用户名: 密码: 验证码:
植被混凝土冻融效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在西部大开发战略的推动下,我国西部高寒地区的基础建设日益增多,众多基础设施在给人们生活及生产带来便利的同时也无情的毁损了沿途的陆地植被,并形成了大面积的无植被覆盖的裸露边坡。植被混凝土作为一种优良的人工生态基材,可修复陆地边坡受损植被并对其进行浅层防护,然而从其应用的地域范围来看,当前它仅实施在我国华南、华中及西南等气温条件较高的地区。考察国内边坡植被修复的其它常用人工基材,其应用区域工况与植被混凝土大致相仿,至今尚未发现成功修复高寒地区边坡植被的相关报道。
     基于此,本文以植被混凝土为研究对象,在试验研究其冻胀与融沉特性的前提下,结合水泥土抗冻改良措施,提出了高寒地区受损陆地边坡植被修复的适宜人工生态基材。论文的主要工作内容如下:
     (1)以冷端温度T、含水率ω、植生土土质为影响因素,对植被混凝土进行不同水平的单因素和三因素四水平正交冻胀试验,着重探讨植被混凝土在不同初始条件下单向冻结时冻胀率与各因素之间的变化关系。试验结果表明,植生土土质、含水率与冷端温度对植被混凝土的冻胀特性均有所影响,且其影响的强弱顺序为:植生土土质>含水率>冷端温度;含水率增大或冷端温度升高,植被混凝土的冻胀率均增大,但对于粘土配制的植被混凝土而言,含水率中间存在一个转折点,在转折点两边不同的范围内,冻胀率的变化幅度存在较大差异;其他条件都相同时,粘土配制的植被混凝土的冻胀效应明显强烈于砂土配制的植被混凝土;以上述结论为基础,建立植被混凝土冻胀预报综合模型。
     (2)在冻胀试验的基础上,以冷端温度T、含水率ω、植生土土质、融化温度T'为影响因素,对植被混凝土进行不同水平的单因素和四因素四水平正交融沉试验,着重探讨植被混凝土在不同初始条件下双向融化时融沉系数与各因素之间的变化关系。试验结果表明,植被混凝土的融沉特性受植生土土质、含水率与冷端温度的影响较大,而几乎不受融化温度的影响,且此四因素对其影响的强弱顺序为:植生土土质>含水率>冷端温度>融化温度;含水率增大或冷端温度升高,植被混凝土的融沉系数均增大,但对于粘土配制的植被混凝土而言,含水率中间存在一个转折点,在转折点两边不同的范围内,融沉系数的变化幅度存在较大差异;其他条件都相同时,粘土配制的植被混凝土的融沉效应明显强烈于砂土配制的植被混凝土;以上述结论为基础,建立植被混凝土融沉预报综合模型。
     (3)将植被混凝土冻胀与融沉试验结合在一起,探讨其冻融前后抗剪强度与体积变化状况。试验结果表明,冷端温度的变化对植被混凝土抗剪强度指标粘聚力及内摩擦角的影响均较大;含水率仅对植被混凝土粘聚力的影响较大,而对其内摩擦角的影响却比较小;融化温度对植被混凝土抗剪强度的几乎没有影响;植被混凝土在经历一个完整的冻胀与融沉过程后,其试样总体积变化不大,冻融作用仅对基材内部微观结构产生了强烈扰动。
     (4)借鉴上述研究成果,在不改变植被混凝土现有配比的前提下,以棕纤维、硅粉及表面活性剂为影响因素,对其进行单因素和三因素五水平正交抗冻改良试验,着重探讨不同因素与水平影响下植被混凝土的质量损失率及相对动弹性模量。试验结果表明,棕纤维、硅粉和表面活性剂均可影响植被混凝土的抗冻性能,且其影响的强弱顺序为:棕纤维>表面活性剂>硅粉;经过试验优化和验证,得出对植被混凝土抗冻性能增强效益最为显著的复合抗冻改良剂为棕纤维:硅粉:表面活性剂=11:3:0.05,且当掺入量为植生土干质量的1.5%时,改良植被混凝土的抗冻性能约是改良前的4倍;改良植被混凝土植物适应性分析结果显示,由棕纤维、硅粉和表面活性剂复合而成的抗冻改良剂不会对植物生长产生较大影响。
     本文针对植被混凝土这一常用人工生态基材,试验研究了其冻胀与融沉特性,并提出了最优抗冻改良剂配比方案及其掺入比,从而在国内首次得出了高寒地区边坡植被修复的适宜人工生态基材。论文研究成果除了对高寒地区陆地边坡植被的修复具有重要的实用价值和理论指导意义之外,其试验设计方法亦可为其它类似人工生态基材的冻融试验研究提供经验参考。
The infrastructure constructions through or located in alpine area of our country are gradually increasing for the promotion of the western development strategy. These infrastructure constructions are benefit for human life and production, but at the same time they have damaged vegetations and led to a large amount of bare slopes too. As an excellent artificial ecological material, the main function of the vegetation-growing concrete is to restore vegetations by shallow layer protection. At present it was only implemented in part of the high temperature areas, such as the south China, the central China and the southwest of China. There were few reports about the successful ecological restoration through the common artificial ecological materials in domestic which have the similar working condition with vegetation-growing concrete.
