用户名: 密码: 验证码:
水下爆炸作用下结构的动态响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下爆炸需要考虑五个部分:冲击波、空泡及气泡、射流、流固耦合现象、结构的动态响应。本文采用了理论分析以及数值模拟的方法求解了水下爆炸时近场产生的气泡脉动流场,继而对气泡脉动压力作用下板的响应进行分析。然后将水下声能与爆炸冲击波相联系,利用流固耦合方法分析了远场定向冲击波对圆柱壳的破坏以及对柱体的振动响应,为水下声能技术对远场目标打击提供了依据。
     首先对水下近场爆炸产生的气泡进行了分析,按照一维不可压缩流体非定常运动理论,考虑加入了虚拟力做功的方式,改进了已有的水中爆炸气泡脉动规律的方程。计算结果与实验值对比分析可知,加入的虚拟力使理论公式所计算的气泡脉动的周期,速度等值与实际情况近似吻合。对水中气泡脉动压力分布规律方程再进行改进,加入了气泡能的影响,所得结果相对来说较以往分析结果更加符合实际情况。
     继而计算了气泡脉动压力对固支圆板作用进行了响应分析。在近场气泡脉动下,把气泡脉动载荷处理为球面波,然后将其作用到固支圆板上。通过Ritz方程计算了圆板的挠度计算公式,根据所得数据拟合得到一个统一公式,由此式可以计算出一定条件下任意厚度板的最大挠度。根据挠度变化图得出结论,在脉动压力波作用下,圆板中心最容易发生破坏。在板厚较薄的情况下,圆板边界也很可能发生破坏。
     根据水下声能技术以及水下爆炸的特点,建立了两者之间的联系,给出了水下声能技术中声学参数转换成远场的冲击波压力的转换公式。
     将声学参数转换成了水下爆炸冲击波参数,进行了冲击波作用下圆柱壳的强度分析计算。根据远场冲击波的特点,将其假定为平面波直接施加在离壳体附近的一小层水面上。然后利用LS-DYNA中的流固耦合分析方法,.对圆柱壳体在30m处的水下定向声能作用下的强度进行了仿真计算。结果表明,声源级280dB以上的水下定向冲击波即可对30m处的圆柱壳体进行一定的破坏。
     然后又模拟了柱体在受到距水下定向声能源100m处作用时的动态响应。当大能量冲击波压力作用到柱体上时,柱体的加速度响应迅速达到峰值,峰值大且波形陡峭。但是由于柱体与水耦合导致柱体的振动能量散失很快,随着时间的增加,响应迅速减小。
     在向柱体发射定向冲击波时,应尽量从其径向入射,这样更容易引起其内部仪器等的破坏,达到更好的冲击效果。若加速度达到30g时可能引起内部元器件失效或者破坏,按照这一标准来检测柱体振动引起的破坏情况,则当声源级≥280dB时在距其100m处就有可能会使其内部仪器因振动而发生破坏。
     本文所做内容为水下定向声能技术为对近舰目标进行打击提供了理论以及数值依据。
The underwater explosion needs considering five parts:shock wave, cavitations and bubble, jet, fluid-solid coupling phenomenon, the dynamic response of structure. In this paper, the flow field of the bubble pulsation was solved by using the theory analysis and numerical simulation method under near the underwater explosion. The response of the plate under the bubble pulsation pressure effect was analyzed. Connection the underwater acoustic energy and explosion shock wave, by using the fluid-solid coupling method the failure of cylindrical shell and the vibration response of cylinder under the far fielded directional shock wave was researched. For the underwater acoustic energy technology attacking the near ship target provides basis.
     The bubble produced by near underwater explosion was analyzed. According to the one dimensional incompressible fluid unsteady motion theory, considering addition the work by the virtual force, the existing law equation of bubble pulsation underwater explosion was improved. Comparison analysis the calculation results with the experimental values, considering the addition of the virtual force, the radius, period and velocity of the calculation bubble pulsations by the theory formula were more anatomists with the practical condition. Further improving the law equation of bubble pulsation pressure distribution, the addition effect of the bubble energy, the results were more according with the practical condition than previous analysis.
     Under the near bubble pulsation, the bubble pulsation load was treatment for spherical wave. Then the clamped circular plate was affected by it. By the Ritz equation the deflection formula of the circular plate was calculated. The income data were fitted a unified formula. Based on the deflection change graph, the center of circular plate was most easily failure. The boundary of circular plate also possibly was damaged under the condition of the thin plate.
     According to the features between the underwater acoustic energy technology and explosion, the acoustical parameters were converted into the form of explosion shock wave pressure. The strength analysis of cylindrical shell was calculated under the effect of the shock wave. According to the feature of the far field shock wave, it was assumed plane wave to directly apply on a little layer water surface nearby the shell. Using the fluid-solid coupling analysis method of LS-DYNA, the strength of the cylindrical shell was simulation calculated under effect of the underwater directional acoustic energy at 30m. Over 280db sound source grade of the underwater directional shock wave could be certain failure to the cylindrical shell at 30m.
