用户名: 密码: 验证码:
爆炸冲击波在通海管路系统中的传播规律及其防护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管路系统是指用于输送各种流体介质的管路及其附属机件、泵、监视仪表和阀门的总称。其在舰艇中的作用正如人的血管系统,维系着舰艇生命力,重要性不言而喻,因此在设计时必须考虑其抵抗水下爆炸冲击载荷的能力。
     本文利用有限元显示非线性动力学分析软件MSC.DYTRAN,建立了管路系统、管内流体以及外部水域一体化模型,主要研究了当炸药在近距离非接触爆炸时,冲击波从外部水域进入通海管路后,沿着管路内流体传播的规律,在此基础上提出了两种防护结构形式。
     首先针对直管、弯管以及三通这三种典型管路形式进行计算。分别计算了炸药处于不同位置时,管口处的压力及流速。在此基础上,进一步研究了当冲击波以正入射和斜入射两种不同方式进入管路时,在这三种典型管路形式中传播的规律,以及管路系统的直径对于冲击波压力分布的影响,通过计算得出,冲击波在传播一段距离后将以平面波的形式在管路内传播。
     由于管路系统中还包括各种设备,也必须考虑这些设备的抗冲击能力。针对管路系统中最常见的阀门以及设备进行了建模计算,通过计算得出,冲击波到达阀门处时,其压力将急剧升高,而冲击波传入设备后,其压力将降低。在此基础上,提出了渐变管以及蓄能器这两种管路冲击波防护结构,着重计算了它们的直径以及长度(高度)对于冲击波防护效果的影响,为今后采取合适的防护结构提供了相关参考。
Pipeline system mainly refers to the combination of pipelines that transfer fluid media and their accessories, such as the mechanical parts, pumps, monitor instruments and valves. The system serves as the maintenance for the vessels, just like the blood vascular system for human beings. It is thus necessary and significant to consider the anti-explosive shock loads abilities under water for the system in the structural design.
     By using the explicit non-linear dynamic finite element analysis software MSC.DYTRAN and constructing the FE models including pipe system, fluid inside the pipe system and fluid outside the pipe system, this thesis mainly concerns with the study of the shock wave transfer pattern in the sea pipeline system generated by the close-range non-contact underwater explosive, and subsequently two defense structural forms are suggested based on the above study.
     Firstly, the complex pipeline system model is simplified as the combination of three classical forms: straight pipe, bent pipe and T-branch pipe. Pressure at the pipe orifice, the fluid velocities and their distributions with different relative positions between the explosive and pipe orifice are calculated respectively. Subsequently the shock wave transfer patterns for these three typical forms and the influence of different pipe diameters for the shock wave pressure distribution are discussed in detail, when the shock wave was entering the pipe in normal incidence and oblique incidence. According to the computation, the shock wave could be considered as plane wave after a certain distance traveling.
     As there are also lots of important equipments in the pipeline system, their ability of resisting the explosive shock have to be considered. In the thesis, the most common equipments in the pipeline system, including valves and cylindrical liquid-filled equipments are modeled and analyzed. It seems from the calculation that the valves will increase the shock wave pressure while the cylindrical liquid-filled instruments will reduce the pressure. Based on the computation above, two shock wave defense structures, gradually changed pipes and energy accumulator are suggested. In particular, defense effects for these two structures with different diameters and length (or height) are analyzed and compared, which can provide with useful suggestions for the selection of the proper defense structure in pipeline system.
引文
[1] H. L. Abbort. Report upon Experiments and Investigations to Develop a system of Submarine Marines for Defending the Harbors of the United States. Professional of the Corps of Engineers, No23.1881
    [2] P.库尔著.罗耀杰,韩润泽,官信等译.水下爆炸.北京:国防工业出版社
    [3] Zamyshlyaye B V. Dynamic loads in underwater explosion. AD-757183
    [4] Temkin S. Review of the Propagation of Pressure Pulse Produced by Small Underwater Explosion Charges. AD-A194642, 1988.
    [5] Mehaute B, Wang S. Water Waves Generated by Underwater Explosions. AD-A304244,1994
    [6] Cowperthwaite M, Pastine D J, Enig J W. Energetics of Late Chemical Reactions in Nonideal Underwater Detonations. AD-A309088, 1995
    [7]严事龙.条形药包水下爆炸能量计算.爆破器材, 1997, 26(5):1-3
    [8]周睿,冯顺山,吴成.条形药包冲击波峰值超压工程计算模型.工程爆破, 2001, 7(4):19-23
    [9]张鹏翔,顾文彬,叶序双.浅层水中爆炸直达波压力峰值计算方法探讨.解放军理工大学学报(自然科学版), 2002, 3(1):57-59
    [10] G I Taylor. The Pressure and Impulse of Submarine Explosion Waves on Plates. Underwater Explosion Research, Vol.1, Office of Naval Research, 1950:1155-1173
    [11] R S Schechter, R L Bort. The Response of Two Fluid-Coupled Plates to an Incident Pressure Pulse. Naval Research Laboratory Memorandum Report, 1981, 4647
    [12] J Jiang, M D Olson. Rigid-plastic analysis of underwater blast loaded stiffened plates. International Journal of Mechanic Science, 1995, 37.
