水平上检测验证了突变体与野生型之间的遗传差异性。
     2.采用250Gy的~(60)Coγ射线辐射农抗2号种子,在M_2代获得了超鸡脚叶、无棉酚腺体突变体。该突变体的叶形基因为L°L°、无腺体基因为glgl。利用经典遗传学方法证实超鸡脚叶对阔叶为不完全显性;突变体的无色素腺体性状是由1对隐性基因控制,并且与叶形基因独立遗传。基因组SSR标记的DNA水平上检测验证了遗传差异性。
     3.采用0.5%EMS诱变冀棉20种子。通过四分位法结合系谱选择,在M_4代获得了M_4-66-4和M_4-236-5两个突变体。M_4-66-4的绒长为26.58mm较对照降低了1.99mm、比强度为24.8cN/tex较对照下降了1.90 cN/tex;M_4-236-5的绒长为30.44mm较对照提高了1.87mm、比强度为30.00cN/tex较对照提高了3.30 cN/tex。突变体M_(4:5)家系的绒长和比强度表现稳定。在60对与纤维长度相关和52对与纤维强力相关的SSR引物中BNL1414、BNL1434、BNL2821、BNL1421、BNL4030和JESPR300六对引物能够在突变体与冀棉20之间扩增出明显差异的多态性33条。两个突变体的M_(4:5)家系的SSR多态性条带表现稳定。该结果从分子水平验证了突变体M_4-66-4、M_4-236-5的遗传稳定性及其与冀棉20的遗传差异性。
     4.采用0.125%EMS对冀棉20进行合子诱变。在M_3代筛选到突变体合诱M_3-4-2,其籽指为13.12g高出对照3.61g,M_(3:4)家系表现稳定。采用0.5%EMS对冀棉20进行种子诱变,在M_4代选择到突变体M_4-97-2-4,其籽指为6.80 g低于对照4.08g,M_(4:5)家系表现稳定。通过对合诱M_3-4-2、M_4-97-2-4和冀棉20的SSR标记多态性分析,在17对与籽指相关的SSR引物中JESPR114和CIR354两对引物在突变体与冀棉20之间共扩增出4条多态性条带。对突变体的后代家系进行DNA标记多态性检测,4条多态性条带表现稳定。该结果从分子水平验证了突变体合诱M_3-4-2、M_4-97-2-4的遗传稳定性及其与冀棉20的遗传差异性。
     5.采用1.5%EMS对农大156进行种子诱变。在M_4代筛选到突变体N-156M_4-101-3,其绒长为30.28mm较对照提高了1.38mm、比强度为31.20cN/tex较对照提高了1.1cN/tex、麦克隆值为4.86较对照提高了1.03。M_(4:5)家系表现稳定。采用80 Gy~(14)N重离子注入农大156。在M_3代筛选到突变体~(14)N-156 M_3-100-4,其绒长为27.42mm较对照下降了1.48mm;比强度为23.70cN/tex较对照下降了6.4cN/tex;麦克隆值为5.13较对照提高了1.30。M_(3:4)家系表现稳定。对~(14)N-156 M_3-100-4、N-156 EMSM_4-101-3与农大156进行SSR多态性差异检测。在60对与纤维长度相关、52对与纤维强力相关、42对与麦克隆值相关的SSR引物中,BNL2821、BNL3280、BNL4030、BNL1513和TMG8五对引物能够在突变体与农大156之间扩增出16条多态性条带。两个突变体的后代家系的SSR多态性与两个突变体的品质性状表型一致,在分子水平上验证了两个突变体纤维长度、强力及细度的遗传稳定性及其与农大156的遗传差异性。
Three varieties of upland cotton(Gossypium hirsutum L.),which are G-20,N-156 and NK-20,were induced by three methods including EMS chemical mutation,~(14)N heavy ions implantation and ~(60)Coγ-rays radiation to select botany character,yield trait and fiber quality trait mutants.The acquirement of these mutants will be valuable not only for enriching the germplasm resources but also to the foundation of mutation material foreground for the location and clone of correlative genes.The main results were as followings:
     1.Brown colored fiber mutant named N-156 EMS M1-LBF had been selected by 1.5% Ethyl Methane-sulfonate(EMS) treated with germinating seeds.Brown colored fibre was controlled by one pair alleles through genetical analysis(one white colored:two light-brown colored:one deep brown colored).Fibre color correlated with fiber quality negatively.The fiber length(FL) changed shorter,fiber strength(FS) changed lower,fiber micronaire(FM) changed larger and fiber elongation(FE) changed higher along with fiber color deeping.The genetical diversity between mutant and CK was verified by the result of SSR polymorphic diversity comparison.
