用户名: 密码: 验证码:
长基线定位信号处理若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声学定位与导航技术是水下目标跟踪的核心技术,是海洋科学技术的重要组成部分。随着国家对海洋开发和海防建设的高度重视和巨大投入,声学定位与导航技术迎来了新的挑战和发展机遇。
     本文主要针对长基线声学定位中的信号处理若干关键技术进行研究,主要内容包括基于滤波和陷波组合应用的多通道自适应Notch滤波器组设计、基于信道多途抑制的时延估计技术、基于瞬时参数估计的信号检测技术等。
     单通道自适应Notch滤波器是提取单频信号的有效手段,但是当面临多个线谱成份时,其性能明显下降。本文分析了并联多通道和级联多通道自适应Notch滤波器的特性,提出了滤波和陷波功能组合使用的结构设计思想,设计和构建了多通道自适应Notch滤波/陷波器组,实现了多个单频信号的分别提取,并且避免了线谱干扰源引起的包络波动,从而提高了信号检测能力。目前,这种滤波器组结构设计已应用到工程实践当中,效果良好。
     时延估计误差是影响系统定位精度的重要因素之一。由于水下声信道的多途特性,接收点信号的幅度、相位、频率发生畸变,对时延估计精度产生严重影响。基于长基线系统的定位导航原理,本文分析了单阵元时延估计误差对系统定位精度的影响,论证了目标位于阵内不同位置时直达声和海面一次反射声相位差的变化规律,探讨了界面反射对系统定位精度影响的物理机理,并利用信号叠加特征提出了一套信道多途抑制新策略。该策略对提高系统检测“相消干涉”信号的能力和时延估计精度、改善声学定位系统性能有积极作用。
     参数估计理论在信号检测领域的成功应用极大地促进了信号检测技术的发展。瞬时频率方差检测器(VIFD)是一种典型的基于瞬时频率估计的信号检测器,它运算量小、性能稳健,成功解决了工程中检测多通道CW信号、抗通道串漏、抗混响干扰等技术问题,但该检测器只适用于载频恒定的信号。本文将VIFD的检测思想予以推广,利用LFM信号和HFM信号的频率特征,提出了两种新型“瞬时参数方差检测器”——调频斜率方差检测器(VFMSD)和周期斜率方差检测器(VPSD)。另外,针对其他信号形式,借用参数估计中的最小均方误差概念,设计了瞬时频率均方误差检测器(MSEIFD),提出了匹配滤波器(MF)与MSEIFD联合检测的思想,并进行了仿真验证。
     水声收发机是大型水声测控装备项目——SUNO系统的关键部件之一。本文基于SUNO系统的工作原理,设计并实现了一套多功能水声收发机,介绍了水声收发机的软、硬件设计思想和实施方案,并通过模拟器、湖试和海试试验对该系统进行了验证,同时利用消声水池定点测试和高精度定位标定系统分析了该套系统的定位精度。试验结果表明,SUNO系统性能可靠,定位精度满足系统指标要求。
Acoustic navigation and positioning technologies are the kernels in the field of tracking underwater targets, are the key components of the Ocean technology. Along with the government attaching great importance and investing huge finance to the exploitation of the Ocean and the construction of the coast defenses, acoustic positioning and navigation technology is facing a new challenge and a good opportunity for development.
     Several key technologies of the signal processing in the long baseline acoustic positioning system were researched, including the design of multi-channel adaptive Notch filter based on the combined application of notch channel and filtering channel, the time delay estimation technology based on the anti-multi-path strategy, the signal detection technology based on instantaneous parameter estimation, and so on.
     Single-channel adaptive Notch filter is an effective means to extract single-frequency signal, but its performance often decreases significantly when faced with various spectral components. The characters of parallel multi-channel and serial multi-channel adaptive Notch filters were analyzed. A new kind of multi-channel adaptive Notch filter structure was designed by combining the filtering channel and notch channel. This structure can not only extract a number of different single-frequency signals, but also can avoid the envelope fluctuation caused by sinusoidal interferences, thus enhancing the signal detection capability. Recently, this structure has been used in practice and performed very well.