     For the reason above, the vegetation-growing concrete is chosen as the research object to study the frost-heave and thaw-settlement properties of vegetation-growing concrete firstly. As well, it is tested for the anti-freeze and improvement combined with the measures of cement soil. The specific works and main research achievements are as follows:
     (1)Taken cold-end temperature, water content and plant generate as the influence factors, frost-heave experiments are carried out by different levels of single factor and orthogonal four levels of three factors for the vegetation-growing concrete, and it emphatically discusses the relationship between the frost-heave ratios and various factors in different initial conditions in the course of unidirectional freezing. Result shows that cold-end temperature, water content, plant generate all influence the frost-heave properties of the vegetation-growing concrete. The order of influence intensity by various factors is as follows:plant generate> water content> cold-end temperature. The frost-heave ratios of the vegetation-growing concrete will increase with the raising of the water content and cold-end temperature. But for the vegetation-growing concrete composed with clay, there is a turning point for water content. And in the two sides of this point, the frost-heave ratio takes on a large difference. Under the same conditions, the frost-heave effect of vegetation-growing concrete composed with clay is greater than that composed with sand. Then, the paper makes prediction models of frost-heave for vegetation-growing concrete.
     (2)On the basis of the frost-heave test, taken cold-end temperature, water content, plant generate and thawing temperature as influence factors, thaw-settlement experiments are carried out by different levels of single factor and orthogonal four levels of four factors for the vegetation-growing concrete, and it emphatically discusses the relationship between the thaw-settlement coefficients and various factors in different initial conditions in the course of bidirectional thawing. Result suggests that cold-end temperature, water content and plant generate all obviously influence the thaw-settlement characters of vegetation-growing concrete, while thawing temperature almost has no influence on them, and the order is as follows:plant generate> water content> cold-end temperature> thawing temperature. The thaw-settlement coefficients of the vegetation-growing concrete will increase with the raising of water content and cold-end temperature. But for the vegetation-growing concrete composed with clay, there is a turning point for water moisture too. And the thaw-settlement coefficient has a large difference in the two sides of this point. Under the same conditions, the thaw-settlement effect of vegetation-growing concrete composed with clay is greater than that composed with sand. Then, the paper makes prediction models of thaw-settlement for vegetation-growing concrete.
     (3)Combined with experiments of the frost-heave and the thaw-settlement for vegetation-growing concrete, the paper discusses the changes of shear strength and volume. Result indicates that the change of cold-end temperature has great influence on the shear strength indexes. Water content only has great influence on the cohesion, while the influence on the internal friction angle is not obvious. Thawing temperature almost has no influence on the shear strength indexes. There are little changes in volume after a complete process of frost-heave and thaw-settlement, while the micro structure of the material is disturbed obviously by the freezing and thawing action.
     (4)In the premise of without altering the proportions of raw materials, taken palm fiber, silica powder and surfactant as influence factors, anti-frost and improvement experiments are carried out by different levels of single factor and orthogonal five levels of three factors for the vegetation-growing concrete, and it emphatically discusses the mass loss and relative dynamic elastic modulus of the vegetation-growing concrete influenced by various factors under different conditions. It shows that the palm fiber, silica powder and surfactant all influence the frost resistance property of the vegetation-growing concrete. The order of the influence is as followed:the palm fiber> surfactants> silica powder. It also indicates that the best additive agent to improve the frost resistance property of the vegetation-growing concrete as followed:palm fiber:silica powder:surfactant=1:3:0.05. While the additive amount reaches 1.5% by weight of the dry plant generate, the frost resistance property of the vegetation-growing concrete can be improved about three times. It also shows that this additive agent hardly influences on plant's growth though the plant adaptability analysis of improved vegetation-growing concrete.