     The dynamic response of cylinder was simulated under the effect of underwater directional acoustic energy at 100m. When the cylinder was affected by the large energy shock wave pressure, the response of acceleration was rapidly reached the peak which was large and the waveform was steep. However, due to the cylinder coupling with water the vibration energy was quickly dissipated. When the acceleration reached 30g, the internal components may be failure. If according to this standard test the failure situation was caused by the vibration of cylinder. When the sound source grade≥280dB, the internal components maybe could be damaged because of the vibration.
     The theory and numerical basis were provided by the contents in this paper for the underwater directional acoustic energy technology attacking the near ship target.
引文
[1]余晓菲,刘土光,严谨.水下爆炸与冲击载荷作用下结构物的响应特性.中国造船.2004,45(增刊):202-208页
    [2]Cole.R.H. Underwater Explosions. New Jersey:LISA, Princeton University Press.1948.
    [3]库尔.水下爆炸.罗耀杰,韩润泽,官信译.第一版.北京:国防工业出版社.1960:16页,152页
    [4]Ф.A.鲍姆,K.П.斯达纽科维奇,B.И.谢赫捷尔著.爆炸物理学.众智译.第一版.北京:科学出版社.1964:305-338页
    [5]R.Rajendran, K.Narasimhan. Linear elastic shock response of plane plates subjected to underwater explosion. International Journal of Impact Engineering.2001,25:493-506P
    [6]尹群,陈永念,胡海岩.水下爆炸研究的现状和趋势.造船技术.2003,6:6-12页
    [7]Akio Kira. Underwater explosion of spherical explosive. Journal of Materials Processing Technology.1999,85:64P
    [8]Snay.H.G. Hydrodynamics of Underwater Explosions. Washington D. C:In Proc, Symposium Naval Hydrodyn,1st.1965:52-63P
    [9]Gaspin.J.B. Depth Scaling of Underwater Explosion Phenomena. AD-A020473.1975:109-120P
    [10]Helm.Jr.F.H, Chambers.E.S, Lee.E, etal. Detonation-Product Behavior at Large Expansion. The Underwater Detonation of Nitromethance. DE81030468.1980:366-378P
    [11]Itoh Shigeru, Kira Akio, Kubot Shiro, etal. Optical Study of Underwater Explosion of High Explosive. Journal of the Japan Explosives Society.1995, 56 (5):181-187P
    [12]Chahine.G.L, Frederick.G.S, Lambrecht.C.J, etal. Spark Generated Bubbles as Laboratory-Scale Models of Underwater Explosions and Their Use for Validation of Simulation Tools. Proceedings 66th Shock and Vibrations: Symposium, Biloxi, MS.1995,2:265-276P
    [13]张挺.爆炸冲击波测量技术.第一版.北京:国防工业出版社,1984:15页
    [14]Tussing.R.B. Accuracy and Response of Tourmaline Gages for Measurem-ent of Underwater Explosion Phenomena. AD-A128734.1982:254-269P
    [15]Liddiard.T.P, Forbes.J.W. Shock waves in Fresh Water Generated by the Detonation of Pentolite Spheres. AD-A132088.1983:568-588P
    [16]Sickles.J.B, Dally.J.W. Carbon resistors as low cost expendable piezoresis-five sensors. Proceedings of the 37th international instrunentation Symposiu-m.1991:1049-1059P
    [17]陈德元.水下爆炸调研综述.中国国防科学技术报告.1998:69页
    [18]李金河,赵继波,池家春.水中爆炸冲击波传播规律的实验研究.高能量密度物理.2007,3(1):25-28页
    [19]刘文华,罗松林,顾文彬等.单个球形装药浅层水中爆炸冲击波特性的研究.工程爆破.1999,5(3):1-5页
    [20]高勇军,王伟策,陈小波等.浅层水中爆炸冲击波压力的测试与分析.爆破.1999,16(1):9-13页,35页
    [21]苏华,陈网桦,吴涛等.炸药水下爆炸冲击波参数的修正.火炸药学报.2004,27(3):46-48页,52页
    [22]李焰,斐明敬,王占江等.微型炸药球水中爆炸冲击波压力波形测试和研究.第三届全国爆炸力学实验技术学术会议论文集.361-364页
    [23]池家春,马冰.TNT/RDX (40/60)炸药球水中爆炸波研究.高压物理学报.1999,13(3):199-204页
    [24]李玉节,赵本立.水下爆炸压力测量中的若干问题.实验力学.1992,7(1):17-22页
    [25]Slifke.J.P. Pressure-Pulse Characteristics of Deep Explosions as Functions of Depth and Range. AD-661804.1967:668P
    [26]Michael.M. Explosion Effects and Properties:Part Ⅱ Explosion Effects in the Water. AD-A056694.1978:1564-1593P
    [27]Temkin.S.A. Review of the Propagation of Pressure Pulses Produced by Small Underwater Explosion Charges. NOLTR-6181.1988:658-669P
    [28]Holt.M. Final Report on Contract N00014-75-C-0151. AD-A098318.1979.