     Time-delay estimation error is one of the most important factors in the coastdown of positioning precision. Because of the underwater acoustic multi-path channel, the signal received was distorted in amplitude, phase and frequency, which would reduce the time-delay estimation precision. Based on the positioning and navigation property of long baseline system, the effect of single sensor's time-delay estimation error on positioning precision was analyzed, the changing law of the phase difference between direct sound and surface reflected sound was demonstrated when the target lies in different location, the physical mechanism about interfacial reflection influence on positioning precision was researched, and a new signal processing measure was presented to overcome multi-path effect using the character of wrapped signals. The proposed anti-multi-path method can upgrade the offset interference signal detection ability and improve the time-delay estimation precision, so as to improve the capability and performance of underwater acoustic positioning systems.
     Parameter estimation theories have been applied on signal detection field successfully, which improved signal detection ability enormously. Variance-of-Instantaneous-Frequency Detector (VIFD) is a typical detector based on Instantaneous-Frequency estimation, which is robust and simple in operation. So far, VIFD has solved many technical problems, such as detecting multi-channel CW signal, restraining signal leakage among different channel and reverberation, etc. But VIFD is only suitable for the signal with constant carrier frequency. By means of promoting VIFD principle, two kinds of variance-instantaneous-parameter detector for HFM and LFM signal were proposed, which was called as Variance-of-Frequency-Modulation-Slope Detector (VFMSD) and Variance-of- Period-Slop Detector (VPSD). In addition, using the concept of minimum mean square error from parameter estimation theories, a new kind of detector in terms of other forms signal was put forward, called mean-square-error-of-Instantaneous-frequency Detector (MSEIFD), and an thought of combining the matched filter (MF) and the MSEIFD for detection was presented. The simulation result shows that the proposed detectors are effective.
     Acoustic transceiver is one of the key components of the SUNO system, which is a large measure and control equipment. According to the principle of SUNO system, a multi-function acoustic transceiver was designed and realized. The design thought of the software and hardware as well as the implementary scheme was introduced, and the capability of the system was verified by electricity simulator and trials in lake and sea. Meanwhile, positioning precision was analyzed by the means of fixed point Location in anechoic pool and trace calibration using High Precision Location System in Ocean. The result shows that SUNO system is robust and satisfying for use.
引文
[1]汪文件.新世纪中国海洋方向安全分析.中共中央党校硕士学位论文.2001年
