用户名: 密码: 验证码:
西藏日喀则地区喜马拉雅造山带沉积记录与盆地演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印度和亚洲大陆碰撞形成的喜马拉雅造山带是目前地球上最典型的陆-陆碰撞造山带,对其研究所获得的构造模型直接影响着我们对其它造山带的认识。然而,目前我们对于喜马拉雅造山作用的早期过程却知之甚少。本论文以藏南日喀则地区的晚白垩世-早中新世沉积地层为研究对象,运用地层学、沉积学、岩石学、碎屑锆石U-Pb年代学和Hf同位素分析、碎屑铬尖晶石地球化学等多种方法对代表性的剖面进行了详细的研究,为印度-亚洲大陆初始碰撞和喜马拉雅造山带的早期隆升提供了新的证据。本论文重点研究地层包括:萨嘎桑单林剖面晚白垩世-始新世地层、柳区和夏鲁剖面始新世-渐新世柳区砾岩和日喀则地区晚渐新世-早中新世秋乌组和恰布林组。这三套地层是藏南喜马拉雅造山作用不同阶段的代表性沉积记录,时代从晚白垩世延续到早中新世,完整记录了喜马拉雅造山作用的早期构造-盆地演化。
     桑单林剖面位于萨嘎县城南侧约10km的泥沙质混杂岩带之中。剖面中的地层从下至上可分为三个部分:晚白垩世-古近纪蹬岗组主要由石英砂岩和粉砂质页岩组成,顶部出现少量的硅质岩和硅质页岩。早始新世桑单林组位于蹬岗组之上,由岩屑砂岩、硅质岩、硅质页岩和少量石英砂岩组成。者雅组整合于桑单林组之上,以黑色页岩与灰绿色岩屑砂岩互层为特征,下部含少量杂色硅质岩。者雅组中缺少具有年代意义的化石,根据碎屑锆石年龄和地层接触关系认为其时代为早-中始新世。蹬岗组石英砂岩中的碎屑锆石年龄主要分布在奥陶纪-前寒武纪(94%),并在早白垩世出现一个年龄峰(6%),其年龄分布显示典型的特提斯喜马拉雅特征,物源区为印度被动大陆边缘。而早-中始新世桑单林组和者雅组岩屑砂岩中的碎屑锆石年龄大多小于200Ma(85%),主要集中在~54-70、~80-125和~180-196Ma三个年龄区间,与冈底斯岩浆弧的锆石年龄一致。另外,这些砂岩中含有大量的碎屑铬尖晶石,其低Ti低Al的地球化学特征同样指示拉萨地体的物质输入。桑单林组和蹬岗组之间物源区的突然变化,为印度-亚洲大陆碰撞提供了最小年龄约束。桑单林组底部的最年轻碎屑锆石年龄和放射虫化石(RP9,49-50.3Ma)指示印度-亚洲初始碰撞至少早于Ypresian晚期(~50Ma)。
     柳区砾岩主要沿雅鲁藏布缝合带南侧分布,从拉孜至白朗东西延展超过150km,主要由沉积于冲积扇环境的粗粒碎屑岩组成。柳区砾岩由于不含冈底斯来源的中酸性火成岩砾石,被部分学者认为是印度和大洋岛弧碰撞的产物。为了确定柳区砾岩的物源区,本研究进行了详细的碎屑组分分析和碎屑锆石U-Pb年龄和Hf同位素分析。柳区砾岩的砾石组成包括石英砂岩、岩屑砂岩、板岩、硅质岩、玄武岩和少量的千枚岩、辉长岩和蛇纹岩。硅质岩、基性-超基性岩组合指示雅鲁藏布蛇绿岩套为重要物源区。柳区砾岩的碎屑锆石年龄主要分布在80-150、200-400和-450-1250Ma。年龄为80-150Ma的锆石可以分为两组:一组具有正的εHf(t)值,与冈底斯弧的岩浆锆石相似,为日喀则弧前盆地的再旋回锆石;另一组具有负的εHf(t)值,其物源区为特提斯喜马拉雅白垩纪地层或日喀则弧前盆地(最初来自北冈底斯)。年龄为200-400Ma的锆石的εHf(t)值为-4.3-+9.1,其唯一可能的物源区为朗杰学群。年龄大于450Ma的锆石可以来自特提斯喜马拉雅、朗杰学群以及日喀则弧前盆地。柳区砾岩中出现大量源自亚洲大陆(日喀则弧前盆地)的碎屑锆石,表明其沉积于印度-亚洲大陆碰撞之后。因此,新的数据不支持柳区砾岩为印度-大洋岛弧碰撞的沉积记录。
     日喀则地区的内磨拉石包括秋乌组和恰布林组,恰布林组可进一步划分为江庆则段、德日段和屯穷段。秋乌组由下部黑色页岩、厚层砂岩和上部杂色泥质岩、中薄层砂岩组成,沉积于湖泊和三角洲环境。江庆则段由互层状的红色泥质岩和灰绿色砂岩组成,沉积于河流环境。德日段主要由巨厚层粗粒砾岩组成,夹少量砂岩和紫红色泥质岩,沉积于以辫状河为主的冲积扇环境。屯穷段由红色泥岩、含砾泥岩和少量砾岩、砂岩组成,沉积于冲积扇扇中-扇端环境。最新的孢粉化石资料和年轻的碎屑锆石年龄指示秋乌组和恰布林组的沉积时间为晚渐新世-早中新世。物源区分析表明秋乌组和江庆则段的沉积物主要源自北侧的冈底斯弧,仅包含少量来自南侧雅鲁藏布缝合带的碎屑物质。而德日段和屯穷段中硅质岩、基性-超基性岩和沉积岩碎屑大量出现,指示南侧雅鲁藏布蛇绿岩套和日喀则弧前盆地碎屑物质的大量输入。晚渐新世时期沿冈底斯南麓大量出现湖相沉积地层,可能反应了这一时期上地壳的拉张作用,而之后南侧物质大量向盆地输入则是大反向断裂发育的结果。晚渐新世-早中新世沿雅鲁藏布缝合带短暂的拉张和之后迅速的挤压可能是印度板块俯冲角度反转(低角度向高角度变化)和最终断离的结果。这一研究结果表明内磨拉石并非印度-亚洲大陆碰撞的直接产物,而是后碰撞时期区域地质作用的结果。
     基于本论文的研究结果和最新的地质资料,笔者提出了一个新的沉积-构造模式来解释雅鲁藏布缝合带晚白垩世-第三纪时期的沉积演化:印度-亚洲大陆初始碰撞发生在白垩纪末期-早始新世,初始碰撞发生后,由于亚洲大陆地壳加载到印度大陆边缘之上,之前的被动大陆边缘盆地向喜马拉雅欠充填前陆盆地演化。萨嘎地区的桑单林组和者雅组沉积于前陆盆地的前渊位置。大约在始新世中期,喜马拉雅前陆盆地由欠充填阶段进入过充填阶段,特提斯海完全关闭。同一时期,特提斯俯冲板片的断离,导致陆-陆缝合部位快速均衡隆升,可能是盆地性质转化的深部控制因素。雅鲁藏布缝合带的隆起,还导致了柳区砾岩的沉积。研究认为柳区砾岩为前陆盆地楔顶沉积物,记录了喜马拉雅的早期隆升。渐新世-早中新世时期,俯冲印度板块的反转,引起冈底斯南缘短暂的拉张,形成以秋乌组为代表的湖相地层。之后由于俯冲印度板块的断离,导致迅速的地壳缩短和大规模逆冲断裂的发育,形成了以恰布林组为代表的内磨拉石沉积。
Himalayan orogen created by the India-Asia collision and the subsequent crustal thickening along the Indus-Yarlung Zangbo suture zone is the most famous collisional mountain belt on the earth. The knowledge about the evolution of the Himalayas strongly influences our interpretation of the tectonics of other orogenic belts. However, our knowledge about the early history of the Himalayan orogenesis is rather limited. In this study, we investigated the Late Cretaceous to Tertiary sedimentary strata in Xigaze area, southern Tibet. A integrated study of stratigraphy, sedimentology, sandstone petrology, detrital zircon U-Pb ages and Hf isotopes, detrital Cr-spinel geochemistry was carried out on the the Late Cretaceous-Eocene strata in the Sangdanlin Section, the Middle Eocene-Oligocene Liuqu Conglomerate in Liuqu and Xialu localities and the Oligocene-Early Miocene Qiuwu and Qiabulin formations in Xigaze area to provide new constraints to the initial India-Asia collision and the early uplift history of the Himalayan orogen. The studied strata are nearly continuous from Late Cretaceous to Early Miocene, therefore comprise an integrated record for the early Himalayan orogenesis.