    [29]Gaspin.J.B. Depth Scaling of Underwater Explosion Source Levels. AD-A020473.1975:349-361P
    [30]顾文彬,叶序双,刘文华.界面对浅层水中爆炸冲击波峰值压力影响的研究.解放军理工大学学报(自然科学版).2001,2(5):61-63页
    [31]顾文彬,叶序双,张朋祥.浅层水中爆炸水底影响的试验研究.解放军理工大学学报(自然科学版).2001,2(2):55-58页
    [32]高勇军,王伟策,陈小波.浅层水中爆炸冲击波压力的测试与分析.爆破.1999,16(1):9-13页
    [33]王中黔.水下爆破冲击波.水下爆破文集.北京:人民交通出版社.1980:568-582页
    [34]长江航运局.四川维尼纶厂通用码头水下爆破安全观察总结.水运工程.1976, (8):116-120页
    [35]马乃耀.水下爆破——黄埔水下爆破经验介绍.第一版.北京:人民交通出版社.1977,66页
    [36]许春勤.水中爆炸对障碍物的冲击压力测试及计算.第五届榴弹技术交流会论文集.1992:2234-2241页
    [37]孙金华,王春乐.雷管水中爆炸输出的起爆能力判据.兵工学报.1996,17(1):16-20页
    [38]张金城,汪大立.雷管水下爆炸冲击波能和气泡能测试的研究.爆破器材.1989(1):6-10页
    [39]周睿,冯顺山.气泡帷幕对水中冲击波峰值压力衰减特性的研究.工程爆破.2001,7(2):13-17页
    [40]张立,汪大立.水下爆炸炸药药能测量消除边界效应的研究.爆破器材.1995,24(2):1-6页
    [41]王建灵,赵东奎,郭炜.水下爆炸能量测试中炸药入水深度的确定.火炸药学报.2002, (2):30-31页
    [42]方正,李世海,乔继延.水中爆炸气泡脉动周期的试验研究.工程爆破.2001,7(2):29-33页
    [43]丁长兴,崔应娟.用最小二乘法求气泡能的固有常数.爆破器材.1994,23(3):1-6页
    [44]张立,孙锋,国志达.在有限水域炸药爆炸能量测试计算公式及VB程序.爆破器材.2000,29(1):5-8页
    [45]刘文华,王自力,顾文彬.水下爆破效果与参数的灰色关联度分析.工程爆破.2001,7(2):5-8页
    [46]Snay.H.G. The Scaling of Underwater Explosion Phenomena. AD-271468. 1961,1124-1132P
    [47]严事龙,张金城.工业炸药水下爆炸能量估算.爆破器材.1992,22(2):1-4页
    [48]Heaton.K.C. Effects of Non-Sphericity and Radiative Energy Loss on the Migration of the Gas Bubble from Underwater Explosion. AD-A166823. 1986:1145-1164P
    [49]Temkin.S. Review of the Propagation of Pressure Pulse Produced by Small Underwater Explosive Charges. AD-A194642.1988:996-1010P
    [50]Mehaute.B, Wang.S. Water Waves Generated by Underwater Explosions. AD-A304244.1994:125-149P
    [51]Cowperthwaite.M, Pasfine.D.J, Enig.J.W. Energetics of Late Chemical Reactions in Nonideal Underwater Detonations. AD-A309088.1995:1256P
    [52]卞保民,杨玲,李振华等.衰减球面冲击波波阵面自模拟运动特性.物理学报.2004,53(3):840-843页
    [53]严事龙.条形药包水下爆炸能量计算.爆破器材.1997,26(5):1-3页
    [54]周睿,冯顺山,吴成.条形药包冲击波峰值超压工程计算模型.工程爆破.2001,7(4):19-23页
    [55]吴成,李京,冯顺山.一条形药包冲击波参数的简单计算模型探讨.矿冶.2002,11(1):8-11页
    [56]周听清,奉孝中.水压爆破中群药包药量的计算.中国科学技术大学学报.2000,30(5):593-599页
    [57]张鹏翔,顾文彬,叶序双.浅层水中爆炸直达波压力峰值计算方法探讨.解放军理工大学学报(自然科学版).2002,3(1): 57-59页
    [58]钱胜国.近自由水面水下爆炸时水中冲击波特性.爆炸与冲击.1983,4:148-153页
    [59]恽寿榕等.爆炸力学计算方法.第一版.北京:北京理工大学出版社.1995:1-28页
    [60]Chan.S.K. An Improvement In the Modified Finite Element Procedure for Underwater Shock Analysis, Proceeding of 62nd Shock and Vibration Symposium.1992,9.