     2.Super-okra leaf,gossypol glandless mutant was obtained on M_2 generation by 250 Gy ~(60)Coγrays radiation to cotton varety NK-2.It was approved that super-okra leaf was incomplete dominance to normal leaf.Gossypol gland was controlled by one pair of recessive genes and heredity independent with leaf shape genes.The genotype of the mutant is L°L°glgl.The genetical diversity of mutant and NK-2 were checked by SSR polymorphic diversity comparison
     3.The seeds of variety G-20 were induced by 0.5%EMS.Two mutants named M_4-66-4 and M_4-236-5 were obtained on M4 generation through pedigree selection.The result of phenotype measurement indicated:FL and FS of M_4-66-4 were 26.85 mm and 24.80 cN/tex which were 1.99mm shorter and 1.90 cN/tex lower than that of G-20,meanwhile FL and FS of M_4-236-5 were 30.44 mm and 30.00 cN/tex which were 1.87mm longer and 3.30 cN/tex higher than that of G-20.The phenotype measurement of M_(4:5) family lines were stable.The result of the SSR polymorphic diversity comparison to G-20 indicated:six SSR primers screened from 60 primer pairs correlated with FL and 52 primer pairs correlated with FS could amplify 33 polymorphic bands among mutants and G-20.The genetical stability and the variance among two mutants and G-20 were verified by the result of SSR polymorphic diversity comparison.
     4.Zygotes of variety G-20 were implanted by 0.125%EMS.Seed index(SI) of Zygote induced M_3-4-2,which had been selected on M_2 generation through pedigree selection, was13.12g,3.61g heavier than that of G-20.The phenotype measurement of M_(3:4) family line was stable.The seeds of variety G-20 were induced by 0.5%EMS and the SI of M_4-97-2-4 was 6.80g,4.08g lower than that of G-20.SI of M_(4:5) famliy line was stable.The result of SSR polymorphic diversity comparison to G-20 indicated:two SSR primers screened from 17 primer pairs correlated with SI,which were JESPR114 and CIR354, could amplify polymorphic bands among mutants and G-20.The genetical stability and the variance among two mutants and G-20 were verified by the result of SSR polymorphic diversity comparison.
     5.The seeds of variety N-156 were induced by 1.5%EMS.N-156 M_4-101-3 were obtained on M_4 generation through pedigree selection.The result of phenotype measurement indicated:FL,FS and FM of the:mutant were 30.28 mm,31.20 cN/tex and 4.86 which were 1.38 mm longer and 1.10 cN/tex higher and 1,03 thicker than that of N-156.The phenotype measurement of FL,FS and FM of M_(4:5) family line were stable. The seeds of variety N-156 were implanted by ~(14)N heavy ions.~(14)N-156 M_3-100-4 was obtained on M_3 generation through pedigree selection.The result of phenotype measurement indicated:FL,LS and FM of ~(14)N-156 M_3-100-4 were 27.42 mm,23.70 cN/tex and 5.13 which are 1.48mm shorter and 6.40 cN/tex lower and 1.30 thicker than that of N-156.The phenotype of FL,FS and FM of M_(4:5) family line were stable.The genetical stability of FL,FS and FM were verified by the above results.The result of SSR polymorphic diversity comparison to N-156 indicated:five SSR primers screened from 60 primer pairs correlated with FL,52 primer pairs correlated with FS,42 primer pairs correlated with FM,which were BNL2821、BNL3280、BNL4030、BNL1513 and TMG8, could amplify 16 polymorphic bands among mutants and N-156.The result of FL,FS and FM of the two mutants on M_4 generation was verified by the variance statistics and DNA marker analysis in M_(4:5) family line.The genetical stability and the variance among two mutants and N-156 were verified by the result of SSR polymorphic diversity comparison.