     The Sangdanlin section, located at about10km south of Saga city, consists of a subaerially exposed tectonic block of sedimentary strata embedded within a mud matrix tectonic melange zone. The sedimentary strata outcropping at the Sangdanlin section can be subdivided into three lithologic units. The Upper Cretaceous-Paleocene Denggang Formation is dominated by quartzarenites and silty shales, with red siliceous shales and cherts occurring near the top. The Early Eocene Sangdanlin Formation overlying the Denggang Formation is composed of litharenites, siliceous shales, chert, and minor quartz sandstones. The Zheya Formation, which conformably overlies the Sangdanlin Formation, is characterized by the presence of dark gray shales interbeded with light green litharenites, and minor variegated cherts occurring near the base of the formation. The age of the Zheya Formation is poorly constrained due to a lack of fossils, but might be of early-middle Eocene age based on the stratigraphical relationship and detrital zircon isotopic analyses. The Denggang Formation quartzarenites contain zircons with dominant Proterozoic-Ordovician U-Pb ages, with an additional age peak of Early Cretaceous, which we interpret to be derived from the northern Indian margin. By contrast, the lithic sandstones of the Sangdanlin and Zheya formations are dominated by zircons younger than200Ma, showing one major peak at~80-125Ma and two subdominant peaks at~54-70and~180-196Ma, comparable to those from the Gangdese magmatic arc. Cr-spinels in the Sangdanlin and Zheya formations are abundant and characterized by extremely low TiO2wt%, also indicating material input from the Lhasa terrane. The abrupt sedimentary provenance transition from the north Indian margin to the Lhasa terrane between the Denggang and Sangdanlin formations provides a minimum age constraint for the timing of India-Asia continental collision. The youngest zircon age cluster (~54Ma) combined with the occurrence of RP9(49-50.3Ma) radiolarians at the base of the Sangdanlin Formation suggest the collision happened at least prior to the late Ypresian (~50Ma).
     The Liuqu Conglomerate, which extents over a distance of150km (from Lhaze to Bainang) immediately south of the Yarlung-Zangbo ophiolite, is comprised by coarsen-grained clastic rocks mainly deposited in alluvial fan environments. As no volcanic clasts derived from the Gangdese magmatic arc were observed within the conglomerate, Davis et al.(2002) suggested that the Liuqu Conglomerate is a molasse record of the India and intra-oceanic arc collision. To extend and test their findings, we undertook detailed petrographic studies and analyses of U-Pb and Hf isotopes of detrital zircons from the Liuqu Conglomerate. Clasts in the conglomerate consist of quartz-arenite, litharenite, slate, radiolarian chert, and basalt, along with minor phyllite, gabbro, and serpentinite. Radiolarian chert, and mafic and ultramafic detritus are clearly derived from the Yarlung-Zangbo ophiolite. Detrital zircon ages from the Liuqu Conglomerate are concentrated in three clusters at80-150,200-400, and~450-1250Ma. Zircons of80-150Ma in age can be subdivided into two groups:a group with positive εHf(t) values shows a Gangdese affinity and is considered to have been recycled from sedimentary strata of the Xigaze forearc basin, while another group with negative εHf(t) values was derived either from Cretaceous strata of the Tethyan Himalaya or from the Xigaze foreac basin (originally derived from the north Lhasa terrane) of the Asian plate. Zircons with ages of200-400Ma and εHf(t) values of-4.3to+9.1were derived from Triassic clastic rocks of the Langjiexue Group, as this is the only possible source, to the best of our knowledge. Zircons older than450Ma may have multiple sources, including the Tethyan Himalayan sequences, the Langjiexue Group, and even the Xigaze forearc sediments. The occurrence of Asian-derived detritus in the Liuqu Conglomerate, deposited above the Indian plate and ophiolite, indicates that the conglomerate deposited after India-Asia collision and recorded the early erosion of the Himalayan-Tibetan orogen. Thus, the results are inconsistent with the proposal that the Liuqu Conglomerate records India and intra-oceanic arc collision.
     The interior molasse belt in the Xigaze area comprises the Qiuwu Formation and the overlying Qiabulin Formation. The Qiabulin Formation could be further subdivided into three units, which are from bottom to top, the Jiangqingze Member, the Deri Member and the Tunqiong Member. The Qiuwu Formation, comprises a lower part of dark shales and thick-bedded sandstones and an upper part of variegated mudstones and thin to medium-bedded sandstones, was deposited in a lake with intercalated delta sandstones. The Jiangqingze Member consists of intercalated greenish gray sandstones and red mudsotones, deposited in fluvial or braided fluvial environments. The Deri Member is composed mainly by coarse-grained conglomerate, with subordinate intercalated sandstone and mudstone, which was interpreted to have deposited on alluvial fans that were dominated by braided environments. The Tunqiong Member comprises red mudstones or pebbly mudstones with a few sandstone and conglomerate beds, deposited in distal alluvial fan environments. Palynofloras and detrital zircon ages suggest the Qiuwu and Qiabulin formations were deposited at late Oligocene-Early Miocene. Provenance analyses indicate that the Qiuwu Formation and the Jiangqinze Member were mostly derived from the Gangdese arc to the north, with only very limited detritus derived from the Yarlung-Zangbo suture zone to the south. By contract, gravels of radiolarian cherts, mafic and ultramafic rocks and sedimentary rocks are abundant in the Deri and Tunqiong members, which indicate significant influx of material from the Yarlung-Zangbo ophiolites and the Xigaze Forearc basin to the south. Occurrence of Late Oligocene-Early Miocene lake sediments parallel the Yarlung-Zangbo suture zone might record a short period of extension, which was suggested to be related to southward rollback of the hinge line in the subducting/underthrusting Indian continental lithosphere. The influx of detritus from the south in the upper part of the Qiabulin Formation was interpreted as a result of activation of the great counter thrust, which might be caused by the Indian continental slab break-off. Our data provide an alternative interpretation for deposition of the Interior Molasse belt and do not support the notion that these deposits record initial shortening owing to the India-Asia collision.
     Based on our studies and recent published geological data, a tectonic-depositional model was constructed to illustrate the Late Cretaceous-Tertiary depositional history along the Yarlung-Zangbo suture zone. In the new model, the India-Asia collision was considered to have occurred during the latest Cretaceous-Early Eocene, when the Indian passive margin basin changed to the underfilled Himalaya foreland basin in response to flexural subsidence driven by loading of Asian crust. The Sangdanglin and Zheya formations in Saga are interpreted to have deposited in the foredeep depozone of the foreland basin. A transition of the foreland basin from underfilled stage to overfilled stage occurred at about Middle Eocene, accompanied by the final closing of the Tethyan seaway. It is suggested that Eocene Tethyan slab breakoff, which may generate rapid isostatic uplift along the suture zone, was a deep-level dynamic control for these events. The Liuqu Conglomerate, deposited at this time, was interpreted as having deposited in a wedge-top basin and being a sedimentary record of early Himalayan uplift. During Oligocene-early Miocene, regional extension and subsequent activation of the great counter thrust which might be generated by the rollback and subsequent break off of the subducting Indian continental lithosphere occurred at the south margin of the Gangdese arc, accounting for deposition of the Interior molasse belt.