     Basis on the artificial ecological material of vegetation-growing concrete, the paper obtains the frost-heave and the thaw-settlement characteristics, and puts forward an optimal method and mixing proportion of the additive agent to improve the frost resistance property of the vegetation-growing concrete, firstly reporting the proper ecological material for slope vegetation restoration in alpine region. Research not only has important theoretical and practical significance for slope ecology restoration in alpine region, but also provides reference value to the research of similar ecological material.
引文
[1]许文年,王铁桥,叶建军.工程边坡绿化技术初探[J].三峡大学学报(自然科学版),2001,23(6):512-514.
    [2]王铁桥,许文年,叶建军,等.挖方岩石边坡绿化技术研究[J]:三峡大学学报(自然科学版),2000,25(2):101-104.
    [3]许文年,王铁桥,叶建军.岩石边坡护坡绿化技术应用研究[J].水利水电技术,2002,33(7):35-40.
    [4]周明涛,许文年,叶建军,等.云南小湾水电站边坡治理研究[J].水上保持通报,2005,25(4):91-93.
    [5]叶建军,许文年,王铁桥,等.南方岩质坡地生态恢复探讨[J].岩石力学与工程学报.2003,22(增1):2245-2249.
    [6]许文年,王铁桥,李建林,等.清江隔河岩电厂高陡混凝土边坡绿化技术研究[J].水利水电技术,2003,34(6):43-46.
    [7]王吉望.复合地基的现状与发展[J].施工技术,1991,(2):4-7.
    [8]Karina S R, Havana V G. Compressive strength of cement stabilized fly ash-soil mixtures [J]. Cement and Concrete Research,1999 (29):673-677.
    [9]Maringa S, Saudis. Improvement of soft soil by cement mixed [J].Soft Soil Engineering, 2007:637-641.
    [10]郦建俊.水泥土的强度特性、固结机理与本构关系的研究[D].西安建筑科技大学硕士学位论文,2005.
    [11]龚晓南,叶书麟.地基处理手册[M].北京:中国建筑工业出版社,2000,9.
    [12]龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002.
    [13]王燕谋.中国水泥技术的发展[J].硅酸盐学报,1989,17(5):455-461.
    [14]聂世辉.水泥土的发展和应用[J].上海建材,2001,(2):34-35.
    [15]欧阳克连,宁宝宽.水泥土强度影响因素的研究[J].中外公路,2009,29(4):189-191.
    [16]许贤敏,付庚.水泥土的性能及其在国外的应用[J].吉林建材,2004,(6):45-49.
    [17]张跃,袁代国.水泥土加固机理及不同成因类型软土配合比试验[J].化工矿物与加工,2003,(5):28-29.
    [18]张天红,周易平,叶阳升,等.水泥土的强度及影响因素初探[J].中国铁道科学,2003,24(6):53-56.
    [19]阮锦楼,阮波,阳军生,等.粉质粘土水泥土无侧限抗压强度试验研究[J].铁道科学与工程学报,2009,6(3):56-60.
    [20]周承刚,高俊良.水泥土强度的影响因素[J].煤田地质与勘探,2001,29(1):45-48.
    [21]熊厚金,林天健,李宁.岩土工程化学[M].北京:科学出版社,2001.
    [22]Kimono M. Soil organic matter, its nature, its role in soil formation and in fertility.2nded.London:Pergamum Press.1964:5-20.
    [23]Christensen BT.1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Adv Soil Science,2000:2-90.
    [24]粱爱珍,张晓平,杨学明,等.土壤粗有机质的研究进展[J].地理科学进展,2006,25(3):128-136.
    [25]刘增永.有机质土加固试验研究[D],浙江大学硕士学位论文,2005.
    [26]谢莉萍,吴风军,曹中.有机质土、泥炭质土的比重与有机质含量的相关性探讨[J].城市勘测,2003,(4):52-54.