引文
[1]王琳清.我国农作物突变育种进展剖析[J].核农学通报.1992,13(6):282-290.
    [2]周平兰,梁满中,陈良碧.合子期化学诱变在作物育种中的应用[J].核农学报,2004,18(6):453-456.
    [3]韦祖生,李开绵.作物诱变育种及突变体鉴定与筛选研究进展[J].江西农业学报,2007,19(10):38-41.
    [4]AHLOOWALIA B S,Maluszynski M,Nichterlein K.Global impact of mutation derived varieties[J].Euphytica,2004,135(2):187-204.
    [5]周宝良,张天真.棉花特异种质资源的创造与利用研究[J].棉花学报,2005,17(5):304-308.
    [6]李雪华.大豆突变体库的初步构建及突变类型的鉴定[D],南京农业大学硕士(学位),2003:6-9.
    [7]董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展[J].种子,2005,24(7);54-58.
    [8]潘家驹.棉花育种学[M].北京:中国农业出版社.1998:256-257.
    [9]Poisson,O.J.M.Royo,L.Erazzu,S.I balo.A.Montenegro.First Okra-leaf Cotton Cultivar Breed and Released in Argentina.(http://www.Inta.Gov.ar)
    [10]王元东,赵久然,郭景伦,等.诱变育种在创造玉米新种质中的应用[J].北京农业科学,1999,17(2):12-16.
    [12]张铭堂.诱变[J].科学农业,1996,44(2):37-52.
    [13]Maluszynski M.Application of in vivo and in vivtro mutation techniques for crop improve[J].Euphytica,1995,85:303-315.
    [14]潘大陆.选育鲁棉1号的辩证法[M].济南:山东农业科学出版社.1983,(4):13-18.
    [15]苏学合,朱斗北,王增贵.辐照埃及棉选育陆地棉性状的长绒棉突变体的研究[J].棉农学棉,1994,8(1):1-6.
    [16]苏学合,高国强,时香玉等.陆地型长绒棉鲁原343系的选育[J].核农学报,2000,14(3):180-183.
    [17]李煦远.高产、优质、多抗棉花品种鄂棉15的选育[J].湖北农学院学报,1994,14(4):14-17.
    [18]何卓培,周庆祺,徐淑平,等.辐射诱变育成棉花高衣分品系[J].实验生物学报,2001,34(1):51-53.
    [19]陈子元.从辐射育种的发展来展望航天育种的前景[J].核农学报,2002,16(5):261-263.
    [20]Osbprne T.S.,Lunder A.O..Seed radiosensitivity anew constant[J].Science,1964,145:710-711.
    [21]刘泽雯,黄惠芳.棉花辐射育种的适宜剂量及遗传规律[J].山西农业科学,1980,(5):5-7.
    [22]朱乾浩.~(137)Cs γ射线对四个栽培棉种的辐射诱变效应及其突变体研究[M].浙江农业大学博士学位论文,1997:60-62.
    [23]李汝忠,高国强,王留明.不同陆地棉品种辐射效应研究初报[J].棉花学报,1997,9(2): 108-109.
    [24]翟学军,李俊兰,李之树.棉花辐射效应的研究Ⅰ M_1主要农艺及经济性状的变异[J].核农学通报,1994,15(1):12-15.
    [25]范平.棉花辐射后代变异新类型的探讨[J].原子能农业应用,1980,(1):13-19.