引文
蔡福龙,丁林,张清海,徐晓霞,岳雅慧,张利云和许强,2008.雅鲁藏布江周缘前陆盆地物源分析及构造演化.岩石学报,24(003):430-446.
    陈松永,杨经绥,许志琴,李兆丽,徐向珍,李天福,任玉峰和李化启,2007.西藏拉萨榴辉岩的地球化学特征.地质通报,26(10):1327-1339.
    陈松永,杨经绥,徐向珍,李化启和杨岳衡,2008.西藏拉萨地块松多榴辉岩的锆石Lu-Hf同位素研究及LA-ICPMS U-Pb定年.岩石学报,24(7):1528-1538.
    邓万明和Pearce, J.A.,1990.拉萨至格尔木(1985)和拉萨至加德满都(1986)的蛇绿岩.青藏高原地质演化.中-英青藏高原综合科学考察队.科学出版社(北京):175-241.
    丁林,2003.西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约.中国科学,D辑,33(001):47-58.
    丁林,蔡福龙,张清海,张利云,许强,杨迪,刘德亮和钟大赉,2009.冈底斯-喜马拉雅碰撞造山带前陆盆地系统及构造演化.地质科学,4:1289-1311.
    方爱民,闫臻,刘小汉,陶君容,李继亮和潘裕生,2005.藏南柳区砾岩中古植物化石组合及其特征.古生物学报,44(3):435-445.
    高延林和汤耀庆.1984.西藏南部的构造混杂体.喜马拉雅地质(Ⅱ).北京,地质出版社:27-44.
    耿国仓和陶君容,1982.西藏第三纪植物的研究.中国科学院青藏高原综合科学考察队,西藏古生物,第五分册.北京:科学出版社:110-125.
    耿全如,潘桂棠,郑来林,孙志明,欧春生和董翰,2004.藏东南雅鲁藏布蛇绿混杂岩带的物质组成及形成环境.地质科学,3:388-406.
    郭双兴,1975.珠穆朗玛峰地区日喀则群的植物化石.中国科学院西藏科学考察队,珠穆朗玛峰地区科学考察报告(1966-1968),古生物(第一分册).北京:科学出版社:411-425.
    郭荣华,胡修棉和王建刚,2011.藏南日喀则弧前盆地碎屑铬尖晶石的地球化学特征及其物源判别.地质通报,投稿.
    郝杰,柴育成和李继亮,1995.关于雅鲁藏布江缝合带(东段)的新认识.地质科学,30(4):412-431.
    和钟铧,杨德明和王天武,2006.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义.岩石学报,22:653-660.
    何政伟,王成善,刘志飞和李祥辉,1996.西藏日喀则地区恰布林组物源分析.成都理工学院学报,23(3):85-89.
    胡道功,吴珍汉,江万,石玉若,叶培盛和刘琦胜,2005.西藏念青唐古拉岩群SHRIMP锫石 U-Pb年龄和Nd同位素研究.中国科学(D),35:29-37.
    胡敬仁,孙中良,陈国结,尼采,夏抱本,刘鸿飞,万永文,蒋光武和范跃春,2004.日喀则市幅地质调查新成果及主要进展.地质通报,23(5-6):463-470.
    黄宝春和陈军山,2010.再论印度与亚洲大陆何时何地发生初始碰撞.地球物理学报,53(009):2045-2058.
    贾建称,温长顺,王根厚,张振利和汪立军,2005.西藏仲巴县穷果北部日喀则弧前盆地地层在认识.西北地质,38(2):33-39.
    姜禾禾,2010.藏南古近纪遮普惹山组碳酸盐微相与缓坡环境。南京大学本科毕业论文,74pp.
    李光岑和Mercier, J.C.,1984.雅鲁藏布江缝合带地质构造特征及其演化.中法喜马拉雅考察成果.北京:地质出版社.
    李国彪,万晓樵和刘文灿,2004a.西藏南部古近纪微体古生物及盆地演化特征.北京:地质出版社,157pp.
    李国彪,万晓樵,丁林,刘文灿,高莲凤和李国彪,2004b.藏南古近纪前陆盆地演化过程及其沉积响应.沉积学报,22(3):455-464.
    李国彪,万晓樵,刘文灿,梁定益和Yun, H.,2004c.雅鲁藏布江缝合带南侧古近纪海相地层的发现及其构造意义.中国科学(D辑),34(3):228-240.
    李国彪和万晓樵,2003.藏南岗巴-定日地区始新世微体化石与特提斯的消亡.27(2):99-108.
    李国彪,万晓樵,其和日格,梁定益和刘文灿,2002.藏南岗巴-定日地区始新世化石碳酸盐岩微相与沉积环境.中国地质,29(4):401-406.
    李化启,蔡志慧,陈松永,唐哲民和杨梅,2008.拉萨地体中的印支造山事件及年代学证据.岩石学报,24(7):1595-1604.
    李建国,2004.西藏新生代秋乌组孢粉化石的发现及其初步研究.微体古生物学报,21(2):216-221.
    李祥辉,王成善,胡修棉,万晓樵,徐钰林和赵文金,2000.朋曲组——西藏南部最高海相层位一个新的地层单元.地层学杂志,24(3):243-248.
    李祥辉,曾庆高和王成善,2003.西藏南部郎杰学群碎屑物质来源的古水流证据.地质论评,49(3):132-137.
    李祥辉,曾庆高,王成善和谢尧武,2004.西藏南部上三叠统郎杰学群物源分析.沉积学报,22(4):553-559.
    李亚林,王成善,胡修棉,Bak, M.,王进军和陈蕾,2007.西藏南部始新世早期放射虫动物群及其对特提斯闭合时间的约束.科学通报,12:1430-1435.
    蔺新望,1998.西藏江孜地区上白垩统宗卓组沉积混杂堆积基本特征及构造意义.岩相古地理, 18(3):28-33.
    刘成杰,尹集祥和孙晓兴,1988.西藏南部日喀则弧前盆地非复理石型海相上白垩统-下第三系.中国科学院地质所集刊第,3:30-157.
    刘小汉,琚宜太,韦利杰和李广伟,2009.再论雅鲁藏布江缝合带构造模型.中国科学D辑:地球科学39(4):448-463.
    刘志飞,王成善和李祥辉,1996.西藏日喀则地区恰布林组地层学研究.成都理工学院学报,23(2):56-63.
    刘志飞和王成善,1998.西藏日喀则地区早白垩世恰布林组辫状河-扇三角洲沉积.沉积学报,13(3):6-13.
    莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全和王亮亮,2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(003):135-148.
    潘桂棠,陈智梁,李兴振,颜仰基,许效松,徐强,江新胜,吴应林,罗建宁和朱同兴,1997.东特提斯地质构造形成演化.北京:地质出版社,103pp.
    潘桂棠,丁俊,姚冬生,王立全,罗建宁,颜仰基,雍永源,郑建康,梁信之和秦德厚,2004.青藏高原及邻区1:1 500000地质图(附说明书).成都地图出版社.
    钱定宇,1985.论秋乌煤系及拉达克至冈底斯陆缘山链磨拉石的时代.青藏高原地质文集,16:229-241.
    孙高远,胡修棉和王建刚,2011.藏南江孜县白沙地区宗卓混杂岩岩石组成与物源区分析.地质学报,投稿.
    陶君容,1988.西藏拉孜县柳区组植物化石组合及古气候意义.中国科学院地质研究所集刊,3:223-238
    万晓樵,丁林,李建国和蔡华伟,2001.西藏仲巴地区白垩纪末期-始新世早期海相地层.地层学杂志,25(4):267-272.