    [2]惠俊英,生雪莉.水下声信道.第二版.北京:国防工业出版社,1992:1-29页
    [3]Vajda S,Zorn.A Survey of existing and emerging technologies for strategic submarine navigation.IEEE 1998 Position Location and Navigation Symposium,1998,309-315P
    [4]武凤德,翁炬.21世纪潜艇导航技术.中国惯性技术学会第五届学术年会论文集.2003,12:269-273页
    [5]熊正南,蔡开仕,武凤德,高宏伟.21世纪美国战略潜艇导航技术发展综述.舰船科学技术.2002,24(3):30-37页
    [6]易红,何辰,赵伟等.适合浅海工作的鱼雷自导有关问题探讨.鱼雷技术.2006,14(4):28-31页
    [7]李志舜.现代鱼雷自导系统及其发展趋势.鱼雷技术.1999,3(1):6-9页
    [8]Franklin R.A shallow water acoustic tracking system for underwater targets.1972,4:451-455P
    [9]凌育进.我国鱼雷水声跟踪系统综述.鱼雷靶场.1993(4):9-13页
    [10]吴永亭,周兴华,杨龙.水下声学定位系统及其应用.海洋测绘.2003:18-21页
    [11]李守军,包更生,吴水根.水声定位技术的发展现状与展望.海洋技术,2005,24(1):130-135页
    [12]中华人民共和国国民经济和社会发展第十一个五年规划纲要.http://news.enorth.com.cn/system/2006/03/16/001257348.shtml
    [13]对“十五”“区域”资源勘探技术发展的探讨.国际海底开发动态.2004
    [14]田坦,刘国枝,孙大军编著.声呐技术.哈尔滨:哈尔滨工程大学出版社,1999,251页
    [15]丁士圻,徐新盛,王智元等.船载式远程高精度水声定位系统.海洋工程.1996,14(4):16-20页
    [16]殷冬梅.无线电水声浮标阵多目标跟踪定位系统.哈尔滨工程大学博士论文.2004:3-5页
    [17]McKeown D L.Marine acoustic navigation and location-a status report.Proceedings of International Workshop on Marine Acoustics.1990,03,Beijing
    [18]McCartney B S."Underwater acoustic positioning system:state of the art and applications in deep water".IHR,LⅧ(1),1981:91-113P
    [19]Kelland N C,Partridge C J,Lawes D C.Applications and advantages of microprocessors in underwater acoustic positioning equipment.The Hydrographic Journal,1983,(28):13-22P
    [20]赵羽.界面反射对水下目标定位的影响分析.哈尔滨工程大学硕士论文.2001:10-12页
    [21]Grogan M.High frequency band acoustic positioning equipment:its evolution and integration with other systems.Proc.Oceans 87,1987,19:357-361P
    [22]生雪莉.被动式三维水声定位技术研究.哈尔滨王程大学硕士论文.2001:6-7页
    [23]Milne P H.Underwater acoustic positioning system.Houston:Gulf Pub.Co.,1983
    [24]Roberts J L,DeSitvis D J.New multi-mode acoustic position reference system.Ocean Industry,1986,21(5):30-34P
    [25]McKeown D L.A near surface drifter acoustic tracking system.Proc.Oceans 89,Seattle,1989:18-21P
    [26]HiPAP350P-High Precision Acoustic Positioning and underwater navigation system,http://www.dynamic-positioning.co.uk/equipment_hire.html
    [27]NewsOceano.http://www.ixsea.com/en/products/002.001.001.004/phins-6000.html.
    [28]哈工程长程超短基线定位系统项目填补国内空白.http://www.sxgfgb.gov.cn/MessageShow.aspx?msgID=4919&pageID= 1
    [29]Keith Vickery.Acoustic Positioning Systems-A Practical Overview Of Current Systems.Proceedings of the IEEE 1998 Workshop on Autonomous Underwater Vehicle,1998,08:5-17P
    [30]World Water Depth Drill Recor03/03/2004.http://www.hydrointernational.com/news/
    [31]Sonardyne positions Transocean for new drilling record.2004.01.http://www.sonardyne.com/News/PressReleases/2004/transocean.html
    [32]HPR 400P Family Portable hydroacoustic positioning reference systems.http://www.dynamic-positioning.co.uk/Data%20Sheets/DPS HPR440.pdf
    [33]美国GPS技术的军事应用.http://www.cetin.net.cn/storage/cetin2/xw/xxz/2001/39/xx-395.htm.