    [26]李熙远,李定国,汤谷香.棉花γ_2代主要经济性状间的相关分析[J].湖北农学院学报,1998,18(1):4-7.
    [27]陆璃,吕金印,刘军,等.~(60)Coγ射线辐照对小麦种子根尖细胞有丝分裂的影响[J].西北农林科技大学学报,2005,33(9):57-62.
    128]余增亮.离子注入生物效应及育种研究进展[J].安徽农学院学报,1991,18(4):251-257.
    [29]吕晓桂,罗辽复.低能离子束在植物种粒和微生物中的穿透深度[J].生物物理学报.2006,(22):56-61.
    [30]凌海秋,武宝山,金湘,等.离子注入-改良转基因植物性状的新途径[J].种子,2006,25(9):78-79.
    [31]罗红兵,赵葵,郭继宇,等.重离子辐照玉米种子M_1代诱变效应研究[J].原子核物理评论,21(3).23R-242.
    [32]Trevor M.Induced Mutations and Molecular Techniques for Crop Improvement[C].Crop Protection.1996,15(6):593-596.
    [33]郭金华,谢传晓,徐剑,等.N~+离子注入对大豆种子活力及其幼苗的抗氧化酶活性影响[J].2003,12(5):368-372.
    [34]W U L i- fang,L I H ong,YU Z eng - liang.The Applica t ion of Ion Beam in Life Science[J].ACTA LASER BIOLOGY SIN ICA,1999,8(4):298-304.
    [35]杨惠玲,王世亨,范兆田,等.低能离子注入彩棉种子的深度与浓度分布研究[J].新疆师范大学学报,24(2):44-46.
    [36]梁秋霞,曹刚强,黄群策,等.超低能离子束注入后番茄的生物学效应[J].激光生物学报,2006,15(4):387-393.
    [37]Guijun D,Weidong P,Gongshe L.The analysis ofproteome changes in sunflower seeds induced by N~+ implantation[J].Biosci.,2006,31(2):247-53.
    [38]吴丽芳,余增亮.离子注入法获得大豆-小麦分子远缘杂种及后代的变异分析[J].核农学报,2000,14(4):206-211.
    [39]郑冬官,方萁英,黄德祥,等.离子注入在棉花育种中的诱变功效[J].安徽农业大学学报,1994,21(3):315-317.
    [40]程备久,李展,田秋元,等.氮离子注入对棉花花粉形态和生活力及育性的影响[J].西北植物学报,1994,14(2):85-89.
    [4]]程备久,李展,王公明,等.氮离子注入棉花种子的诱变效应[J].核农学报,1993,7(2):73-80.
    [42]程备久,田秋元,佘增亮.离子注入诱发棉花过氧化物酶同功酶及农艺形状变异的研究[J].棉花学报.1994,6(1):41-47.
    [43]Yang T C,Tobias C A.Potential use of heavy-ion radiation in crop improvement[J].Gamma-Field Symposia,1979,18:141-142.
    [44]项艳,刘正祥,胡蕙露,等.N~+离子注入板栗生物学效应研究[J],激光生物学报,2004,13(1):47-51.
    [45]李贵成,王林辉,罗红兵.重离子辐射玉米种子的细胞学观察[J],湖南农业大学学报,2004,33(5):556-558.
    [46]Yu Zengliang.Introduction to Ion Beam Biotechnology[M].New York:Springer Publishing House,2006:78-83.
    [47]Leon A.Snyder,David Freifelder,Daniel L.Hartl.General Genetics[M].Bosten:Jones and Bartlett Publishers,1985:372-373.
    [48]许耀奎.顾光炜,邬信康.作物诱变育种[M].上海科学技术出版社,1985:52-54.
    [49]Wei Y C,Du L N,Yu X P,et al.Research on mutative effect of EMS on soybean zygote[J].Chinese journal of oil crop sciences,1999,21:56-58.