    万晓樵,梁定义和李国彪.西藏岗巴古新世地层及构造作用的影响.地质学报,2002,76(2):155-162.
    王成善,刘志飞,李祥辉和万晓樵,1999.西藏日喀则弧前盆地与雅鲁藏布江缝合带.北京:地质出版社,237pp.
    王成善,李祥辉,万晓樵和陶然,2000.西藏南部江孜地区白垩系的厘定.地质学报,74(2):97-107.
    王成善,李亚林,刘志飞,李祥辉和唐菊兴,2005.雅鲁藏布江蛇绿岩再研究:从地质调查到矿物记录.地质学报,79(3):323-330.
    王建刚,胡修棉和黄志诚。藏南桑单林地区晚白垩世-始新世砂岩物源区分析。地质学报,2008, 82(1):92-103。
    王建刚和胡修棉。砂岩副矿物的物源区分析新进展。地质论评,2008,54(5):670-678。
    王冉,夏斌,周国庆,张玉泉,杨之青,李文铅,韦栋梁,钟立峰和徐力峰,2006.西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄.科学通报,51(1):114-117.
    旺罗,万晓樵和李杰,1999.西藏日喀则地区恰布林组地层及构造背景分析.现代地质,13(3):281-286.
    韦利杰,刘小汉,严富华,麦学舜,周学君,李广伟和刘小兵,2009.藏南古近系柳区砾岩孢粉化石的发现及初步研究.微体古生物学报,26(3):249-260.
    吴福元,黄宝春,叶凯和方爱民,2008.青藏高原造山带的垮塌与高原隆升.岩石学报,24(1):1-30.
    魏玉帅,王成善,李样辉和曹珂,2006.藏南古近纪甲查拉组物源分析及其对印度-欧亚大陆碰撞启动时间的约束.矿物岩石,26(003):46-55.
    吴福元,李献华,郑永飞和高山,2007.Lu-Hf同位素体系及其岩石学应用.岩石学报,23(2):185-220.
    吴浩若,王东安和王连城,1977.西藏南部拉孜-江孜一带的白垩系.地质科学,3:250-261.
    吴浩若,尹集祥和孙亦因,1982.西藏南部拉孜县中贝地区的混杂堆积.中国科学院地质研究所,地质科研成果选编,第1集:34-44.
    吴浩若,1984.特提斯喜马拉雅北部分区.见:中国科学院青藏高原综合科学考察队.西藏地层.科学出版社,北京:119-121.
    吴一民,1979.西藏晚白垩世秋乌煤系初步研究.青藏高原地质文集,3:212-223.
    西藏自治区地质矿产局,1993.西藏自治区区域地质志.北京地质出版社:201-202.
    夏斌,徐力峰,韦振权,张玉泉,王冉,李建峰和王彦斌,2008.西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义.地质学报,82(004):528-531.
    肖序常,高延林和李广岑.1988.喜马拉雅岩石圈演化构造总论.北京:地质出版社.
    谢烈文,张艳斌,张辉煌,孙金凤和吴福元.,2008.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报,23(2):220-228.
    徐向珍,杨经绥,李天福,陈松永,任玉峰,李兆丽和石玉若,2007.青藏高原拉萨地块松多榴辉岩的锆石U-Pb年龄及锆石中的包裹体.地质通报,26(10):1340-1355.
    杨经绥,许志琴,李天福,李化启,李兆丽,任玉峰,徐向珍和陈松永,2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留.地质通报,26(10):1277-1287.
    尹集祥,孙晓兴,孙亦因和刘成杰,1988a.西藏南部日喀则地区双磨拉石带磨拉石岩系的地层学 研究.中国科学院地质研究所集刊,第3号.科学出版社,北京:158-176.
    尹集祥,孙晓兴,闻传芬和孙亦因,1988b.西藏南部吉隆县党拉至萨嘎县(加加)地段中生代地层,见:中国科学院地质所集刊,第3号,科学出版社:80-95.
    郑来林,金振民,潘桂棠,孙志民和耿全如,2003.喜马拉雅造山带东、西构造结的地质特征与对比.地球科学,29(3):269-277.
    钟立峰,夏斌,周国庆,张玉泉,王冉,韦栋梁和杨之青,2006.藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年.地质论评,52:224-229.
    周肃,莫宣学,董国臣,赵志丹,邱瑞照,王亮亮和郭铁鹰,2004.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架.科学通报,49(020):2095-2103.
    朱杰,刘早学,杜远生,田望学,李金平和王昌平,2004.拉孜县幅地质调查新成果及主要进展.地质通报,23(5-6):471-474.
    朱杰,杜远生,刘早学,冯庆来,田望学,李金平和王昌平,2005.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义.中国科学,D辑,35(12):1131-1139.
    朱志勇,2004.西藏永珠—纳木错蛇绿岩地球化学特征及其构造环境.吉林大学硕士学位论文,pp60.
    Aikman, A.B., Harrison, T.M. and Lin, D.,2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Science Letters,274 (1-2):14-23.
    Aitchison, J.C., Ba, D.Z., Davis, A.M., Liu, J.B., Luo, H., Malpas, J.G., McDermid, I.R.C., Wu, F.Y., Ziabrev, S.V. and Zhou, M.F.,2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters,183(1-2): 231-244.
    Aitchison, J.C., Davis, A.M., Zhu, B. and Luo, H.,2002. New constraints on the India-Asia collision: the lower Miocene Gangrinboche Conglomerates, Yarlung Tsangpo suture zone, SE Tibet. Journal of Asian Earth Sciences,21(3):251-263.
    Aitchison, J.C., Davis, A.M., Badengzhu and Luo H.,2003. The Gangdese thrust:a phantom structure that did not raise Tibet. Terra Nova,15:155-162.
    Aitchison, J.C., Ali, J.R. and Davis, A.M.,2007a. When and where did India and Asia collide? Journal of Geophysical Research,112, B05423, doi:10.1029/2006JB004706.
    Aitchison, J.C., McDermid, I.R.C., Ali, J.R., Davis, A.M. and Zyabrev, S.V.,2007b. Shoshonites in southern Tibet record Late Jurassic rifting of a Tethyan intra-oceanic island arc. Journal of Geology,115(2):197-213.
    Allegre, C.J. and thirty four others,1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature,307(5946):17-22.
    Andersen, T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology,192:59-79.
    Arai, S.,1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine,56:173-184.
    Arai, S.,1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology,113:191-204.
    Barnes, S.J., Roeder, P.J.,2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology,42(12):2279-3202.
    Batra, R.S.,1989. A reinterpretation of the geology and biostratigraphy of the Lower Tertiary Formations exposed along the Bilaspur-Shimla Highway, Himachal Pradesh, India. Journal of the Geological Society of India,33:503-523.
    B6dard, E., Hubert, R., Guilmette, C., Lesage, G., Wang, C. S. and Dostal, J.,2009. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet:Evidence for an arc-back-arc origin. Lithos,113:48-67.
    Besse, J., Courtillot, V, Pozzi, J.P., Westphal, M. and Zhou, Y.X.,1984. Paleomagnetic estimates of crustal shortening in the Himalayas thrusts and Zangbo suture. Nature,311:621-626.
    Black, L.P. Gulson, B.L.,1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Journal of Australian Geology and Geophysics,3:227-232.
    BlichertToft, J. and Albarede, F.,1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,148(1-2):243-258.
    Bruguier, O., Lancelot, J.R. and Malavieille, J.,1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China):provenance and tectonic correlations. Earth and Planetary Science Letters,152(1-4):217-231.
    Burchfiel, B.C., Royden, L.H.,1985. North-south extension within the convergent Himalayan region. Geology,13:679-682.
    Cai, F.L., Ding, L. and Yue, Y.H.,2011. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet:Implications for timing of India-Asia collision. Earth and Planetary Science Letters,305:195-206.
