用户名: 密码: 验证码:
机械制造系统碳排放动态特性及其碳效率评估优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳制造是一种综合考虑产品全生命周期资源消耗以及碳排放的可持续制造模式,其目标是实现产品在生产、制造、使用过程中的低资源消耗、低排放、低污染,实现制造企业经济效益、社会效益、环境效益的统一,其实质是提高制造业能源、物料等资源利用效率和创建清洁能源结构,其核心是制造业的技术创新、制度创新和发展观的转变。
     我国作为制造业大国,尤其机械制造工业量大面广,其机械制造系统作为典型离散制造系统,生产过程受生产时间、产量、产值以及设备故障等因素影响,使其碳排放存在主体多样性、状态复杂性、过程动态性及随机性。本论文将结合国家自然科学基金项目“基于广义特性函数集的制造系统碳流动态模型及碳效率评估方法研究”(NO.51075415)和重庆市自然科学基金项目“机械制造系统碳排放动态特性及碳流建模理论研究”(NO.CSTC2010BB0055)等课题,对机械制造系统的碳排放动态特性建模及其碳效率评估优化方法进行研究。
     首先,根据机械制造系统的分层特性及其复杂控制特性,提出碳排放源、碳流率概念,建立一种符合机械制造系统多层特点的碳流动态过程模型,系统分析各层级系统碳排放耦合输入输出特性、碳流交汇特性,并基于状态空间理论提出机械制造系统碳排放动态特性表征方法。基于生态效率(Eco-efficiency)概念,提出碳效率概念,并针对分层机械制造系统空域、时域以及复杂度的差异性,建立机械制造系统碳效率评价指标体系。
     其次,针对机械制造系统典型生产设备—机床,基于生命周期评价(Life CycleAssessment, LCA)原理,对机床生命周期全过程碳排放特性进行深入研究,建立一种机床生命周期碳排放量化公式模型。着重研究机床使用过程,面向生产率、物料去除率以及经济收益率定义了三种碳效率指标,通过将机床全生命周期碳排放划分为固定碳排放与变动碳排放,基于这三种指标分别建立机床设备生命周期碳排放动态特性函数,从而实现对机床全生命周期碳排放动态特性的描述及碳效率的评估。
     在此基础上,根据机械制造系统内机床设备组织特点、设备间交互特性以及设备碳排放的状态依附性,基于混合状态空间模型建立机械制造系统碳排放动态特性建模框架。并考虑扰动对系统碳排放特性的影响,基于改进混合Petri网提出一种机械制造系统碳排放动态特性及碳效率评估建模方法,综合设备状态变迁、生产扰动发生的离散过程建模以及生产与碳排放的连续过程建模,实现对机械制造系统碳排放动态特性的建模以及碳效率评估。
     然后,提出一种改进甘特图将工件加工操作与碳排放动态特性进行关联,并用于分析面向生产任务分配的生产碳排放优化策略以及面向加工操作顺序的系统内设备空载无用碳排放优化策略,根据这两种优化策略的特点建立一种机械制造系统碳效率二阶优化模型,并用遗传算法分阶求解最优碳效率。
     最后,应用C#+SQL server2005开发工具,开发一套适用于机械制造系统碳排放动态特性建模及碳效率评估的支持系统,并对其开发过程及应用进行说明。
Low-carbon manufacturing is a kind of sustainable manufacturing modecomprehensively considering the resources consumption and carbon emissions ofproduct life cycle, aiming at reducing the resource consumption and carbon emissionsof product production, product manufacture and its use process, for unity of enterpriseeconomic dimensions, social dimensions and environmental dimensions, and its essenceis to improve resource utilization efficiency and create clean energy structure, with thecore of manufacturing technology innovation, system innovation and development viewtransformation.