    [27]Sparking G P. Soil microbial biomass, activity and nutrient cycling as indicators of soil health[C]. In:Pankhurst CE, Doube BM and Gupta VVSR. Biological Indicators of Soil Health.Walling ford,UK:CAB International.1987:97-119.
    [28]何牡丹,李志忠,刘永泉.土壤有机质研究方法进展[J].《新疆师范大学学报》(自然科学版),2007,26(3):249-251.
    [29]Kim H. Tan著,张彩凤,段月娟,闫降凤,译.关于腐殖质的议题[J].腐植酸,2009,(5):32-37.
    [30]熊田恭一.土壤有机质化学[M].北京:科学出版社,1984.
    [31]武天云,JeffJ Schoenau,李风民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-722.
    [32]李淑芬,俞元春,何辰.土壤溶解有机碳的研究进展[J].土壤与环境,2002,11(4):422-429.
    [33]陈迪云,黄伟林.不同土壤有机质组分对憎水有机物的吸附机理研究[J].地球化学,2003,32(4):368-374.
    [34]周玮,周运超,周习会,等.不同母岩发育土壤的可氧化态有机碳[J].生态学杂志,2006,25(12):1500-1507.
    [35]刘守龙,童成立,吴金水,等.稻田土壤有机碳变化的模拟:SCNC模型检验[J].农业环 境科学学报,2006,25(5):1228-1233.
    [36]陈桂秋,黄道友,苏以荣,等.红壤丘陵区土地不同利用方式对土壤有机质的影响[J].农业环境科学学报,2005,24(2):256-260.
    [37]曾希柏,关光复.稻田不同耕作制下有机质和氮磷钾的变化研究[J].生态学报,1999,19(1):90-95.
    [38]王清奎,汪思龙,冯宗炜,等.衫木人工林土壤有机质研究[J].应用生态学报,2004,15(10):1947-1952.
    [39]于严严,邻正堂,吴海斌.1980-2000年中国耕作土壤有机碳的动态变化[J].海洋地质与第四纪地质,2006,26(6):123-130.
    [40]胡富震,胡艳欣.水泥粉煤灰搅拌桩加固饱和有机质软土的工程实践与应用研究[J].科技咨询导报,2007,(11):61-62.
    [41]邵俐,刘松玉,杜广印,等.水泥粉煤灰加固有机质土的试验研究[J].工程地质学报,2007,16(3):408-414.
    [42]吴瑞潜,谢康和,陈先华.水泥和粉煤灰加固红壤土的试验研究[J].工业建筑,2006,36(7):29-31.
    [43]Nilo Cesar, Consoli. Behavior of compacted soil-fly-ash-car-bide line mixtures [J].Journal of Geotechnical and Geoenvironmental Engineering,2002, 34(12):1047-1048.
    [44]Shemberg R, Kauirik and Vansant G. Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures [J].Journal of Geotechnical and Geoenvironmental Engineering, 2001,28(7):574-584.
    [45]杨可铭.浅谈我国有机土的工程分类问题[J].哈尔滨建筑工程学院学报,1981,(2):105-116.
    [46]许文年,夏振尧,周宜红,等.植被混凝土无侧限抗压强度试验研究[J].水利水电技术,2007,38(4):51-54.
    [47]裴得道,许文年,郑江英,等.水库消落带植被混凝土抗侵蚀性能研究[J].三峡大学学报(自然科学版),2008,30(6):45-47.
    [48]许文年,夏振尧,周宜红,等.植被混凝土力学性能研究方法探讨[J].中国水土保持,2007,(4):30-32.
    [49]裴得道,许文年,郑江英,等.植被混凝土抗侵蚀性能研究[J].灾害与防治工程, 2008,(2):1-4.
    [50]李少丽.植被混凝土孔隙率及力学性能试验研究[D].三峡大学工学硕士学位论文,2008.
    [51]刘大翔,许文年,周明涛,等.坡位坡向及年限对黄龙滩电站生态护坡肥力的影响[J].水土保持研究,2010,17(1):178-182.
    [52]孙超,许文年,夏振尧,等.岩质边坡植被混凝土肥力时间变异性研究[J].水土保持研究,2009,(4):32-34.
    [53]牛海波,许文年,夏振尧,等.植被混凝土肥力水平变化研究[J].水土保持研究,2010,(2):36-39.