    Cawood, P.A., Johnson, M.R.W. and Nemchin, A.A.,2007. Early palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly. Earth and Planetary Science Letters,255:70-84.
    Chang, C.F., Chen, N.S., Coward, M.P., Deng, W.M., Dewey, J.F., et al.,1986. Preliminary conclusions of the Royal Society and Academia Sinica geotraverse of Tibet. Nature,323: 501-507.
    Chemenda, A.I., Burg, J.-P., Mattauer, M.,2000. Evolutionary model of the Himalaya-Tibet system: geopoem based on new modeling, geological and geophysical data. Earth and Planetary Science Letters,174:397-409.
    Chen, J.S., Huang, B.C. and Sun, L.S.,2010. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics,489:189-209.
    Chu, M.F., Chung, S.L., Song, B.A., Liu, D.Y., O'Reilly, S.Y., Pearson, N.J., Ji, J.Q. and Wen, D. J. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,34:745-748.
    Chung, S.L., Chu, M.F., Zhang, Y.Q., Xie, Y.W., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X.H., Zhang, Q., Wang, Y.Z.,2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,68(3-4):173-196.
    Clift, P.D.,2005. Comment on'Palynological evidence for the Palaeocene evolution of the forearc basin, Indus Suture Zone, Ladakh, India'by R. Upadhyay, Ram-Awatar, R.K. Kar and A.K. Sinba, Terra Nova,17:196-200.
    Clift, P.D., Shimizu, N., Layne, G.D., Blusztajn, J.S., Gaedicke, C., Schluter, H.U., Clark, M.K., Amjad, S.,2001. Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geological Society of America Bulletin,113:1039-1051.
    Clift, P.D., Carter, A., Krol, M. and Kirby, E.,2002. Constraints on India-Eurasia collision in the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India. Geological Society, London, Special Publications,195:97-116.
    Clift, P.D., Shimizu, N., Layne, S., Gaedicke, C., Schluter, H.U., Clark, M. and Amjad, S.,2000. Fifty-five million years of Tibetan evolution recorded in the Indus Fan. Eos,81:277-281.
    Critelli, S. and Garzanti, E.,1994. Provenance of the Lower Tertiary Murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sedimentary Geology,89:265-284.
    Davila, F. M. and Astini, R.A.,2007. Cenozoic provenance history of synorogenic conglomerates in western Argentina (Famatina belt):Implications for Central Andean foreland development. Geological Society of America Bulletin,119:609-622.
    Davis, A.M., Aitchison, J.C., Ba, D.Z., Luo, H. and Zyabrev, S.,2002. Paleogenc island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150(3-4):247-273.
    DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Srivastava, P., Pequera, N. and Pivnik D.A., 1991. Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geological Society of America Bulletin,103:1458-1475.
    DeCelles, P.G,1994. Late Cretaceous-Paleocene synorogenic sedimentation and kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming. Geological Society of America Bulletin,106:32-56.
    DeCelles, P.G and Giles, K.A.,1996. Foreland Basin Systems. Basin Research,8:105-123.
    DeCelles, P. G, Gehrels, G E., Quade, J. and Ojha, T. P.,1998. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics,17: 741-765.
    DeCelles, P.G, Gehrels, GE., Quade, J., LaReau, B., Spurlin, M.,2000. Tectonic implications of U-PL zircon ages of the Himalayan orogenic belt in Nepal. Science,288:497-499.
    DeCelles, P.G, Gehrels, G.E., Najman, Y, Martin, A.J., Carter, A. and Garzanti, E.,2004. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal:implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters,227: 313-330.
    DeCelles, P.G, Kapp, P., Quade, J. and Gehrels, GE.,2011. Oligocene-Miocene Kailas basin, southwestern Tibet:Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geological Society of America Bulletin,26; doi:10.1130/B30258.1
    Dewey, J.F., Cande, F.S. and Pitman, W.C.,1989. Tectonic evolution of thelndia/Eurasia collision zone. Eclogae Geologicae Helvetiae,82(3):717-734.
    Dewey, J.F., Shackleton, R.M., Chengfa, C. and Yi yin, S.,1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,327(1594):379-413.
    Dick, H.J.B., Bullen, T.,1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contribution to Mineralogy and Petrology,86:54-76.
    Dickinson, W.1985. Interpreting provenance relations from detrital modes of sandstones. In Zuffa, G. eds. Provenance of arenites. NATO Advanced Study Institute Series,148:333-361.
    Dickinson, W. R., and Gehrels, G. E.2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters,288:115-125.
    Ding, L., Zhong, D.L., Yin, A., Kapp, P. and Harrison, T.M.2001. Cenozoic structural and metamorphic evolution of the eastern Himalaya syntaxis (Namche Barwa). Earth and Planetary Science Letters,192:423^*38.
    Ding, L., Kapp, P., Zhong, D., and Deng, W.,2003, Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology,44:1833-1865.
    Ding, L., Kapp, P. and Wan, X.Q.,2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics,24(3):1-18.
    Dubois-Cote, V, Hebert, R., Dupuis, C., Wang, C.S., Li, Y.L. and Dostal, J.2005. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology,214:265-286.
    Dupont-Nivet, G, Lippert, P.C. and Hinsbergen, D.J.J.V.,2010. Paleolatitude and age of the Indo-Asia collision:palaeomagnetic constraints. Geophysical Journal Intermational,182:1189-1198.
    Dupuis, C., Hebert, R., Dubois-Cote, V., Guilmette, C., Wang, C., Li, Y. and Li, Z,2005a. The Yarlung Zangbo Suture Zone ophiolitic melange (Southern Tibet):new insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences,25:937-960.
    Dupuis, C, Hebert, R., Dubois-Cote, V., Wang, C., Li, Y. and Li, Z.,2005b. Petrology and geochemistry of mafic rocks from melange and flysch units adjacent to the Yarlung Zangbo suture zone, southern Tibet. Chemical Geology,214:287-308.
    Dupuis, C., Hebert, R., Guilmette, C., Wang, C. and Li, Z.,2006. Geochemistry of sedimentary rocks from melange and flysch units south of the Yarlung Zangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences,26:489-508.
    Diirr, S.B.,1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, South Tibet). GSA Bulletin,108(6):669-684.
    Einsele, G., Liu, B., Duerr, S., Frisch, W., Liu, G., Luterbacher, H.P., Ratschbacher, L., Richen, W., Wendt, J., Wetzel, A., Yu, G. and Zheng, H.,1994. The Xigaze forearc basin:evolution and facies architecture (Cretaceous, Tibet). Sedimentary Geology,90(1-2):1-32.
    Fedo, C.M., Sircombe, K.N. and Rainbird, R. H.,2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry,53:277-303.
    Friend, P.F.,1998. General form and age of the denudation system of the Himalaya. Geologiska fb'reningens i Stockholm forhandlingar,120:231-236.
    Gansser A.1964. The Geology of the Himalayas. New York:Wiley Interscience.289pp.
    Garzanti, E.,1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences,17(5-6):805-827.
    Garzanti, E.,1991. Stratigraphy of the Early Cretaceous Giumal Group (Zanskar Range, northern India). Riv. It. Pal. Strat.,97(3-4):485-509.
    Garzanti, E., Baud, A. and Mascle, G.1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinam. Acta,1:297-312.
    Garzanti, E., Doglioni, C., Vezzoli, G. and Ando, S.2007. Orogenic belts and Orogenic sediment provenance. Journal of Geology,115:315-334.
    Garzanti, E., Andd, S., Vezzoli, G, Megid, A.A.A. and Kammar, A.E.,2006. Petrology of Nile River sands (Ethiopia and Sudan):Sediment budgets and erosion patterns. Earth and Planetary Science Letters,252:327-341.
    Gehrels, GE., DeCelles, P.G, Martin, A., Ojha, T.P., Pinhassi, G and Upreti, B.N.,2003. Initiation of the Himalayan Orogen as an early Paleozoic thin-skinned thrust belt. Geological Society of America Today,13(9):4-9.