    [34]我国两年内研制成功高精度水下定位导航系统.http://tech.sina.com.cn/other/2004-01-08/1102279318.shtml
    [35]A.Alcocer,P.Oliveira,A.Pascoal.Underwater acoustic positioning systems based on buoys with GPS.8th ECUA.2006,6:1-8P
    [36]F.Napolitano,F.Cretollier,H.Pelletier.GAPS,combined USBL + INS +GPS tracking system for fastdeployable & high accuracy multiple target positioning.Oceans - Europe 2005.2005,2:1415-1420P
    [37]Louis L W,Dana R,Yoerger.Comnined Dopper/LBL based navigation of underwater vehicles,11th international sumposium on unmanned untethered submersible technology(UUST99),1999,8:1-7P
    [38]James C.Kinsey,Louis L.Whitcomb.Towards In-Situ Calibration of Gyro and Doppler Navigation Sensors for Precision Underwater Vehicle Navigation.Proceedings of the 2002 IEEE International Conference on Robotics 8 AutomationWashington(ICRA'02).2002,5:4016- 4023P
    [39]Robert N.McDonough,Anthony D.Whalen著.噪声中的信号检测.第二版.北京:电子工业出版社,2006
    [40]Urkowitz H.Energy detection of unknown deterministic signals. Proceedings of the IEEE,1967,(55):523-531P
    [41]Park N Y.Performance evaluation of energy detectors.IEEE Trans on AES,1978,3:14P
    [42]Dillard R A.Detectability of spread-spectrum signals.IEEE Trans on Aerospace and interception.IEEE Trans,1994,(42):2165-2173P
    [43]Hill D A,Bodie J B.Experimental carrier detection of BPSK and QPSK direct sequence spread spectrum signals.Conf.Rec.Milcom'95,1995,(1 ):362-367P
    [44]Hill D A,Bodie J B.Carrier detection of PSK signals.IEEE Trans on communications,2001,9(3):875-879P
    [45]张仔兵.连续相位调制信号的循环平稳特性及被动检测技术研究.电子科技大学博士学位论文.2006,4-11页
    [46]Kuehls J F and Geraniotis E,Presence detection of binary phase shift keyed and direct sequence spread spectrum signals using a prefilter delay and multiply device.IEEE J.Sel.Areas comm,1990,(8):915-933P
    [47]L.科恩.时.频分析:理论与应用.西安:西安交通大学出版社,1998:94-109页
    [48]周浩,文必洋,吴世才等.基于时频分析的高频雷达目标检测与定向.电子学报.2005,33(12):2265-2268页
    [49]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998
    [50]张军英.信号的小波分析及在信号检测中的应用.计算机仿真.1999,16(2):11-14页
    [51](美)Albert Boggess&Francis J.Narcowich著,芮国胜,康健等译.小波与傅立叶分析基础.北京:电子工业出版社,2004
    [52]李鹏,陈刚,张葵.基于高阶累积量和匹配滤波的信号检测新方法.系统工程与技术.2006,38(1):31-33页
    [53]杨晨阳,屈剑明,李少洪等.高阶统计量在检测中的应用.信号处理.1995,11(4):288-294页
    [54]张贤达著.现代信号处理.第二版.北京:清华大学出版社,2002:150-156页,263-274页
    [55]项楚琪,诸葛凤.互相关法和互功率谱法时延估计的比较.海洋技术.1991,10(4),1-7页
    [56]姚蓝,樊羚珂.广义相关时延的一种推广应用.中国造船.1992,(2):97-106页
    [57]江南,黄建国等.实时广义相关时延估计器.同济大学学报.2002,30(10):1277-1280页
    [58]孙进才,朱维杰等.基于信号相位匹配原理的广义相关时延估计.自然科学进展.2005,15(1):103-109页
    [59]李国罡,石岩,胡昌振.被动声探测系统的时间延迟估计技术.现代引信.1998:17-19页
    [60]王劲林,李启虎.自适应滤波器在时延估计中的应用-广义二次内插时延估计法.声学学报.1992,17(3):208-216页
    [61]P C Ching,H C Song.Two adaptive algorithms for multipath time delay estimation.IEEE J.Oceanic Eng.,1993,19(3):458-463P