     As a manufacturing power, mechanical manufacturing industry of China is featuredwith large quantity. In particular, the manufacturing sytem as a typical discretemanufacturing system is influenced by theose production factors such as productiontime, yield, output value, and equipment failures. Therefore, the carbon emissions ofmechanical manufacturing system are characterized with carbon emission bodydiversity, state complexity, process dynamics and randomness.With the support of theNational Science Foundation of China (NSFC)(NO.51075415) and the SciencFoundation of Chongqing (NO.CSTC2010BB0055), this paper will focus on themodeling of carbon emission dynamic characteristics of mechanical manufacturingsystem and the assessment and optimization approach of carbon efficiency.
     Firstly, according to the hierarchical features and the complex controlcharacteristics of manufacturing system, a multi-layer carbon flow dynamic model isproposed with the definition of carbon emission source and carbon flow rate. Thus, thecoupled input-output and interchange characteristics of carbon emsissions are analyzed.The carbon emission dynamics of mechanical manufacturing system is characterizedbased on state space theory. On the basis of the analysis of carbon emission dynamics,the carbon efficiency concept is put forward based on eco-efficiency concept.Meanwhile, carbon efficiency evaluation index system is established for different layersmanufacturing system considering their difference in space domain, time domain andcomplexity.
     Secondly, based on the principles of life cycle assessment (LCA), a life-cyclecarbon emissions formulation model of machie tool as the minimu organization unit ofmechanical manufacturing system is proposed. Focusing on the carbon emission dynamics of machine operation process, three carbon efficiency indicators are definedfor production rate, material removal rate and economic return rate. Then the life-cyclecarbon emissions are decomposed into two categories, fixed emissions and variedemissions which closely relates with operation performance of machine tools. Thedynamic characteristics function of life-cycle carbon emissions then will be establishedbased on the three type’s carbon efficiency indicaters respectively, for demonstrating thecarbon emission dynamcs and assessement of carbon efficiency.
     As pointed out above, the carbon emissions of mechanical manufacturing system(process chains) is rather dynamic depending on the state of the machines and theirinteractions, its modeling framework is established based on hybrid state spacemodel.Considering the production disturbances, a simulation approach based on hybridPetri-nets (HPN) is proposed to display the carbon emission dynamics. This approachcan combine the discrete events such as state transition and production disturbanceswith the continuous process such as production and carbon emissions. Thus, it canmodel the carbon emission dyanics of mechanical manufacturing with the assessment ofits carbon efficiency.
     Furthermore, an improved Gantt chart relating the operations of jobs with thecarbon emission dynamics of the correponsding machines is proposed. Through this tool,one carbon emission strategy for production task allocation and the other strategy foroperation sequence of workshop aiming at lower meaningless carbon emissions fromthe idle operation of machines. Thus, based on above two stragegies a two stageoptimization model for the carbon efficiency is established with genetic algorithm (GA).
     Finally, a software support system is developed for the assessment and optimizationof carbon efficiency of mechanical manufacturing system with C#and SQL server2005
引文
[1] IPCC. Climate Change2007: Synthesis Report [EB/OL]. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf,2013-12-30.
    [2]解振华.国务院关于应对气候变化工作情况的报告[R].第十一届全国人民代表大会常务委员会第十次会议,2009-08-24.
    [3]联合国.全球变暖与气候变化[EB/OL]. https://www.un.org/zh/development/progareas/global/warm.shtml,2013-12-30.
    [4] IEA. CO2emissions from fuel combustion highlights[R]. OECD/IEA,2013.
    [5] HMG. The UK low carbon transition plan [EB/OL]. http://www.decc.gov.uk/en/content/cms/publications/lc_trans_plan/lc_trans_plan.aspx,2013-12-30.
    [6] HMG. The UK low carbon industrial strategy [EB/OL]. http://www.berr.gov.uk/files/file52002.pdf,2013-12-30.
    [7]张庆阳.德国低碳经济走在世界前列[EB/OL].中国天气网, http://www.weather.com.cn/climate/qhbhyw/06/573469.shtml,2013-12-20.
    [8]中华人民共和国商务部.德国经济低碳转型的政策环境和主要成就[EB/OL].http://www.mofcom.gov.cn/aarticle/i/dxfw/jlyd/201109/20110907741928.html,2013-12-25.
    [9]李亚建,吴莲.美国低碳战略的转变及对中国的启示[J].中共天津市委党校学报,2011,(4):55-58.