    [61]Menon.S. Experimental and Numerical Studies of Underwater Explosion. AD-A317378.1996:478-497P
    [62]Swegle.J.W, Attaways.S.W. Feasibility of using smoothed particle hydrody-namics for underwater explosion calculations. DE95008799.1995:662P
    [63]Rehak.M, Smilowitz.R, Kagel.R. FRAM Cavitation. AD-A181193.1986: 534-556P
    [64]Heaton.K.C. Migration of the Gas Globe from Underwater Explosion. The Effects of Drags and Radiative Energy Loss. AD-P004937.1985:15-30P
    [65]Lindquist.W.B. Numerical Simulation of the Collapse of an Underwater Explosion Bubble. AD-A203860.1988:114-126P
    [66]Britt.J.R. Bottom Reflection of Underwater Explosion Shock Waves. Computer Program. AD-A204130.1971:333-346P
    [67]王继海.二维非定常流和激波.第一版.北京:科学出版社.1994:38页
    [68]Williamson.R. Prediction Techniques for Refraction of Underwater Explosion Shock Waves. Programs for Computing Refraction Effects and Peak Transnational Velocity. AD-A003435.1974:216-235P
    [69]Wilkerson.S.A, Schittke.H. Bubble Dynamics Calculations Using the DYSMAS/ELC Finite Difference Code. AD-A241549.1988:662-682P
    [70]Wilkerson.S.A. Boundary Integral Technique for Explosion Bubble Collapse Analysis. AD-A267369.1993:365-380P
    [71]Cushing.V.J. On the Theory Bulk Cavitations. AD-704616.1960,12:558P
    [72]Kamegai.M.A. Study of Near Surface and Underwater Explosions by Computer Simulations. UCRL-ID-116360.1994:228P
    [73]沈国光,陈月彤.水下近水面爆炸兴波.水动力研究进展.1992,7(3):303-309页
    [74]符松,王智平,张兆顺等.近水面水下爆炸的数值研究.力学学报.1995,27(3):267-276页
    [75]李加贵,边小华,张雷.爆炸冲击波传播的数值模拟与试验数据对比.山西建筑.2006,32(8):106-107页
    [76]顾文彬,阳天海,叶序双.单个装药浅层水中沉底爆炸的数值模拟.解放军理工大学学报.2000,1(3):51-55页
    [77]张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究.爆炸与冲击.2004,24(2):182-188页
    [78]余晓菲,刘土光,张涛.水下爆炸冲击波的载荷强度计算.舰船科学技 术.2006,28(5):22-28页
    [79]鲁传敬.三维水下爆炸气泡的数值模拟.航空学报.1996,17(1):92-95页
    [80]刘榕海.利用水下爆炸法评价爆炸危险性的研究.爆炸与冲击.1993,2:26-33页
    [81]李玉民,倪芝芳.水中爆炸气泡脉动流场的数值计算.爆炸与冲击.1996,4:377-381,376-379,380页
    [82]Kell.J.B. Damping of underwater explosion bubble oscillation. Journal of Applied Physics.1956,.27 (10):69-78P
    [83]Blake.J.R, Gibson.D.C. Cavitation bubbles near boundaries. Fluid Mech. 1987,19 (1):99-123P
    [84]Wang.Q.X, Yeo.K.S, Khoo.B.C, etal. Nonlinear interaction between gas bubble and free surface. Computer Fluids.1996,25 (7):607-628P
    [85]冷海军,鲁传敬.轴对称体的局部空泡研究.上海交通大学学报.2002,36(3):95-104页
    [86]Zhang.Y.L, Yeo.K.S, Khoo.B.C, etal. Three-dimensionalcomputation of bubbles near a free surface. Computer Phys.1998,146:105-123P
    [87]Chahine.G.L, Kalumuck.K.M. Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DYNA YNAFS, a three-dimensional BEM code. Computer Mech.2003,66(3):489-497P
    [88]Wang:C, Khoo.B.C. An indirect boundary element method for three-dimensional explosion bubbles. Journal of Comput Phys.2004,194:451-480P
    [89]Geers Hunter. An integrated wave-effects model for an underwater explosion bubble. Journal of the Acoustical Society of America.2002,111 (4): 1584-1601P
    [90]Xiao Zongyuan, Reginald.B.H. An improved model for bubble formation using the boundary integral method. Chemical Engineering Science.2005,60
    (1):179-186P
    [91]姚熊亮,张阿漫.简单Green函数法模拟三维水下爆炸气泡运动.力学学报.2006,38(6):749-759页
    [92]Zhang.Y.L, Yeo.K.S, Khoo.B.C, etal.3D Jet Impact and Toroidal Bubbles. Journal of Computational Physics.2001,166:336-360P
    [93]Wang.C, Khoo.B.C, Yeo.K.S. Elastic meshes technique for 3D BIM simulation with an application to underwater explosion bubble dynamics. Computers and Fluids.2003,32:1195-1212P
    [94]Rungsiyaphornrat.S, Klaseboer.E, Khoo.B.C, etal. The merging of two gaseous bubbles with an application to underwater explosions. Computers and Fluids.2003,32:1049-1074P
    [95]Khoo.B.C, Klaseboer.E, Hung.K.C. A collapsing bubble-induced micro-pump using the jetting effect. Sensors and Actuators A.2005,118:152-161P