    [62]Dimitris G.Manolakis等著,周正等译.统计与自适应信号处理.北京:电子工业出版社,2003:476-491页,667-669页
    [63]郭梯云.移动信道中多径衰落对数字传输的影响及分集技术的应用.通信学报.1991,12(1):14-21页
    [64]李霞.水声通信中的自适应均衡与空间分集技术研究.哈尔滨工程大学博士学位论文.2006:7-9,10-13页
    [65]孙丽君,连卫民,孙超.一种浅海水声信道分数间隔自适应均衡算法研究.声学技术.2007,26(1):138-140页
    [66]李红娟,孙超.一种多径衰落水声MIMO信道自适应均衡仿真研究.计算机仿真.2007,24(5):295-297页
    [67]冯建利.FH/DS混合扩频技术在水声通信中的应用研究.西北工业大学硕士学位论文.2007:12-17页
    [68]许绍君,李道本.多径衰落信道下的扩频码设计与联合检测.通信学报.2004,25(4):16-22页
    [69]肖瑛.基于水声信道的盲均衡算法研究.哈尔滨工程大学博士学位论文.2006:4-11页
    [70]王峰,赵俊渭,陈华伟等.盲均衡算法抵抗水声信道多途干扰的实验研究.电声基础.2003:4-6页
    [71]王峰,赵俊渭,李洪升等.一种适用于水声信道盲均衡算法及仿真.西北工业大学学报.2002,20(3):470-473页
    [72]A.H.Quazi.An overview on the time delay estimation in active and passive systems for target localization[J].IEEE Trans.Acoust.Speech Signal Process.1981,29(3):527-533P
    [73]HAHN W R.Optimum processing for passive sonar range and bearing e estimation.Journal of the Acoustical Society of America,1975,58(7):201-207P
    [74]田坦.水下定位与导航技术.北京:国防工业出版社,2007:46-65页
    [75]沈福民.自适应信号处理.西安:西安电子科技大学出版社,2001,136页
    [76]Ye G X,Yoshiki,Tadokoro.LMS-based notch filter for the estimation of sinusoidal signals in noise.Signal Processing,1995,(46):23-231P
    [77]Pei S C,Tseng C C.Real time cascade adaptive notch filter scheme for sinusoidal parameter estimation.Signal Processing,1994,39(1-2):117-130P
    [78]梁国龙,杨春,王德俊.频点自跟踪自适应频率估计器性能研究.电子学报.2005,33(7):1204-1208页
    [79]Glove J R.Adaptive noise canceling applied to sinusoidal interferences.IEEE Trans ASSP,1977,25(6):484-491P
    [80]B.Boashash.Estimating and interpreting the Instantaneous frequency of a signal-Part 2:algorithms and applications.IEEE PROC.,1992,80(4):540-568P
    [81]梁国龙.回波信号瞬时参数序列分析及其应用研究.哈尔滨工程大学博士论文.1997:12-16页,35-38页,55-61页
    [82]V.Friedman.A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise.IEEE Trans.SP,1994,42(6): 1565-1569P
    [83]J.P.Burg.Maximum entropy spectral analysis.37th meeting of the society of exploration geophysists in Oklahana City,1967
    [84]R.O.Schmidt.Multiple emitter location and signal parameter estimation,IEEE Trans.On Antennas Propagation,1986,34(3):276-280P
    [85]M.Sun,R.J.Sclabassi.Discrete-time instantaneous frequency and its computation.IEEE Trans.SP,1993,41(5):1867-1879P
    [86]S.M.Kay.Statistically/computationally efficient frequency estimation.PROC.IEEE,ICASSP,1988:2292-2295P
    [87]B.C.Lovell,R.C.Williamson.The statistical performance of some instantaneous frequency estimators.IEEE Trans.SP,1992,40(7):1708 -1723P
    [88]K.S.Riedel.Kernel estimation of the instantaneous frequency.IEEE Trans.Sp,1994,42(10):2614-2649P
    [89]L.J.Griffiths.Rapid measurement of digital instantaneous frequency.IEEE Trans.ASSP,1975,23(2):207-222P
    [90]G.W.Lank,I.S.Reed,and G.E.Pollon.A semicoherent detec- tion and Doppler estimation statistic.IEEE Trans.Aerosp.Electron.Syst.,1973,9(2):151-165P