    [10]门丹.美国低碳经济政策转向研究:原因、定位及经济绩效[D].辽宁:辽宁大学,2013.
    [11]唐丁丁.日本发展低碳经济的启示[J].世界环境,2009,(5):62-64.
    [12] BSI. PAS2050:2008.商品和服务在生命周期内的温室气体排放评价规范[G].London, UK:BSI,2008.
    [13] BSI.《PAS2050规范》使用指南—如何评价商品和服务的碳足迹[M].London, UK: BSI,2008.
    [14] Glen P.P., Robbie M.A., Tom B., Josep G.C., Philippe C., Corinne L.Q., Gregg M., MichaelR.R., Charlie W. The challenge to keep global warming below2oC [J]. Nature ClimateChange,2013,3:4-6.
    [15] PBL Netherlands Environmental Assessment Agency. China now no.1in CO2emissions, USAin second position [EB/OL]. http://www.pbl.nl/en/dossiers/Climatechange/moreinfo/Chinanowno1inCO2emissionsUSAinsecondposition,2013-12-30.
    [16]中华人民共和国中央人民政府网.国务院常务会研究决定我国控制温室气体排放行动目标[EB/OL]. http://www.gov.cn/ldhd/2009-11/26/content_1474016.htm,2013-12-30.
    [17]中华人民共和国国家统计局.中国统计年鉴2012[M].北京:中国统计出版社,2012.
    [18]邓超,王丽琴,吴军.基于工艺约束的生命周期评价与生命周期成本综合评价与优化[J].计算机集成制造系统,2008,14(8):1646-1651.
    [19]中国机械工程学会.中国机械工程技术路线图[M].北京:中国科学技术出版社,2011.
    [20]中国汽车工业信息网.2008年各行业对钢材需求分析[EB/OL]. http://www.autoinfo.gov.cn/autoinfo_cn/xwzx/xghy/webinfo/2008/01/22/1196727142439212.htm,2013-12-30.
    [21]中国钢铁工业协会.中国钢铁统计年鉴2010[M].北京:中国统计出版社,2010.
    [22]中国有色金属工业协会.中国有色金属工业年鉴2010[M].北京:中国统计出版社,2010.
    [23]中国机械工业年鉴编辑委员会.中国机械工业年鉴2011[M].北京:中国机械工业出版社,2011.
    [24] WW全球能源课题组.气候变化结局方案—WWF2050展望[R].北京:中国环境科学出版社,2007.
    [25]刘献礼,陈涛.机械制造中的低碳制造理论与技术[J].哈尔滨理工大学学报,2011,16(1):1-8.
    [26]中华人民共和国人民政府.温家宝主持召开国务院常务会议研究部署应对气候变化有关工作审议并原则通过《规划环境影响评价条例(草案)》[EB/OL]. http://www.gov.cn/ldhd/2009-08/12/content_1390129.htm,2013-12-10
    [27]科技部.十二五国家应对气候变化科技发展专项规划[EB/OL].http://www.google.com.hk/search?client=aff-cs-360se&ie=UTF-8&q=十二五”国家应对气候变化科技发展专项规划,2013-11-10.
    [28]中国国际贸易促进委员会经济信息部.《中国商务指南》(机械)行业分卷[R].北京:北京时代佳惠文化公司,2007.
    [29]陈浩.基于绿色制造的新型机械制造工艺及装备技术研究[D].合肥:合肥工业大学,2008.
    [30]黄晓凤.“碳关税”壁垒对我国高碳产业的影响及应对策略[J].经济纵横,2010,(3):49-51.
    [31]沈可挺.碳关税争端及其对中国制造业的影响[J].中国工业经济,2010,(1):65-74.
    [32]中华人民共和国海关总署.2012年12月全国进口重点商品量值表[EB/OL]. http://www.customs.gov.cn/tabid/49666/Default.aspx,2014-12-30.
    [33] CO2PE!. Cooperative effort on process emissions in manufacturing [EB/OL]. http://www.co2pe.org/?Homepage,2013-12-26.