    [54]周明涛,许文年,夏栋.向家坝水电站工程扰动区不同类型边坡土壤酸碱度与肥力分析[J].应用生态学报,2010,21(4):1031-1037.
    [55]Morgenstern N R. Geotechnical engineering and frontier resource development [J].Geotechnique,1981,31(3):305-365.
    [56]崔托维奇HA.普通冻土学[M].张长庆,朱元林,译.北京:科学出版社,1985.
    [57]齐吉琳,程国栋,P.A.Vermeer.冻融作用对土工程性质影响的研究现状[J].地球科学进展,2005,20(8):887-893.
    [58]徐学祖,邓友生.冻土中水分迁移的实验研究[M].北京:科学出版社,1991.
    [59]张立新,韩文玉,顾同欣.冻融过程对景电灌区草窝滩盆地土壤水盐动态的影响[J].冰川冻土,2005,25(3):297-301.
    [60]王家澄,徐学祖,张立新,等.温度和压力条件对正冻土中成冰过程和冷生组构的影响[J].冰川冻土,1995,17(3):250-257.
    [61]谭丽华.水泥改良土冻胀融沉特性研究[D].同济大学工学硕士学位论文,2008.
    [62]Everett D H. The thermodynamics of frost damage to porous solids [J]. Trans, Faraday Soc,1961,57:1541-1551.
    [63]Bestow G. Soil freezing and frost heaving with special application to roads and railroads [J].Swedish Geol Survey Yearbook,1935,26 (3):375-380.
    [64]Miller R D. Freezing and hearing of saturated and unsaturated soils[J]. Highway Research Record 1972, (393):1-11.
    [65]O'Neill K,Miller R D.Exploration of a rigid-ice of frost heave [J].Wat Resources, 1985,24(3):281-296.
    [66]Konrad J M, Morgenstern N R. The segregation potential of a freezing soil[J]. Can Geotech,1981,18:482-491.
    [67]Miyata Y.A macroscopic frost heave theory coupling equations and criteria for creation of new ice lens [M]. Ground Freezing 97, Netherlands:Lulea University of Technology,1997.
    [68]Dieter Eigenbrod. Pore-water pressures in freezing and thawing fine-grained soils [J].Journal of Cold Regions Engineering,1996, (6):77-92.
    [69]Muto Y, Watanabe K, Ishizaki T. Microscopic observation of ice Tensing and frost heaves in glass beads[R]. Lewkowicz A G, Allard M. The Seventh International Permafrost Conference. Canada:Laval University,1998:783-787.
    [70]K. Takeda and Y. Nakano, Growth condition of an ice layer in freezing soils under applied loads, Ⅰ:Experiments[R].Cold Regions Research and Engineering Laboratory Report No.93-21,1993.
    [71]Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil [J].Wat Resources,1973,9(5):1314-1323.
    [72]Konrad J M, Morgenstern N R. Mechanistic theory of ice lens formation in fine grained soils[J].Canadian geotechnical Journal,1980,17 (4):473-486.
    [73]A G Razaqpur, Dai-yu Wang. Frost-induced deformations and stresses in pipelines[R]. International Journal of Pressure Vessels and Piping,1996,69(2):105-118.
    [74]何平,程国栋,朱元林.土体冻结过程中的热质迁移研究进展[J].冰川冻土,2001,23(1):92-98.
    [75]李洪升,张斌,刘增利,等.一维冻结土体冻胀量的水热力耦合计算[J].大连理工大学学报,1999,39(5):621-624.
    [76]张婷.人工冻土冻胀、融沉特性试验研究[D].南京林业大学硕士学位论文,2004.
    [77]苗天德,郭力,牛永红,等.正冻土中水热迁移问题的混合物理论模型[J].中国科学D辑,1999,29(增1):8-14.
    [78]张立新,土家澄.石灰土冻胀特特性试验研究[J].岩土工程学报,2002,24(3):336-339.
    [79]J. F. Nixon, N. R. Morgenstern. The residual stress in thawing soils[R].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1974, 11(8):164.
    [80]Jacob Bear, M. Yavuz Corapcioglu, Jayanth Balakrishna. Modeling of centrifugal filtration in unsaturated deformable porous media[J]. Advances in Water Resources, 1984,7(4):150-167.