    [50]Sun J Y,Tu J D,Fan SH W,et al.The screening of mutants induced by physical and chemical factors and construction for Brassica napus L.,[J].HEREDITAS(Beijing).2007,29(4):475-482.
    [51]Liu X L,Yang ZH,Li G.Biological effects of M_1 generation by utilizing EMS mutagen on Maize pollen[J].Journal of Shenyang Agricultural University,2006,37(6):806-810.
    [52]于秀普.EMS诱发大豆突变可筛选高蛋白或高脂肪含量的种质资源[J].作物品种资源,1995,(1):23-26.
    [53]江树业.水稻突变群体的构建及功能基因组学[J].分子植物育种,2003,1(2):137-150.
    [54]McCallum C.M..Targeted induced local lesions in genomes(TILLING) for plant functional genomics[J].Plant Physiol.,2000,123:439-442.
    [55]McCallum C.M..Targeted screening for induced mutations[J].Nature Biotechnology,2000,15:455-457.
    [56]Andy D,Herring,Dick L.Auid,M.Dean Ethridge,et at.Inheri- tance of fiber quality and lint yield in a chemically mutated population of cotton[J].Euphytica,2004,136:333-339.
    [57]朱保葛,路子显,谷爱秋,等.EMS诱发花生性状变异的效果及高产突变系的选育[J].中国农业科学,1997,30(6):87-89.
    [58]于秀普,杜连思,魏玉昌.大豆化学诱变突变体的胚芽过氧化物酶同工酶等电聚焦电泳分析[J].大豆科学,1994,13(4):371-375.
    [59]于秀普,杜连恩,魏玉昌,等.大豆新品种冀豆8号的选育[J].中国油料,1994,16(4):58-59.
    [60]Xiao S H,Di J,Liu JG,et al.Present State on the Fiber Quality of China' s Cotton Variety and Its Developmental Strategies[J].Science and Technology Review,2002,1:49-51.
    [6]]沈法富.于元杰.棉花合子期化学诱变效应[J].植物学通报,1996,(13):35-38.
    [62]沈法富.棉花合子期化学诱变获得的早熟品系及其RAPD分析[J].遗传学报,1999,26(2):174-178.
    [63]薛守旺,周洪生.利用花粉化学诱变创造玉米自交系的研究[J].作物杂志,1998(6):6-8.
    [64]周祉祯,谷爱秋,王钦南.在处理春麦合子上化学诱变的效果[J].遗传学报,1980,7(4): 341-346.
    [65]Yousef GG,Juvik JA.Enhancement of Seedling Emergence in Sweet Corn by Marker Assisted Backcrossing of Beneficial QTL[J].Crop Sci.,2002,42(1):96-104.
    [66]钱前,曾大力,朱立煌,等.MNU诱发的水稻巨大胚、甜胚乳两个突变体的RFLP鉴定[J].中国水稻科学,2000,14(3):173-176.
    [67]高振川,李建凡,姜云侠.无腺体棉花是优质的蛋白质资源[J].中国棉花,1984,(6):19-21.
    [68]Bushr A.Low cost protein from cottonseed[J].Econ Bot,1973,27:137-140.
    [69]邱新棉,俞碧霞.低酚棉品种浙棉9号和10号的主要性状分析[J].作物品种资源,1999,(1):15-16.
    [70]陈旭升,狄佳春,刘剑光,等.棉花无腺体性状的遗传及低酚棉产业化前景[J].江西农业学报,2003,15(1):43-47.
    [71]Bell A A,Stipanovic R D.The chemical composition,biological activityand genetics of pigment glands in cotton[C].Proc Beltwide Cotton Prod Res.Conf,1977,244-258.
    [72]McMichael,SC.Glandless boll in upland cotton and its use on the study of natural crossing[J].Agron.J,1954,46:527-528.
    [73]McMichael,SC.Combined effect of glandless genes gl_2 and gl_3 on pigment glands in the cotton plant [J].Agron.J,1960,52:385-386.