    [34] Karel K., Wim D., Michael O. Methodology for systematic analysis and improvement ofmanufacturing unit process lifecycle inventory (UPLCI)-CO2PE! Initiative (cooperative efforton process emissions in manufacturing)[J]. International Journal of Cycle Assessment,2012,(17):69-78.
    [35] IMC26[EB/OL]. http://internationalmanufacturingconference.com,2013-11-10.
    [36] UNIDO. Low carbon and resource efficient manufacturing [EB/OL]. http://www.unep.fr/scp/cp/RECPnet/2011/pdf/Background_notes/RECP_Low_Carbon_%20Resource_Efficient_manufacturing.pdf,2014-01-02.
    [37] WWF.低碳制造计划(Low Carbon Manufacture Program, LCMP)[EB/OL].http://www.thuee.com/page/Default.asp?ID=95,2013-12-10.
    [38] Tridech S., Cheng K. Low carbon manufacturing: characterization, theoretical models andimplementation [A]. The6th International Conference on Manufacturing Research (ICMR08),2008, pp.403-412.
    [39] Tridech S., Cheng K. Low carbon manufacturing: characterization, theoretical models andimplementation [A]. The6th International Conference on Manufacturing Research (ICMR08),2008, pp.403-412.
    [40] Tridech S., Cheng K. An investigation of the EREE-based low carbon manufacturing on CNCmachine [A]. Proceedings of the36th International MATADOR Conference,2010,pp.395-399.
    [41] Ball P.D., Evans S., Levers A., Ellison, D. Zero carbon manufacturing facility-towardsintegrating material, energy, and waste process flows [A]. Journal of engineering manufacture,2009,223(9):1085-1096.
    [42] Perry S,Klemes J,Bulatov I. Integrating waste and renewable energy to reduce the carbonfootprint of locally integrated energy sectors [J]. Energy,2008,33(10):1489–1497.
    [43] Loughborough University. ATKINS: Manufacturing a low carbon footprint [EB/OL].http://www.atkins-project.com/,2013-12-25
    [44] Golove W. H., Schipper L.J. Restraining carbon emissions:Measuring energy use andefficiency in the USA [J]. Energy Policy,1997,25(7-9):803-812.
    [45] Golove W.H., Schipper L.J. Long-term trends in U.S. manufacturing energy consumption andcarbon dioxide emissions [J]. Energy,1996,21(7/8):683-692.
    [46] Gutowski T., Dahmus J., Thiriez A., Branham M., Jones A. A thermodynamic characterizationof manufacturing processes [A]. Proceedings of the2007IEEE International Symposium onElectronics&the Environment, Orlando, FL,7-10May2007, pp.137-142.
    [47] Gutowski T. The carbon and energy intensity of manufacturing[A].The40th CIRPInternational Manufacturing Systems Seminar, Liverpool University, May30-June1,2007
    [48] Yuan C., Dornfeld D. Reducing the environmental footprint and economic costs ofautomotive manufacturing through an alternative energy supply [J]. Transaction ofNAMRI/SME,2009,37:427-434.
    [49] Duflou R.J., Sutherland J.W., Dornfeld D., Herrmann C., Jeswiet J., Kara S., Hauschild M.,Kellens K. Towards energy and resource efficient manufacturing: a processes and systemsapproach [J]. CIRP Annals-Manufacturing Technology,2012,61(2):587-609.
    [50]曹华军,李洪丞,杜彦斌,李智勇.低碳制造研究现状、发展趋势及挑战[J].航空制造技术,2012,9:26-31.
    [51]谭旋.机械制造企业的低碳制造模式初探[J].上海企业,2010,(4):60-62.
    [52]梅志敏,张融,熊晴,胡海峰,臧鹏.机械产品制造过程低碳化转型的分析与研究[J].机械制造,2012,41(2):75-78.
    [53]陶雪飞.陶瓷企业低碳制造系统模式及评估与建模方法[D].重庆:重庆大学,2010.