    Gehrels, GE., DeCelles, P.G, Ojha, T.P. and Upreti, B.N.,2006. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. Journal of Asian Earth Sciences,28(4-6):385-408.
    Gillis, R.J., Gehrels, GE., Ruiz, J. and Gonzalez, L.,2005. Detrital zircon provenance of Cambrian-Ordovician and Carboniferous strata of the Oaxaca terrane, southern Mexico. Sedimentary Geology,182(1-4):87-100.
    Girardeau, J., Mercier, J.C.C., Wang, X.B.,1985. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet:implications for the genesis of the oceanic lithosphere. Contributions to Mineralogy and Petrology,90:309-321.
    Gleason, J.D., Finney, S.C., Peralta, S.H., Gehrels, GE., Marsaglia, K.M.,2007. Zircon and whole-rock Nd-Pb isotopic Provenance of middle and upper Ordovician siliciclastic rocks, Argentine Precordillera. Sedimentology,54(1):107-136.
    Graham, S.A., Dickinson, W.R. and Ingersoll R.V.,1975. Himalayan-Bengal model for flysch dispersal in Appalachian-Ouachita system. Geological Society of America Bulletin,86:273-286.
    Green, O. R., Searle, M. P., Corfield, R. I. and Corfield, R. M.2008. Cretaceous- Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (Northwest India). Journal of Geology,116(4):331-353.
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y. and Shee, S.R.,2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica Et Cosmochimica Acta,64(1):133-147.
    Griffin, W.L., Wang, X., Jackson, S.E., O'Reilly, S.Y., Xu, X.S. and Zhou, X.M.,2002. Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,61(3-4):237-269.
    Guynn, J. H., Kapp, P., Pullen, A., Heizler, M., Gehrels, G and Ding, L.,2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology,34:505-508.
    Harris, N.B.W., Xu, R., Lewis, C.L., Hawkeworth, C.J. and Zhang, Y.,1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London, A327:263-85.
    Harrison, T.M., Copeland, P., Hall, S.A., Quade, J., Burner, S., Ohja, T.P., Kidd, W.S.F.,1993. Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climate histories of two molasse deposits. Journal of Geology,100:157-175.
    Harrison, T.M., Yin, A., Grove, M., Lovera, O.M., Ryerson, F.J., Zhou, X.H.,2000. The Zedong window:a record of superposed tertiary convergence in southeastern Tibet. Journal of Geophysical Research,105:19211-19230.
    Hebert, R., Huot, F., Wang, C. and Liu, Z.,2003. Yarlung Zangbo ophiolites, southern Tibet revisited: geodynamic implications from the mineral record. In Dilek, Y. and Robinson, P.T. eds. Ophiolites in Earth History. Geological Society of London, Special Publication,218:165-190.
    Heim, A.,1959. Switzerland, its prospects:Molasse Basin is the key area. World Oil,148(5):209-211.
    Heim, A., Gansser, A.,1939. Central Himalaya; Geological observations of the Swiss Expedition 1936, Gebruder Fretz, Zurich,246 pp.
    Henderson, A.L., Foster, G.L. and Najman, Y.,2010. Testing the application of in situ Sm-Nd isotopic analysis on detrital apatites:A provenance tool for constraining the timing of India-Eurasia collision. Earth and Planetary Science Letters,297:42-49.
    He, S., Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M.,2007. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet. Tectonophysics,433:15-37.
    Hodges, K.V.,2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin,112(3):324-350.
    Hodges, K.V., Hurtado, J.M., Whipple, K.X.,2001. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics,20:799-809.
    Hollis, C. J.1997. Cretaceous-Paleocene radiolaria from eastern Marlborough, New Zealand. Inst. Geol. Nucl. Sci. Monogr.17:152pp.
    Hu, X., Jansa, L. and Wang, C.,2008. Upper Jurassic-Lower Cretaceous stratigraphy in southeastern Tibet:comparison with the western Himalayas. Cretaceous Research,29:301-315.
    Hu, X.M., Jansa, L. Chen, L., Griffin, W.L., O'Reilly, S.Y., Wang, J.G.,2010. Provenance of Lower Cretaceous Wolong Volcaniclastics in the Tibetan Tethyan Himalaya:Implications for the final breakup of Eastern Gondwana. Sedimentary Geology,223(3-4):193-205.
    Mu, X.M., Sinclair, H.D., Wang, J.G., Jiang, H.H. and Wu F.Y.,2011. Stratigraphic and detrital zircon evidence for a Palaeogene Himalayan foreland basin in the Zhcpure Mountain of southern Tibet. Basin Research, submitted.
    Huot, F., Hebert, R., Varfalvy, V., Beaudoin, G., Wang, C., Liu, Z., Cotten, J., Dostal, J.,2002. The Beimarang Melange (southern Tibet) brings additional constraints in assessing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo ophiolite. Journal of Asian Earth Sciences,21:307-322.
    Ingersoll, R.V., Fullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. and Sares, S.W.,1984. The effect of grain size on detrital modes:a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research,54:103-116.
    Irvine, T.N.,1974. Petrology of the Duke Island ultramafic complex, southeastern Alaska. Geological Society of America Memoir,138,240pp.
    Jaeger, J.J., Courtilot, V. and Tapponnier, P.,1989.Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary and the India-Asia collision. Geology,17:316-319.
    Jadoul, F., Berra, F. and Garzanti, E.,1998. The Tethys Himalayan passive margin from late Triassic to early Cretaceous (South Tibet). Journal of Asian Earth Sciences,16(2-3):173-194.
    Ji, W.Q., Wu, F.Y., Chung, S.L., Li, J.X. and Liu, C.Z.,2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262:229-245.
    Kamenetsky, V.S., Crawford, A.J., Meffre, S.,2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology,42 (4):655-671.
    Kaneko, Y., Katayama, I., Yamanmoto, H., Misawa, K., Ishikawa, M., Rehman, H.U., Kausar, A.B. and Shiraishi, K.,2003. Timing of Himalayan ultrahigh-pressure metamorphism:sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21:589-599.
    Klootwijk, C.T. and Peirce, J.W.,1979. India's and Australia's pole path since the late Mesozoic and the India-Asia collision. Nature,282:605-607.
    Klootwijk, C.T., Gee, J.S., Peirce, J.W., Smith, G.M., McFadden, P.L.,1992. A early India-Asia contact:paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology 20,395-398.
    Klootwijk, C.T.,Conaghan, P.J., Nazirullah, R. and de Jong K.A.,1994. Further palaeomagnetic data from Chitral (Eastern Hindukush):Evidence for an early India-Asia contact. Tectonophysics,237: 1-25.
    Kohn, M.J. and Parkinson, CD.,2002. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology,30:591-594.
    Lee, Y.I.,1999. Geotectonic significance of detrital chromian spinel:a review. Geosciences Journal, 3(1):23-29.
    Lee, H.Y., Chung, S.L., Wang, Y.B., Zhu, D.C., Yang, J.H., Song, B., Liu, D.Y., and Wu, F.Y.2007. Age, petrogenesis and geological significance ofthe Linzizong volcanic successions in the Linzhou basin, southern Tibet:Evidence from zircon U-Pb dates and Hf isotopes. Acta Petrologica Sinica (in Chinese),23:493-500.
    Lee, H.Y., Chung, S.L., Lo, C.H., Ji, J.Q., Lee, T.Y., Qian, Q. and Zhang, Q.,2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics,477: 20-35.
    Lee, J.I., Clift, P.D., Layne, G, Blum, J. and Khan, A.A.,2003. Sediment flux in the modern Indus River inferred from the trace element composition of detrital amphibole grains. Sedimentary Geology,160:243-257.
    Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L. and Manickavasagam, R.M.,2005. The onset of India-Asia continental collision:early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters,234(1-2):83-97.