    [74]Miravalle,R.J.Action of the genes controlling the character glandlessseed in cotton[J].Crop Sci,1962,2:447.
    [75]Lee,J A.Genetical studies concerning the distribution of pigment glandsin the cotvledens and leaves of upland cotton[J].Gen,1962,47:134-142.
    [76]YUANYou-Lu,ZHANGTian-Zhen,GUOWang-Zhen,et al.Molecular Tagging and Mapping of QTLs for Super Quality Fiber Properties in Upland Cotton[j].Acta Gnetica Sinica,2001,28(12):1151-1161.
    [77]Murray,J C.A new locus for glanded atem in tetraploid cotton[J].J Hered,1965,56:42-46.
    [78]张雪林.金林,张天真,等.种子低酚、植株有酚的棉花新品种[J].中国农业科学,2001,34(5):564-567.
    [79]Afifi A.,et al.Bahtim 110,a new strain of Egyptian cotton free fromgossypol[J].Emp.Cotton Grow Rev.,1966,43:112-120.
    [80]Kohel,R.J.et al.Genetic analysis of Egyptian glandless seeds cotton[J].Crop Sci,1984,24(6):1119-1121.
    [81]唐灿明,闵留芳,潘家驹,等.海岛棉品系海1无腺体性状的遗传[J].作物学报,1994,20(1):8-12.
    [82]张天真,张雪林,金林,等.一个新的棉花腺体形成基因的遗传鉴定[J].2001,27(1):75-79.
    [83]Muramoto H.Hexaploidcotton:someplant and fiber properties[J].Crop Sci,1969,9:27-29.
    [84]Dilday,RH.Development of a cotton plant with glandless seeds and glanded foliage and fruiting forms[J].Crop Sci,1986,26:639-641.
    [85]李炳林,祝水金,王红梅.种子无腺体植株有腺体棉花异源四倍体新种质的育成和研究[J].棉花学报,1991,3(1):27-32.
    [86]祝水金,季道藩.澳洲野生棉种子叶色素腺体延缓形成性状的遗传研究[J].科学通报,2001,46(2):132-137.
    [87]祝水金.蒋玉蓉,N Reddy,等.陆地棉子叶色素腺体延缓形成种质系的育成及其遗传研究[J].科学通报,2004,49(19):1987-1992.
    [88]Bi I.V,Mapuet A,Baudoin J P,et al.Breeding for" low-gossypoi seed and high-gossypol plants "in upland cotton,Analysis using AFLPs and mapped RFLPs[J].Theor Appl Genet,1999,99(7):1233-1244.
    [89]Lou X Y,Zhu J.Analysis of genetic effects of major genes and poly-genes on quantitative traits.Genetic models for seed traits of crops[J].Theor Appl Genet,2002,105:964-971.
    [90]Luo P,Wang G.D,Essenberg M,et al.Molecular cloning and functional identification of a cytochrome P450 monooxygenase(CYPT06BI) of cotton sesquiterpene biosynthesis[J].The Plant Journal,2001,28(1):95-104.
    [91]Glisovic T,Soderberg M,Christian K,et al.Interplay between transcriptional and post -transcriptional regulation of Cyp2a5 expression[J].Biochem Phamacol.,2003,6(10):1653-1661.
    192]朱美霞,李永起,戴小枫.棉酚腺体和棉酚含量的遗传分析及SSR标记[J].分子植物育种,2004.2(2);235-239.
    [93]王省芬.张桂寅,李喜焕,等.黄河、长江流域棉区棉花抗病品种的AFLP分析[J].遗传学报,2004,31(12):1426-143.
    [94]Nguyen TB,Giband M,Brottier P,et al.Coverage of the tetraploid cotton genome using newly developed microsatellitemarkers[J].Theor.Appl.Genet.,2004,109:167-175.