    [54] Duflou J.R., Kellens K., Dewulf W. Unit process impact assessment for discrete partmanufacturing:a state of the art[J].CIRP Journal of Manufacturing Science and Technology,2011,4(2):129-135.
    [55] Gaurav A., Mahesh M., Rachuri R., Kevin W.L., Shaw C.F., Ram D.S. Carbon weightanalysis for machining operation and allocation for redesign [R]. NIST Interagency/InternalReport (NISTIR)-7560,2013-12-06.
    [56] Jeswiet J., Kara S. Carbon emissions and CESTMin manufacturing [J]. CIRPAnnals-Manufacturing Technology,2008,57(1):17-20.
    [57] Song J.S., Lee K.M. Development of a low-carbon design system based on embedded GHGemissions [J].Resources, Conversation and Recycling,2010,54(9):547-556.
    [58]李先广,李聪波,刘飞,李玲玲.基于Petri网的机床制造过程碳排放建模与量化方法[J].计算机集成制造系统,2012,18(12):2723-2735.
    [59]李聪波,崔龙国,刘飞,李鹏宇.基于广义边界的机械加工系统碳排放量化方法[J].计算机集成制造系统,2013,19(9):2229-2236.
    [60]肖序,熊菲,周志方.流程制造企业碳排放成本核算研究[J].中国人口·资源与环境,2013,23(5):29-35.
    [61] Scipioni A., Mastrobuono M., Mazzi A., Manzardo A. Voluntary GHG management using alife cycle approach-A case study [J]. Journal of Cleaner Production,2010,18(4):299–306.
    [62] Wiedmann T., Minx J. A Definition of 'Carbon Footprint'[A]. In: Pertsova C.C., ed. EcologicalEconomics Research Trends: Chapter1, Hauppauge NY, USA: Nova Science Publishers,2008,1-11.
    [63] Matthews H.S., Weber C., Hendrickson C.T. Estimating carbon footprints with input-outputmodels [A]. International Input-output Meeting on Managing the Environment, SEVILLE,SPAIN, July9-11,2008.
    [64] ISO. ISO/TS14067:2013Greenhouse gases-carbon footprint of products-requirements andguidelines for quantification and communication [EB/OL]. http://www.iso. org/iso/catalogue_detail?csnumber=59521,2013-12-25.
    [65] Dormer A., Finn D.P., Ward P., Cullen J. Carbon footprint analysis in plastics manufacturing[J]. Journal of Cleaner Production,2013,51:133-141.
    [66]王吉凯.基于产品生命周期的碳排放计算方法研究[D].合肥:合肥工业大学,2012.
    [67] Matthews H.S., Hendrickson C.T., Weber C.L. The importance of carbon footprint estimationboundaries [J]. Environmental Science&Technology,2008,42(16):5839-5842.
    [68] McKinnon A. C. Product-level carbon auditing of supply chains [J].International Journal ofPhysical Distribution&Logistics Management,2010,40(1/2):42-60.
    [69] Sundarakani B., Souza de.R., Goh M., Wagner S.M., Manikandan S. Modeling carbonfootprints across the shupply chain[J].Internaltional Journal of Porduction Economics,2010,128:43-50.
    [70] Lin Y.H., Zhao X.F., Zhao X.M. Supplier evaluation and selection under the context ofreducing carbon emissions across a supply chain [A].2010IEEE17thInternationalConference on Industrial Engineering and Engineering Management,29-31Oct,2010
    [71] Lee, K.H. Integrating carbon footprint into supply chain management: the case of hyundaimotor company (HMC) in the automobile industry [J]. Journal of Cleaner Production,2011,19(11):1216-1223.
    [72] Vijayaraghavan, A., Dornfeld, D. Automated energy monitoring of machine tools [J]. CIRPAnnals–Manufacturing Technology,2010,59(1):21-24.
    [73] Zein A., Li W., Herrmann C., Kara S. Energy efficiency measures for the design and operationof machine tools: an axiomatic approach [A]. Proceedings of the18th CIRP InternationalConference on Life Cycle Engineering, Braunschweig, Germany,2011, pp.274-279.