    [13] H Huang. An Exact Analysis of the Transient Interaction of Acoustic Plane Waves with a Cylindrical Elastic Shell. Journal of Applied Mechanics, 1970,37:1091-1099
    [14] H Huang, Y F Wang. Transient Interaction of Spherical Acoustic Waves and a Cylindrical Elastic Shell. Journal of the Acoustical Society of America, 1970, 48(1):228-235
    [15]顾王明,黄骏德.圆柱壳受水下爆炸冲击波作用的壁压分析.海军工程大学学报, 1989(4):14-22.
    [16]顾王明,刘土光,唐文勇.有限长圆柱壳受径向冲击的塑性动力屈曲分析.应用力学学报. 1995, 12(4):88-95
    [17]姚熊亮,瞿祖清,陈起富.爆炸载荷下航母飞行甲板的弹塑性动力响应.哈尔滨工程大学学报. 1996, 92(3):61-65
    [18] Snay H G. The Scaling of Underwater Explosion Phenomena. AD-27468, 1961
    [19] Gaspin J B. Depth Scaling of Underwater Explosion Source Levels. AD-A020473, 1975
    [20]朱建士.关于爆轰数值模拟的建模.含能材料, 2004, 12(A02):483
    [21]丁刚毅,王廷增.高分辨格式在爆轰数值模拟中的应用.北京理工大学学报, 1992, 12(2):25-29
    [22]王元书.高能炸药非理想爆轰的二维数值模拟.含能材料, 2004, 12(A02):514-515
    [23] S. K. Chan. An Improvement in the Modified Finite Element Procedure for Underwater Shock Analysis. Proceeding of 62nd Shock and Vibration Symposium, 1992
    [24]张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究.爆炸与冲击, 2004, 24(2):182-188.
    [25]方斌,朱锡,张振华.水下爆炸冲击波数值模拟中的参数影响.哈尔滨工程大学学报, 2005, 26(4):419-424.
    [26] Britt J R. Bottom Reflection of Underwater Explosion Shock Waves. Computer Program. AD-A204130, 1971.
    [27]符松,王智平,张兆顺.近水面水下爆炸的数值研究.力学学报, 1995.
    [28]田跃华,张志才.浅水爆炸对破坏半径的影响.火炸药学报, 2002, 2.
    [29]顾文彬,孙百连,阳天海,马海洋.浅层水中沉底爆炸冲击波相互作用数值模拟.解放军理工大学学报(自然科学版), 2003, 6(4).
    [30]顾文彬,马海洋,唐勇.水底对浅水中装药爆炸效果的影响.爆炸, 2003, 20(4).
    [31]柏劲松,陈森华,李平,钟敏.水下爆炸过程的高精度数值计算.应用力学学报, 2003, 20(1).
    [32] Y. W. Kwon and R. E. Cunningham. Comparison of USA-DYNA finite element models for a stiffened shell subject to underwater shock. Computers of Structures. Vol.66, No.1.
    [33] Y. S. Shin and D. T. Hooker. Damage response of submerged imperfect cylindrical structures to underwater explosion. Computer and structures. 60(1996):683-693
    [34] K. Ramajeyathilagam. C. P. Vendhan and V. Bhujanga. Rao. Non-linear transient dynamic response of rectangular plates under shock loading. Impact Engineering. 24(2000):999-1015
    [35]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究.中国造船. 2001, 42(2):48-55
    [36]张振华,朱锡,冯刚等.船舶在远场水下爆炸载荷作用下动态响应的数值计算方法研究.中国造船. 2003, 26(6)
    [37]李玉节,张效慈,吴有生.水下爆炸气泡激起的船体鞭状运动.中国造船, 2001, 42(3):1-7
    [38]陈永念,尹群,胡海岩.水中爆炸冲击波载荷作用下舰船结构动态响应的数值模拟.爆炸与冲击, 2004, 24(3):201-206
    [39]余晓菲,刘土光,张涛,肖汉林.水下爆炸载荷作用下加筋圆柱壳的响应分析.振动与冲击, 2006, 25(5):106-115
    [40] Peiran Ding, Arjaan Buijk. Simulation of Under Water Explosion using MSC.Dytran. Structures Under Shock and Impact, 2004:591-600
    [41]王礼立.爆炸力学数值模拟中本构建模问题的讨论.爆炸与冲击, 2003, 3(2):97~104
    [42]张守中.爆炸与冲击动力学.北京:兵器工业出版社,1992
    [43] Lee El. 4th Symp on Detonation, 3, 1965
    [44] J. Henrych著.熊建国译.爆炸动力学及其应用.北京:科学出版社,1987
    [45] Don. Leet, L. Vibrations from Blasting Rock. Havard University Press, 1960
    [46]李秀地,郑颖人,李列胜,郑云木.长坑道中化爆冲击波压力传播规律的数值模拟.爆破器材, 2005, 34(5)
    [47]马大猷.现代声学理论基础.北京:科学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700