    [96]Klaseboer.E, Khoo.B.C. A Modified Rayleigh-Plesset Model for a Non-Spherically Symmetric Oscillating Bubble with Applications to Boundary Integral Methods. Engineering Analysis with Boundary Elements.2006,30: 59-71P
    [97]Klaseboer.E, Turangan.C, Wan.F.S, etal. Simulations of pressure pulse-bubble interaction using boundary element method. Computer Methods Apply Mechanical Energing.2006,195:4287-4302P
    [98]Bui.T.T, Ong.E.T, Khoo.B.C, etal. A fast algorithm for modeling multiple bubbles dynamics. Journal of Computational Physics.2006,216:430-453P
    [99]Lew.K.S.F, Klaseboer.E, Khoo.B.C. A collapsing bubble-induced micro-pump:An experimental study. Sensors and Actuators A.2007,13:161-172P
    [100]Taylor.G.I. The pressure and Impulse of Submarine Explosion Waves on Plates. Underwater Explosion Research, Vol. Ⅰ, Office of Naval Research. 1950:1155-1173P
    [101]Snay.H.G, Christian.E.A. The Response of Air-Backed Plates to High-Amplitude Underwater Shock waves. NAVORD Report 2462.1952: 321-333P
    [102]Schechter.R.S, Bort.R.L. The Response of Two Fluid-Coupled Plates to an Incident Pressure Pulse. Naval Research Laboratory Memorandum Report 4647.1981:3594-3652P
    [103]Huang.H. Transient Bending of a Large Elastic Plate by an Incident Spherical Pressure Wave. Journal of Applied Mechanics.1974,41 (3): 772-776P
    [104]Bleich.H.H, Sandler.L.S. Interaction Between Structures and Bilinear Fluids. International Journal of Solids and Structures.1970,6:617-639P
    [105]Jiang. J, Olson.M.D. Rigid-plastic analysis of underwater blast loaded stiffened plates. International Journal of Mechanic Science.1995,37 (8): 843-859P
    [106]Jiang. J, Olson.M.D. Non-linear transient analysis of submerged circular plates subjected to underwater explosions. Computer methods in applied mechanics and engineering.1996,134:163-179P
    [107]Geers.T.L. Residual potential and approximate methods for three dimen-sional fluid-structure problem. Journal of the Acoustic Society of America. 1971,49:1505-1510P
    [108]唐文勇,陈铁云.加筋板结构的塑性动力响应分析.上海交通大学学报.1996,8:12-19页
    [109]刘士光,唐文勇.加筋板结构在冲击载荷作用下的塑性动力响应.华中理工大学学报.1996,1:66-73页
    [110]吴有生,彭兴宁,赵本立.爆炸载荷作用下舰船板架的变形与破损.中国造船.1995,36(4):55-63页
    [111]Carrier.G.F. The interaction of an acoustic wave and an elastic cylindrical shell. Brown University Technical Report.1951,4:1116-1129P
    [112]Murray. W.W. Interaction of a Spherical Acoustic Wave with a Beam of Circular Cross Section. Underwater explosions Research Division report. 1955:1-55P
    [113]Peralta.L.A, Raynor.S. Initial response of a fluid-filled elastic circular cylindrical shell to a shock wave in an acoustic medium. Journal of Acoustic Society of American.1964,36 (2):476-487P
    [114]Payton.R.G. Dynamic Membrane Stresses in a Cylindrical Shell. J. Appl. Mech..1961,28 (3):417-420P
    [115]Humphreys.J.S, Winter.R. Dynamic Response of a Cylinder to a Side Pressure Pulse. AIAA. J..1968,6:2221-2232P
    [1.16]Huang.H. An Exact Analysis of the Transient Interaction of Acoustic Plane Waves with a Cylindrical Elastic Shell. Journal of Applied Mechanics. 1970,37:1091-1099P
    [117]Huang.H, Wang.Y.F. Transient Interaction of Spherical Acoustic Waves and a Cylindrical Elastic Shell. Journal of the Acoustical Society of America. 1970,48 (1):228-235P
    [118]Florence.A.L, Abrahamson.G.R. A Theory for Critical loads to damage a cylindrical shell by a large underwater explosion. AD-A042074.1976:145P
    [119]Moussouros.A. Analysis of Explosion-Induced Bending Damage in Sub-merged Shell Targets. AD-A169009.1984:26-42P
    [120]Haxton.R.S, Haywood.J.H, Hunter.I.T. Nonlinear inelastic response of an infinite cylindrical shell to underwater shock wave loading. Advances in Marine Structure, Elsevier, Amsterdam.1991:334-351P
    [121]Cederbaum.G, Heller.R.A. Dynamic Deformation of Orthotropic Cylinders. J. Press. Vessel Tech.1989,111:97-101P