    [81]M. Y Corapcioglu, S. Panday. Multiphase approach to thaw subsidence of unsaturated frozen soils:equation development [J]. Journal of Engineering Mechanics.1995, 121(3):448-459.
    [82]A.Foriero and B.Ladanyi.FEM Assessment of large-strain thaw consolidation [J].Cold RegionsScience and Technology,1995,23(2):121-136.
    [83]Sally Shops. Cap plasticity model for thawing soil [J]. Calibration of Constitutive Models,2005, (3):139-150.
    [84]何平,程国栋,杨成松,等.冻土融沉系数的评价方法[J].冰川冻土.2003,25(3):608-612.
    [85]赵淑萍,朱元林,何平,杨成松.冻土动力学研究的现状与进展[J].冰川冻土.2002,24(5):681-685.
    [86]Vision T S. Geotechnical Engineering in Cold Regions [M].The United States of American:McGraw-Hill Book Company, Inc,1978:405-458.
    [87]Shen H G, Zhang Jami. Loading effect of dynamic strength and limit of long-term dynamic strength of frozen silt [J].Journal of Glaciology and Geocryology,1998, 20(1):42-45.
    [88]Wu S M. State-of-art and development of soil dynamics [J].Chinese Journal of Geotechnical Engineering,1998,20(3):125-131.
    [89]齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义[J].岩石力学与工程学报,2003,22(增2):2690-2694.
    [90]崔托维奇H.A.冻土力学原理[M].张长庆,朱元林,译.北京:科学出版社,1988.
    [91]李宁,程国栋,徐学祖,等.冻土力学的研究进展与思考[J].力学进展,2001,31(1): 95-102.
    [92]Jess Berger H L. State of the art report-Ground freezing, mechanical properties, processes and design [J].Engineering Geology,,1981,18(1-4):5-30.
    [93]Morgenstern N R. Geotechnical engineering and frontier resource development [J].Geotechnique,1981,31(3):305-365.
    [94]Fish A M. Creep and yield model of frozen soil under travail compression[C].In: Proceedings of the Fifth International Offshore and Polar Engineering Conference.Rotterdam, Netherlands:A.A.Balkema,1995,1:473-481.
    [96]Landlady B. Mechanical behavior of frozen soils[C].In:Proceedings of the International Symposium on the Mechanics Behavior of Structure Media. Elsevier Science,Amsterdam,1981:205-245.
    [97]Sayles Francis H. State of the art:Mechanical properties of frozen soil, mechanical properties of frozen soil[C].In:Fifth International Symposium on Ground Freezing. Rotterdam, the Netherlands:A.A.Balkeman,1989,1:143-165.
    [98]Sadovsky A V, Maksimyak R V, Razbegin V N. State of the art:Mechanical properties of frozen soil[C].In:5th International Symposium on Ground Freezing. Rotterdam, the Netherlands:A.A.Balkema,1989,2:443-463.
    [99]Konrad J M. Effect of freeze-thaw cycles on the freezing characteristics of a clayey silt at various over consolidation ratios[J].Canadian Geotechnical Journal,1989,26 (2):217-226.
    [100]钱家欢.土力学[M].南京:河海大学出版社,1998:6-32.
    [101]郑少华,姜奉华.试验设计与数据处理[M].中国建材工业出版社,北京.2005.
    [102]林世文,包俊超,兰荣旺.冻融试验研究[J].岩土工程技术,2001,3:161-164.
    [103]Yong R N,Roonsinsuk P.Alteration of soil behavior after cyclic freezing and thawing[C].In:Proc.of Fourth International Symposium on Ground Freezing.Sapparo,1985:56-71.
    [104]Chamberlain Edwin J, Gown Anthony J. Effect of freezing and thawing on the permeability and structure of soils[J].Engineering Geology,1979,13 (1-4):73-92.
    [105]齐吉琳,马巍.冻融作用对超固结土强度的影响[J].岩土工程学报,2006,28(12):2082-2086.
    [106]周丽萍,申向东,白忠强.外掺剂对冻融循环水泥土强度影响的试验研究[J].人民长江,2008,39(24):73-76.
    [107]汪攀峰,丁启朔,丁为民,等.一种土壤孔隙率(比)的测定方法[J].实验技术与管理,2009,26(7):50-51.
    [108]章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2006.63-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700