    [95]SongXL,WangK,GuoWZ,et al.A comparison of genetic maps constructed from haploid and BC_1mapping populations from the same crossing between Gossypium hirsutumL and G.barbadenseL[J].Genome,2005,48:378-390.
    [96]张太平.分子标记及其在生态学中的应用[J].生态科学,2000,19(1):51-58.
    [97]Chee P,Draye X,Jiang CX,et al.Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense(cotton) by a backcross-self approach:Ⅰ.Fiber elongation[J].Theor.Appl.Genet.,2005,111:757-763.
    [98]Liu LW,GuoWZ,Zhu XF,et al.Inheritance and Fine Mapping of Fertility restoration for Cytoplasmic Male Sterility in Gossypium hirsutum L[J].Theor.Appl.Genet.,2003,106:461-469.
    [99]徐家萍,刘明辉,汪泰初.离子束诱变桑品种与亲本的同工酶和RAPD比较分析[J].安徽农业大学学报.2002,29(3):286-288.
    [100]任臆,牛西午,王世研,等.氮离子束注入谷子种子后代基因组RAPD分析[J].核农学报.2006,20(4):259-262.
    [101]周峰,易继财,张群宇,等.水稻空间诱变后代的微卫星多态性分析[J].南京农业大学学报,2001.22(4):55-57.
    [102]杨存义,陈芳远,王应祥,等.粳稻品种秋光空间诱变突变体的微卫星分析[J].西北植物学报,2003,23(9):550-555.
    []03]向太和,杨剑波,杨前进.~(60)Co辐照对水稻基因组DNA诱变的分子生物学效应[J].生物化学与生物物理进展,2002,29(5):754-759.
    [104]孙君灵,杜雄明,孙其信,等.棉花γ射线诱变后代的SSR标记遗传多样性[J].中国农业科学,2006,39(10):1967-1976.
    [105]Paterson AH,Stelly DM,Wendel J F.Status of genome mapping in the mallvaceae(cotton)genome mapping in plants[J].R.G.Lands Company,1996,229-242.
    [106]Jiwen Yu,Shu Xun Yu,Cairui Lu,et al.High-density Linkage Map of Cultivated Aliotetraploid Cotton Based on SSR,TRAP,SRAP and AFLP Markers[J].Journal of integrative Plant Biology,2007,49(5):716-724.
    [107]林中旭.棉花分子标记遗传连锁图构建和产量、纤维品质相关性状定位[D].华中农业大学博士学位论文,2005:89-90.
    [108]王志伟.棉花分子遗传图谱构建和纤维品质QTL定位[D].河北农业大学硕士学位论文,2007:32-33.
    [109]Zhang Z S,Xiao Y H,Luo M,et al.Construction of a genetic linkage map and QTL analysis of fiber-relatedtraits in upland cotton(Gossypium hirsutum L.)[J].Euphytica,2005,144:91-99.
    [110]Jean-Marc Lacape,Tnmg-Bieu Nguyen,Bfigitte Courtois,et al.QTL Analysis of Cotton Fiber Quality Using Multiple Gossypium hirsutum x Gossypium barbadense Backcross Generation[J].Crop.Sci.,2005,45:123-140.
    [111]贺道华.四倍体棉花分子标记遗传连锁图谱的构建和重要经济性状的QTL定位[D].华中农业大学博士学位论文,2006:96-99.
    [112]Dao-Hua He,Zhong-Xu Lin,Xian-Long Zhang,et al.QTL maping for economic traits based on a dense genetic map of cotton with PCR -based markers using the interspeeifie cross of Gossypium hirsummxGossypium barbadense[J].Euphytica,2007,153(1):181-197.
    [113]Z.Lin,D.He,X.Zhang,et al.Linkage map construction and mapping QTL for cotton fiber quality using SRAP,SSR and RAPD[J].Plant Breeding,2005,124(2):180-187.
    [114]李志坤.低酚棉遗传资源基于农艺性状、SSR和AFLP的遗传多样性[D].河北农业大学硕士学位毕业论文,2005:6-7.