    [122]Christoforou.A.P, Swanson.S.R. Analysis of simply-supported Orthotropic Cylindrical Shells Subject to Lateral Impact Loads. ASME. J. Appl. Mech.. 1990,57:376-382P
    [123]卢炽华,郑际嘉.空投鱼雷水平撞击水面时的动力响应研究.弹箭与制导学报.1996,4:17-23页,64页
    [124]顾王明,黄骏德.圆柱壳受水下爆炸冲击波作用的壁压分析.海军工程大学学报.1989,4:14-22页
    [125]杨毅,吴连元.环肋圆柱壳在水下冲击波作用下的动力弹塑性屈曲.海洋工程.1997,15(2):1-7页
    [126]刘忠族.水下爆炸冲击波作用下多层圆柱壳的动响应.华中理工大学学报.1997,25(9):100-103页
    [127]余晓菲,刘土光,余宏坤.圆柱壳在水下爆炸载荷下的流—固耦合响应分析.振动与冲击.2007,26(7):125-128页,196页
    [128]王刚,陈铁云.圆柱壳在水下径向爆炸载荷下的弹塑性动力响应.上海交通大学学报.1997,31(11):106-111P
    [129]张效慈,李玉节,赵本立.深水爆炸水动压力场对潜体结构的动态影响.中国造船.1997,38(4):6-14页
    [130]姚熊亮,陈建平,任慧龙.水下爆炸二次脉动压力下舰船抗爆性能研究.中国造船.2001,42(2):48-55页
    [131]陈建平.水下爆炸气泡脉动压力下舰船及设备抗冲击性能研究.舰船科学技术.2001, (6):17-25页
    [132]李玉节,张效慈,吴有生等.水下爆炸气泡激起的船体鞭状运动.中国造船.2001,42(3):1-9页
    [133]Rentz.T.R. Experimental Investigation into the Dynamic Response of a Stiffened Flat Plate Loaded Impulsively by an Underwater Shockwave. AD-A151321.1984:1124-1129P
    [134]Malakhof.A. Method and System for Determining Effect of Underwater Explosion on Submerged Structures. Patent, AD-D013205.1984:265-274P
    [135]Giford.L.N, Carlberg.J.R, Wiggs.A.J, etal. Explosive Testing of Full Thickness Precracked Weldments. David Taylor Research Center report DTRC-SSPD-88-172-42.1988.
    [136]Houlston.R, Shaten.J.E. Structural Response of Panels Subjected to Shock Loading.55th Shock and Vibration Bulletin(Part 2).1985:689-695P
    [137]Houlston.R. Damage Assessment of Naval Steel Panels Subjected to Tree-field and Enhanced Air-blast Loading. Advances in Marine Structures-2, Elsevier Science Publishers Ltd.1991:56-63P
    [138]Ramajeyathilagam.K. Non-Linear transient dynamic response of rectangul-ar plates under shock loading. International Journal of Impact Engineering. 2000,24:999-1015P
    [139]Shima.A, Tomita.Y, Gibson.D.C, etal. The Growth and Collapse of Cavitations Bubbles Near Composite Surfaces. Journal of Fluid Mechanics, 1989,203:199-214P
    [140]Goertner.J.F, Thrun.R, Berry.J.E. Underwater Explosion Bubble Collapse Against a Flat Plate.1987 NSWC Hydrotank Test Series Pressure Data Report, Naval Surface Warfare Center technical report NSWCDD/PR-93/98. 1993.
    [141]Thrun.R, Goertner.J.F, Harris.G. Underwater Explosion Bubble Collapse Against a Flat Plate. Naval Surface Warfare Center technical report NSWCDD/JR-92/482.1993.
    [142]Schmidt.R.M, Voss.M.E, Housen.K.R, etal. Subscale Experiments to Measure Shock and Bubble Loading on Responding Structures. Sloshing, Fluid-Structure Interaction and Structural Response Due to Shock and Impact Loads, ASME.1994:272P
    [143]古和今,恽寿榕,洪兵.水中爆炸加载金属板变形的实验研究.爆炸与冲击.1990,10(3):226-232页
    [144]Talley.M.A. Deep Depth UNDEX Simulator Study. Proceedings of the 62nd Shock and Vibration Symposium.1991,4:16-28P
    [145]Talley.M.A, Mils.D. Internal Fluid Models. Naval Surface Warfare Center report, CARDEROCKDIV SSM-69-94/8.1994.
    [146]顾王明,黄骏德,陈巧观.圆柱壳承受水下爆炸作用时的动响应.海军工程学院学报.1990,1:48-55页
    [147]张效慈,李玉节,赵本立.深水爆炸水动压力场对潜体结构的动态影响.中国造船.1997,38(4):61-67页
    [148]李国华,李玉节,张效慈.舰船设备冲击环境的能源研究.船舶力学.1998,2(1): 37-54页
    [149]李国华,李玉节,张效慈.浮动冲击平台水下爆炸冲击谱测量与分析.船舶力学.2000,4(2):51-60页
    [150]LI Yujie, PAN Jiangqiang, LI Guohua. Experimental Study of Ship Whipping Induced by Underwater Explosion Bubble. Journal of Ship Mechanics.2001,5 (6):75-83P
    [151]刘润泉,白雪飞,朱锡.舰船单元结构模型水下接触爆炸破口试验研究.海军工程大学学报.2001,13(5):41-46页
    [152]朱锡,白雪飞,黄若波.船体板架在水下接触爆炸作用下的破口研究.中国造船.2003,44(1):46-52页
    [153]张振华.舰艇结构水下抗爆能力研究.海军工程大学博士学位论文.2004,6:29页
    [154]徐定海,盖京波,王善等.防护模型在接触爆炸作用下的破坏.爆炸与冲击.2008,28(5):1-5页
    [155]Fowler.J.M. Recent Trends in Ship Shock. AD-A183943.1987:16-28P
    [156]彭兴宁.船舶结构对水下非接触爆炸的响应.舰船力学情报.1994,(3):26-29页
    [157]高秋新.爆炸引起的船体振荡.舰船力学情报.1992,9:41-46页
    [158]Howe.J.S, Mathias.J.S, Prince.G, etal. Planning and Coordination of a Large Scale Ship Survivability Experiment. AD-A283863.1994:66P
    [159]李珙华.×××舰弹性船模的三维水弹性理论分析及试验结果比较.中国船舶科学研究中心科技报告.1994.