    Leier, A.L., Kapp, P., Gehrels, GE. and DeCelles, P.G,2007. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa Terrane, southern Tibet. Basin Research,19: 361-378.
    LeFort P.,1996. Evolution of the Himalaya. In:Yin A., Harrison T.M., ed., The Tectonics of Asia, pp. 95-106. New York:Cambridge University Press.
    Lenaz, D., Kamenetsky, VS., Crawford, A.J., Princivalle, F.,2000. Melt inclusions in detrital spinel from the SE Alps (Italy-Slovenia):a new approach to provenance studies of sedimentary basins. Contribution of mineral petrology,139:748-758.
    Li, J.G, Guo, Z.Y., Batten, D.J., Cai, H.W. and Zhang, Y.Y.,2010. Palynological stratigraphy ofthe Late Cretaceous and Cenozoic collision-related conglomerates at Qiabulin, Xigaze, Xizang (Tibet) and its bearing on palaeoenvironmental development. Journal of Asian Earth Sciences,38:86-95.
    Li, G.W., Liu, X.H., Alex, P., Wei, L.J., Liu, X.B., Huang, F.X. and Zhou X.J.,2010. In-situ detrital zircon geochronology and Hf isotopic analyses from Upper Triassic Tethys sequence strata. Earth and Planetary science letters,297:461-470.
    Liu, G and Einsele, G,1996. Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous, Tibet). Sedimentary Geology,104(1-4):203-226.
    Ludwig, K.R.,2001. User's manual for Isoplot/Ex rev.2.49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications,1:1-55.
    Mathur, N.S.,1978. Biostratigraphical aspects of the Subathu Formation, Kumaun Himalaya. Recent Researches in Geology 5,96-112.
    Matte, P., Mattauer, M., Olivet, J.M. and Griot, D.A.,1997. Continental subduction beneath Tibet and the Himalayan orogen:a review. Terra Nova,9:264-270.
    McDermid, I.R.C., Aitchison, J.C., Davis, A.M., Harrison, T.M. and Grove, M.,2002. The Zedong terrane:a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology,187(3-4):267-277.
    Miall, A.D.,1996. The Geology of Fluvial Deposits. Springer-Verlag, Berlin,582pp.
    Miller, C., Thoni, M., Frank, W., Schuster, R., Melcher, F., Meisel, T., Zanetti, A.,2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos,66,15-172.
    Mo, X., Niu, Y., Dong, G, Zhao, Z., Hou, Z., Zhou, S. and Ke, S.2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology,250:49-67.
    Morton, A.C., Whitham, A.G. and Fanning, C.M.,2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea:Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology,182:3-28.
    Myrow, P.M., Hughes, N.C., Paulsen, T.S., Williams, I.S., Parcha, S.K., Thompson, K.R., Bowring, S.A., Peng, S.C. and Ahluwalia, A.D.,2003. Integrated tectonostratigraphic analysis of the Himalaya and implications tor its tectonic reconstruction. Earth and Planetary Science Letters, 212(3-4):433-441.
    Najman, Y.,2006. The detrital record of orogenesis:A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Science Reviews,74(1-2):1-72.
    Najman, Y, Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R. and Vezzoli G.,2010a. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research, doi:10.1029/2010JB007673.
    Najman, Y., Henderson, A., Boudagher-Fadel, M., Godin, L., Parrish, R., Bown, P., Garzanti. E., Horstwood, M. and Jenks, D.,2010b. The sedimentary record of India-Asia collision:an evaluation of new and existing constraints. Geophysical Research, Abstract,12:EGU2010-1513.
    Najman, Y., Bickle, M., BouDagher-Fadel, M., Carter, A., Garzanti, E., Paul, M., Wijbrans, J., Willett, E., Oliver,G., Parrish, R., Akhter, S.H, Allen, R., Ando, S., Chisty, E., Reisberg, L. and Vezzoli, G.,2008. The Paleogene record of Himalayan erosion:Bengal Basin, Bangladesh. Earth and Planetary Science Letters,273(1-2):1-14.
    Najman, Y., Carter, A., Oliver, G. and Garzanti, E.,2005. Provenance of Eocene foreland basin sediments, Nepal:Constraints to the timing and diachroneity of early Himalayan orogenesis. Geology,33:309-312.
    Najman, Y., Johnson, C.,White, N.M., Oliver, G.,2004. Evolution of the Himalayan foreland basin, NW India. Basin Research,16:1-24.
    Najman, Y., Pringle, M., Godin, L., Oliver, G.,2001. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature,410:194-197.
    Najman, Y. and Garzanti, E.,2000. Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geological Society of America, Bulletin,112:435-449.
    Najman, Y.M.R., Pringle, M.S., Johnson, M.R.W., Robertson, A.H.F. and Wijbrans, J.R.,1997. Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland basin sediments in India: implications for early Himalayan evolution. Geology,25:535-538.
    Nelson, K.D., Zhao, W.J., Brown, L.D., et al.,1996. Partially molten middle crust beneath Southern Tibet:synthesis of project INDEPTH results. Science,274,1684-1696.
    Nicolas, A., Girardeau, J., Marcoux, J., Dupre, B., Wan, X.B., Cao, Y.G., Zheng, H.X. and Xiao, X.C.. 1981. The Xigaze Ophiolite (Tibet):a peculiar oceanic lithosphere. Nature,294,414-417
    Patriat P. and Achache J.,1984. Indian-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature,311:615-621.
    Patzelt, A., Li, H., Wang, J. and Appel, E.,1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet:evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics,259(4):259-284.
    Parrish, R.R.,Gough, S.J., Searle, M.P. and Waters, D.J.,2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology,34:989-992.
    Pierce, J.A., Mei, H.,1988. Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud. Philosophical Transactions of the Royal Society of London A327:203-13.
    Quidelleur, X., Grove, M., Lovera,O. M., Harrison, T. M.,Yin, A., and Ryerson, F. J.,1997. Thermal evolution and slip history of the Renbu-Zedong thrust, southeastern Tibet. Journal of Geophysical Research,102:2659-2679.
    Ratschbacher, L., Frisch,W, Liu, G, and Chen, C. C.,1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision:Journal of Geophysical Research,99: 19917-19945.
    Replumaz, A., Negredo, A.M., Villasenor, A. and Guillot S.,2010. Indian continental subduction and slab break-off during Tertiary collision. Terra Nova:290-296.
    Rowley, D.B.,1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. Journal of Geology,106(2): 229-235.
    Salvador, A.1994. International stratigraphic guide:a guide to stratigraphic classification, terminology, and procedure. Geological Society of America,200pp.
    Sanfilippo, A. and Nigrini, C.1998. Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. Marine Micropaleontology,33:109-156.
    Schlunegger, F., Matter, A., Burbank, D.W. and Klaper, E.M.,1997. Magnetostratigraphic constraints on relationships between evolution of the central Swiss Molasse basin and Alpine orogenic events. Geological Society of America Bulletin,109:225-241.
    Sciunnach, D. and Garzanti, E.1997. Detrital chromian spinels record tectono-magmatic evolution from Carboniferous rifting to Permian spreading in Neotethys (India, Nepal and Tibet). Ofioliti 22:101-110.
    Searle, M.P., Windley, B.F., Coward, M. P., Cooper, D.J.W., Rex, A.J., Rex, D., Tingdong, L., Xuchang, X., Jan, M.Q. and Thakur, V.C.,1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin,98(6):678-701.
    Sinclair, H.D.,1997a. Tectonostratigraphic model for underfilled peripheral foreland basins:An Alpine perspective. Geological Society of America Bulletin,109:324-346,
    Sinclair, H.D.,1997b. Flysch to molasse transition in peripheral foreland basins:The role of the passive margin versus slab breakoff. Geology,25(12):1123-1126.
    Soederlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E.,2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters,219(3-4):311-324.