    [91]S.M.Kay.A fast and accurate single frequency estimator.IEEE Trans.ASSP,1989,37(12):1987-1990P
    [92]S.A.Tretter.Estimating the frequency of a noisy sinusoid by linear regression.IEEE Trans.Inform.Theory,1985,31(6):832-835P
    [93]V.Clarkson,P.J.Kootsookos,B.G.Quinn.Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator.IEEE Trans.SP,1994,42(9):2370-2379P
    [94]杨春.基于水下运动目标报警的目标识别技术基础研究.哈尔滨工程大学博士学位论文.2005:68-77页,85-88页
    [95]梁国龙,惠俊英,常明.瞬时频率序列及其低阶矩的应用.声学学报.1995,20(4):280-288页
    [96]殷敬伟.多途信道中Pattern时延差编码水声通信研究.哈尔滨工程大学博士学位论文.2007:2-7页,12-14页
    [97]张碧星,陆铭慧.用时间反转法在水下波导介质中实现自适应聚焦的研究.声学学报.2002,27(6):541-548页
    [98]生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究.声学学报.2005,30(4):349-354页
    [99]Henry Weinberg,Robert Burridge.Horizontal ray theory for ocean acoustics.J.Acoust.Soc.Am.,1974,55(1):63-79P
    [100]Henry Weinberg.Application of ray theory to acoustic propagation in horizontally stratified oceans.J.Acoust.Soc.Am.,1975,58(1):97-109P
    [101]Scott J L,Evan K W,Robert A.K,etc.An efficient and robust method for underwater acoustic normal-mode computations.J.Acoust.Soc.Am.,1995,97(3):1576-1585P
    [102]Kenneth E H.A normal mode theory of acoustic Doppler effects in the oceanic waveguide.J.Acoust.Soc.Am.,1979,65(3):675-681P
    [103]Joseph E M.Finite-difference treatment of a time-domain parabolic equation:Theory.J.Acoust.Soc.Am.,1985,77(5):1958-1960P
    [104]Michael D C.The adiabatic mode parabolic equation.J.Acoust.Soc.Am.,1993,94(4):2269-2278P
    [105]Ahrnad T Abawi,W A Kuperman.The coupled mode parabolic equation.J.Acoust.Soc.Am.,1997,102(1):233-238P
    [106]F B Jensen.Numerical Models of Sound Propagation in Real Ocean.Proc.MTS/IEEE Oceans82 Conf.,1982:147-154P
    [107]范敏毅.水下声信道的仿真与应用研究.哈尔滨工程大学博士学位论文.2000:26-46页
    [108]刘伯胜,雷家煜主编.水声学原理.哈尔滨:哈尔滨船舶工程学院出版社,1993
    [109](美)R.J.尤立克著.水声原理.哈尔滨:哈尔滨船舶工程学院出版社,1990
    [110]Paul C H著,蔡志明等译.水声建模与仿真.第3版.北京:电子工 业出版社,2005:103-106页
    [111]杨明训.鱼雷自导系统的高分辨测向和多途环境中高精度测距算法.西北工业大学硕士学位论文.2004:8-11页
    [112]M.Stijanovic,J.G.proakis,J.A.Rice,etc.Spread spectrum underwater acoustic telementery.IEEE J.Oceanic Eng.,1998:650-654P
    [113]Vaccaro R J.The past,present and future of underwater acoustic signal processing.IEEE Signal Processing magazine.1998,15(4):21-25P
    [114]陈东升.水声信道抗多途跳频通信中同步技术的研究.厦门大学硕士学位论文.2002:21-24页
    [115]尉宇.线性调频和非线性调频信号的检测与参数估计.华中科技大学博士学位论文.2005:14页,75页
    [116]梁国龙,惠俊英.瞬时频率方差检测器(VIFD)及其性能评价.声学学报.1999,24(2):183-190页
    [117]朱华,黄辉宁.随机信号分析.北京:北京理工大学出版社,1990:31-35页
    [118]付进.长基线定位系统水声收发机软件设计与实现.哈尔滨工程大学硕士学位论文.2006:4-5页
    [119]张蓬鹤,米德伟.图形点阵式液晶显示器MSP-G320240的工作原理及应用方法.国外电子元器件.2004:2-4页
    [120]王燕.非合作目标精确定位技术研究.哈尔滨工程大学博士学位论文.2006:32-33页
    [121]TMS 320C6000 Programmer's Guide.TEXAS instruments,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700