    [160]张绮蓉,马锦华.水下非接触爆炸对舰船总纵强度与局部强度影响的分析, “028G艇实船度验资料”.中华人民共和国国家标准GJB2329-95,舰船抗核加固总要求.
    [161]Mindlin.R.D, Bleich.H.H. Response of an Elastic Cylindrical Shell to a Transverse, Step Shock Wave. J.Appl.Mech.1953,20:189-195P
    [162]Chertock.G. Transient Flexural Vibrations of Ship-Like Structures Exposed to Underwater Explosions. J.Acoust.Soc.Am.1970,48 (1): 170-180P
    [163]Geers.T.L. Residual Potential and Approximate Methods for Three Dimen-sional Fluid Structure Interaction Problems. Journal of the Acoustical Socie-ty of America.1971,49:1505-1510P
    [164]Geers.T.L. Doubly Asymptotic Approximations for Transient Motions of Submerged Structures. The Journal of the Acoustical Society of America. 1978,64:1500-1508P
    [165]Geers.T.L, Zhang.P. Doubly Asymptotic Approximations for Submerged Structures with Internal Fluid Volumes. Journal of Applied Mechanics. 1994,61:893-906P
    [166]刘建湖,赵本立,吴有生.船舶结构在水下爆炸冲击波作用下的非线性响应.第五次全国爆轰与冲击动力学学术艺论文集.1997,301-308P
    [167]张效慈,李玉节,赵本立.深水爆炸水动力压力场对潜体结构的动态影响.中国造船.1997,4:61-67页
    [168]Liu Jian-hu. A simplified method for analyzing the response of GRP ship to underwater explosion. Journal of Ship Mechanics.2000,6:249-257P
    [169]Gong.S.W. Structural analysis of a submarine pipeline subjected to underwater shock. International Journal of Pressure Vessel and Piping. 2000,77:417-423P
    [170]Gong.S.W. Transient response of floating composite ship section subjected to underwater shock. Composite Structures.1999,46:65-71P
    [171]Gong.S.W. Transient response of Stiffened Composite Submersible Hull Subjected To Underwater Explosive Shock. Composite Structure.1998,41: 1358-1362P
    [172]Sang-Gab Lee. Fluid Mesh modeling on surface ship shock response under underwater explosion. Practical Design of Ships and Other Floating Structures.2001.
    [173]李磊,冯顺山,董永香等.水下爆炸对船底结构毁伤效应的数值仿真.舰船科学技术.2007,29(1):91-94页
    [174]邓文彬,王国治.基于DYTRAN软件的水下爆炸数值计算.华东船舶工业学院学报(自然科学版).2003,17(6):11-16页
    [175]陈永念,尹群,胡海岩.水中爆炸冲击波载荷作用下舰船结构动态响应的数值模拟.爆炸与冲击.2004,24:203-210页
    [176]于英林,李世芸,蔡青等.水下爆炸冲击波作用下潜艇壳体动态响应的数值模拟.现代机械.2006,5:87-90页
    [177卜张振华,王乘,朱锡等.潜艇艇体结构在水下爆炸冲击载荷作用下损伤研究.振动与冲击.2005,24(5):81-85页
    [178]姚熊亮,王玉红,史冬岩等.圆筒结构水下爆炸数值实验研究.哈尔滨工程大学学报.2002,23(1):5-8页,36页
    [179]许维军,姚熊亮,梁德利.水下爆炸冲击载荷作用下潜艇冲击环境仿真研究.哈尔滨工程大学学报.2006,27(3):372-376页
    [180]姚熊亮,许维军.多发武器同时命中时潜艇冲击环境研究.船舶式程.2004,26(5):42-49页
    [181]钱安其,嵇春艳,王自力.水下爆炸荷载作用下水面舰船设备冲击环境 预报方法研究.舰船科学技术.2006,28(4):43-47页
    [182]张兆顺,崔桂香.流体力学.第一版.北京:清华大学出版社.1999:92页