    [115]甄瑞,王省芬,马峙英,等.海岛棉抗黄萎病基因SSR标记研究[J].棉花学报,2006,18(5):269-272.
    [116]张培通,朱协飞,郭旺珍,等.陆地棉衣分及相关性状遗传和QTL分子标记[J].江苏农业学报,2005,21(4):269-270.
    [117]M.Mei,N.H.Syed,W.Gao,et al.Genetic maping and QTL Analysis of fiber related traits in cotton(Gossypium)[J].Theor.Appl.Genet.,2004,108:280-291.
    [118]耿军义,王国印,翟学军.陆地棉有色纤维基因遗传及其对产量和品质的影响[J].棉花学报,1998,10(6):307-311.
    [119]西蒙古良.陆地棉纤维色泽的遗传[J].国外农学-棉花,1984,(3):17-19.
    [120]张雪林.彩色棉引种试验小结[J].中国棉花,1996,23(1):23.
    [121]张雪林.彩色棉选种初报[J].中国棉花,1998,25(9):18.
    [122]邱新棉,周文龙,李茂松.天然彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究[J].中国农业科学,2002,35(6):610-615.
    [123]朱乾浩,俞碧霞,龚亚明,等.棉花棕色纤维性状的遗传及其对其它性状的影响[J].作物品种资源,1998,(1):24-26.
    [124]Hafeezur-Rahman,Ambir B ibi,Muhammad Latif.Okra-leaf accessions of the upland cotton (Gossypium hirsutum L.):genetic variability in agronomic and fiber traits[J].J Appl Genet,2005,46(2):149-155.
    [125]孙济中,陈希冠.棉作学[M].北京:中国农业出版社,1998,291-293.
    [126]张文英,李定国,李熙远.陆地棉辐照γ,代不同类型群体主要纤维品质性状变异研究[J].湖北农业科学,2004,18(3):44-47.
    [127]朱乾浩.棉纤维品质改良的分子生物学基础[J].棉花学报,2000,.2(3):159-163.
    [128]W.R.Meredith,Jr.Minimum Number of Genes Controlling Cotton Fiber Strength in a Backcross Population[J].Crop Sci.,2005,(45):1114- 1119.
    [129]顾双平.常晓阳.棉花纤维品质性状的相关剖析[J].江西农业学报,2002,14(2):24-28.
    [130]袁成凌,余增亮.低能重离子生物学研究进展[J].辐射研究与辐射工艺学报.2004,22(1):1-5.
    [131]朱伟,王学德,华水金,等.鸡脚叶标记的三系杂交棉光合特性的研究[J].中国农业科学,2005,38(11):2211-2218.
    [132]刘继华,于风英.陆地棉纤维不同强度指标的相关与变异初探[J].山东农业大学学报,1989.(2):16-22.
    [133]Edwards M D,Johnson L.RFLP for rapid recurrent selection.Analysis of Molecular Marker Data[J].Thero Appl Genet,1994,88:33-40.
    [134]Poehlman J.M.Breeding field crops[M].VanNostrand Reinhold,New York,1987:724.
    [135]Zhu Bange,Sun Yongru.Molecular Analysis of Microsatellite Mutagenesis in Soybean(Glyci nemax)[J].Molecular Plant Breeding.2004,(12):215-222.
    [136]Z.Lin,D.He,X.Zhang,et al.Linkage map construction and maping QTL for cotton fiber quality using SRAP,SSR and RAPD[J].Plant Breeding,2005,(124):180-187.
    [137]朱浩乾,季道藩.棉花辐射诱变育种研究进展[J].棉花学报,1997,9(3):113-119.
    [138]Ahloowaliabs,Maluszynski M.Induced mutations-A new paradigm in plant breeding[J].Euphytica,2001,118(2):167-173.
    [139]徐是雄,胡适宜.棉花形态和结构图谱[M].北京:北京大学出版社,1985:11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700