    Sun, J.M., Zhu, R.X. and Bowler, J.,2004. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth and Planetary Science Letters,219(3-4): 239-253.
    Sun, Z.M., Jiang, W., Li, H.B., Pei, J.L. and Zhu, Z.M.,2010. New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block:Tectonic implications for the collision of India and Asia. Tectonophysics,490:257-266.
    Tapponnier, P., Mercier, J.L., Proust, F., Andrieux, J., Armijo, R., Bassoullet, J.P., et al.,1981.The Tibetan side of the India-Eurasia collision. Nature,294:405-410.
    Tong, Y., Yang, Z., Zheng, L., Yang, T., Shi, L., Sun, Z. and Pei, J.,2008. Early Paleocene Paleomagnetic Results from Southern Tibet, and Tectonic Implications. International Geology Review,50(6):546-562.
    Upadhyay, R., Ram-Awatar, Karl, R.K. and Sinha, A.K.,2004. Palynological evidence for the Palaeocene evolution of the forearc basin, Indus Suture Zone, Ladakh, India. Terra Nova,16: 216-225.
    Van Achterbergh, E., Ryan, C.G., Jackson, S.E. and Griffin, W.L.,2001. Data reduction software for LA-ICP-MS. Appendix:Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences:Principles and Applications, Mincralog. Assoc. Canada Short Course Series, Ottawa, Ontario, Canada,29: 239-243.
    Wan, X.Q., Luo, W., Wang, C.S. and Luba, J.S.,1998. Discovery and significance of Cretaceous fossils from the Xigaze forearc basin, Tibet. Journal of Asian Earth Sciences,16(2-3):217-223.
    Wang, C.S. Liu, Z.F. and Hebert, R.,2000. The Yarlung-Zangbo paleo-ophiolite, southern Tibet: implications for the dynamic evolution of the Yarlung-Zangbo Suture Zone. Journal of Asian Earth Sciences,18:651-661.
    Wang, C.S., Li, X.H, Hu, X.M, and Jansa, L.,2002. Latest marine horizon north of Qomolangma (Mt. Everest):implications for closure of Tethys seaway and collision tectonics. Terra Nova,1420: 114-120.
    Wang, J.G., Hu, X.M., Wu, F.Y., and Jansa, Luba.,2010. Provenance of the Liuqu Conglomerate in southern Tibet:a Paleogene erosional record of the Himalayan-Tibetan orogen. Sedimentary Geology,231:74-84.
    Wang, J.G., Hu, X.M., Jansa, L., and Huang, Z.C.,2011. Provenance of the Upper Cretaceous-Eocene deep-water sandstones in Sangdanlin, southern Tibet:constraints on the India-Asia collision. The Journal of Geology,119:293-309.
    Weltje, G.J., and von Eynatten, H.,2004. Quantitative provenance analysis of sediments:review and outlook. Sedimentary Geology,171:1-11.
    Wen, D.R., Liu, D.Y., Chung, S.L., Chu, M.F, Ji, J.Q, Zhang, Q., Song, B., Lee, T.Y., Yeh, M.W. and Lo, C.H.,2008. Zircon SHRIMP U/Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology,252:191-201.
    Wenlder, I., Wenlder, J., Graefe, K.U., Lehmann, J. and Willems, H.,2009. Turonian to Santonian Carbon Isotope Data from the Tethys Himalaya, Southern Tibet. Cretaceous Research,30: 961-979.
    White, N.M., Parrish, R.R., Bickle, M.J., Najman, Y.M.R., Burbank, D. and Maithani, A.,2001. Metamorphism and exhumation of the NW Himalaya constrained by U-Th-Pb analyses of detrital monazite grains from early foreland basin sediments. Journal of the Geological Society (London), 158:625-635.
    White, N.M., Pringle, M., Garzanti, E., Bickle, M., Najman, Y., Chapman, H. and Friend, P.,2002. Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth and Planetary Science Letters,195:29-44.
    Willems, H.,1993. Sedimentary History of the Tethys Himalaya Continental Margin in the South Tibet (Gamba, Tingri) During Upper Cretaceous and Paleogene (Xizang Autonomous Region, PR China). Geoscietific Investigations in the Tethyan Himalayas (ed. Willems, H.), Berichte aus dem Fachbereich Geowissenschaften, der Universit t Bremen,38:49-181.
    Willems, H. and Zhang, B.,1993. Cretaceous and Lower Tertiary Sediments of the Tibetan Tethys Himalaya in the Area of Tingri (South Tibet, Pr China). Geoscientific Investigations in the Tethyan Himalayas(ed. Willems, H.), Berichte aus dem Fachbereich Geowissenschaften, der Universit t Bremen,38:29-47.
    Willems, H., Zhou, Z., Zhang, B. and Grafe, K.U.,1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary Strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geologische Rundschau,85(4):723-754.
    Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H. and Xu, P.,2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology,234(1-2):105-126.
    Wu, F.Y., Clift, P. D. and Yang, J.,2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics,26, TC2014, doi:10.1029/2006TC002051.
    Wu, F.Y., Ji, W.Q., Liu, C.Z., and Chung, S.L.2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Trans-himalayan magmatic evolution in southern Tibet. Chemical Geology,271:13-25.
    Xu, J.F. and Castillo, P.R.,2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere:implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393(1-4):9-27.
    Xu, R.H., Scharer, U. and Allegre C.J.,1985. Magnatism and metamorphism in the Lhasa block (Tibet):A geochronological study. The Journal of Geology,93:41-57.
    Xu, Y.G., Lan, J.B., Yang, Q.J., Huang, X.L. and Qiu, H.N.,2008. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology,255:439-453.
    Yin A.,2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation.Earth Sciences Review,76:1-131.
    Yin, A. and Harrison, T.M.,2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,28:211-280.
    Yin, A., Harrison, T.M., Murphy, M.A., Grove, M., Nie, S., Ryerson, F.J., Wang, X.F. and Chen, Z.L., 1999. Tertiary deformation history of southeastern and southwestern Tibet deuring the Indo-Asian collision. Geological Society of America Bulletin,111:1644-1664.
    Yin, J., Xu, J., Liu, C. and Li, H.,1988. The Tibetan plateau:regional stratigraphic context and previous work. Philosophical Transactions of the Royal Society of London A327:5-52.
    Zack, T., von Eynatten, H. and Kronz, A.,2004. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology,171:37-58.
    Zhou, M.F., Robinson, P.T., Malpas, J., Li, Z.J.,1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology,37:3-21.
    Zhou, S., Mo, X., Dong, G, Zhao, Z., Qiu, R., Guo, T. and Wang, L.2004. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China and their geological implications. Chinese Science Bulletin,49:1970-1979.
    Zhu, B., Kidd, W.S.F., Rowley, D.B. and Currie, B.S.,2004. Chemical Compositions and Tectonic Significance of Chrome-Rich Spinels in the Tianba Flysch, Southern Tibet. The Journal of Geology,112:417-434.
    Zhu, B., Kidd, W.S.F., Rowley, D.B., Currie, B.S. and Shafique, N.,2005. Age of initiation of the India-Asia collision in the east-central Himalaya. Journal of Geology,113:265-285.
    Zhu, D.C., Zhao, Z.D., and Niu, Y.L.,2010. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters,301(1-2):241-255.
    Ziabrev, S.V., Aitchison, J.C., Abrajevitch, A., Badengzhu, Davis, A.M. and Luo H.,2003. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet. Journal of the Geological Society, London, 160(4):591-600.
    Zyabrev, S.V., Aitchison, J.C., Badengzhu, Davis, A.M., Luo, H. and Malpas, J.,1999. Radiolarian biostratigraphy of supra-opbiolite sequences in the Xigaze area, Yarlung-Tsangpo suture, Southern Tibet (Preliminary report). Radiolaria,17:13-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700