    [183]David Kincaid, Ward Cheney.数值分析.王国荣,俞耀明,徐兆亮译.第一版.北京:机械工业出版社.2005:432-434页
    [184]姚熊亮.船体振动.第一版.哈尔滨:哈尔滨工程大学出版社.2004:173-187页
    [185]Suresh Menon, Mihir Lal. On the dynamics and instability of bubbles formed during underwater explosions. Experimental Thermal and Fluid Science.1998,16:305-321P
    [186]张守中.爆炸与冲击动力学.第一版.北京:兵器工业出版社.1993:115,345页
    [187]周听清.爆炸动力学及其应用.第一版.北京:中国科学技术大学出版社.2001:111页
    [188]温正雄.碱雷爆炸所生成气泡的动力学问题.水雷战与舰船防护.2000,1:10页
    [189]李国华,李玉节,张效慈等.气泡运动与舰船设备冲击振动关系的试验验证.实验力学.2005,20:128-130页
    [190]周霖,徐少辉,徐更光.炸药水下爆炸能量输出特性研究.兵工学报.2006,27:235-238页
    [191]刘永明,董春海,郑福良.水下爆炸能量测试方法评析工业炸药威力.煤矿爆破.2000,3:20-23页
    [192]马海洋,顾文彬,夏卫国等.气泡脉动法计算炸药能量的探讨.西部探矿工程.2003,9:117-118页
    [193]G.Bjarnholt.关于水下爆炸试验测量方法标准和数据计算标准的建议.国际炸药测试方法标准化研究组织第八届会议,捷克斯洛伐克,1978.北京:煤炭工业出版社,1982:98页
    [194]梁龙河,曹菊珍,袁仙春.水下爆炸特性的二维数值模拟研究.高压物理学报.2004,18:205页
    [195]陈正衡等.国际炸药测试方法标准化研究组织.工业炸药测试新技术.北京:煤炭工业出版社.1982:92页
    [196]柏劲松,陈森华,李平等.水下爆炸过程的高精度数值计算.应用力学学报.2003,20:103-106页
    [197]杨耀乾.平板理论.北京:中国铁道出版社.1980:282页
    [198]黄双喜.水下电火花声源装置中充放电回路系统的设计.大连:大连理工大学.2003:8页
    [199]吴为民,黄双喜.高功率脉冲水中放电的应用及其发展.现代电子技术.2003,5:14-20页
    [200]李维新.一维不定常流与冲击波.第一版.北京:国防工业出版社.1996:14页
    [201]孙鹏,刘平香.水下定向声能技术在水声对抗中的应用研究.舰船科学技术.2007,29(3):65-67页
    [202]金俨.水中爆炸冲击波对固支方板的破坏.北京理工大学硕士论文.2003:14页
    [203]孙锦山,朱建士.理论爆轰物理.第一版.北京:国防工业出版社.1995:121-123页
    [204]恽寿榕,赵衡阳.爆炸力学.第一版.北京:国防工业出版社.2005:231,234页
    [205]隋树元,王树山.终点效应学.第一版.北京:国防工业出版社.2000:206页
    [206]亨利奇.爆炸力学及其应用.第一版.北京:科学出版社.1987:34页
    [207]马大猷.声学手册.第二版.北京:科学出版社.2003:1685页
    [208]刘忠族,钟伟芳,黄玉盈.浸没的圆柱壳在冲击波作用下动响应的Galerkin解法.振动工程学报.1998,11(1):91-95页
    [209]顾王明,黄骏德,陈巧观.圆柱壳承受水下爆炸作用时的动响应.海军工程学院学报.1990,1:48-55页
    [210]谢祚水,王自立,吴剑国.潜艇水下结构分析.武汉:华中科技大学出版社.2004,3:22,24,26,216页
    [211]薛守义.弹塑性力学.第一版.北京:中国建材工业出版社.2005,6:176-177页
    [212]李裕春,时党勇,赵远.ANSYS 10.0/LS-DYNA基础理论与工程实践.第一版.北京:中国水利水电出版社.2006:98,165页
    [213]Benson D. An efficient accurate, simple ALE method for nonlinear finite element programs. Computer Methods in Applied Mechanics and Engineering.1989,33:689-723P
    [214]张振华,朱锡,冯刚等.船舶在远场水下爆炸载荷作用下动态响应的数值计算方法.中国造船.2003,44(4):36-42页
    [215]姚熊亮,郭君,许维军.船舶结构远场爆炸冲击动响应的数值试验方法.中国造船.2006,47(2):24-34页
    [216]赵海鸥.LS-DYNA动力分析指南.第一版.北京:兵器工业出版社.2003,9:99页,168页
    [217]LS-DYNA Version 970 Keyword User's Manual. Livermore Software Technology Corporation.2003:2588P
    [218]盖京波.舰船结构在爆炸冲击载荷作用下的局部破坏研究.哈尔滨工程大学博士论文.2005:77页
    [219]石秀华,王晓娟.水中兵器概论(鱼雷分册).第一版.西安:西北工业大学出版社.2005:5页
    [220]方同,薛璞.振动理论及应用.第一版.西安:西北工业大学出版社.1998:218-220页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700