    [74] Mori M., Fujishima M., Inamasu Y., Oda Y. A study on energy efficiency improvement formachine tools [J]. CIRP Annals–Manufacturing Technology,2011,60(1):145-148.
    [75] Hu S.H., Liu F., He Y., Hu T. An on-line approach for energy efficiency monitoring ofmachine tools [J]. Journal of Cleaner Production,2012,27:133-140.
    [76]刘飞,徐宗俊,但斌.机械加工系统能量特性及其应用[M].北京:机械工业出版社,1995.
    [77] Avram, O.I., Xirouchakis, P. Evaluating the use phase energy requirements of a machine toolsystem [J]. Journal of Cleaner Production,2011,19(6-7):699-711.
    [78] Narita H., Fujimoto H. Analysis of environmental impacts due to machine tool operation [J].International Journal of Automation Technology,2009,3(1):49-55.
    [79] Neugebauer R., Drossel W., Wertheim R., Hochmuth C., Dix M. Resource and energyefficiency in machining using high-performance and hybrid processes[A]. The5thCIRPConference on High Performance Cutting,2012.
    [80] Neugebauer R., Schubert A., Reichmann B., Dix M. Influence exerted by tool properties onthe energy efficiency during drilling and turning operations [J]. CIRP Journal ofManufacturing Science&Technology,2011,4(2):161-169.
    [81] Mativenga P.T., Rajemi M.F. Calculation of optimum cutting parameters based on minimumenergy footprint [J]. CIRP Annals–Manufacturing Technology,2011,60(1):149-152.
    [82] Diaz N., Helu M., Jarvis A., Tonissen S., Dornfeld D., Schlosser R. Strategies for minimumenergy operation for precision machining[A]. The proceedings of MTTRF2009AnnualMeeting,2009.
    [83] Nava P. Minimizing carbon emissions in metal forming [D]. Canda, Ontario: Queen’sUniversity,2009.
    [84] Neugebauer R., Kolesnikov A., Richter M. Energy efficiency storage systems in the DC linkfor the drive unit of machine tools [A]. Proceeding of the European Conference on PowerElectronics and Applications, Birmingham, United Kingdom,2011, pp.1-10.
    [85] Neugebauer R., Wabner M., Rentzsch H., Ihlenfeldt S. Structure principles of energy efficientmachine tools [J]. CIRP Journal of Manufacturing Science and Technology,2011,4(2):136-147.
    [86] Kroll L., Blau P., Wabner M., Frie U., Eulitz J., Kl rner M. Lightweight components forenergy-efficient machine tools [J]. CIRP Journal of Manufacturing Science and Technology,2011,4(2):148-160
    [87] Zulaika J.J., Campa F.J., Lopez, L.N., Lacalle de Lopez, L.N. An integrated process-machineapproach for designing productive and lightweight milling machines [J]. International Journalof Machine Tools&Manufacture,2011,51(7-8):591-604.
    [88] ISO. Machine tools-environmental evaluation of machine tools-part1: design methodology forenergy-efficient machine tools[S]. ISO,2012.
    [89] Newman S.T., Nassehi A., Asrai R.I., Dhokia V. Energy efficient process planning for CNCmachining [J]. CIRP Journal of Mnaufacturing Science and Technology,2012,5(2):127-136.
    [90] Branker K., Jeswiet J., Kim I.Y. Greenhouse gases emitted in manufacturing a product-a neweconomic model [J]. CIRP Annals–Manufacturing Technology,2011,60(1):53-56.
    [91] He Y., Liu B., Zhang X.D., Gao H., Liu X.H. A modeling method of task-oriented energyconsumption for machining manufacturing system [J]. Journal of Cleaner Production,2012,23(1):167-174.
    [92] Chen D., Heyer S., Seliger G., Kjellberg T., Integrating sustainabiligy within the factoryplanning process [J]. CIRP Annals–Manufacturing Technology,2012,61(1):463-466
    [93] Shi X., Meier H. Carbon emission assessment to support planning and operation oflow-carobn Production systems [A]. The45thCIRP Conference on Manufacturing System,2012,3:329-334.
    [94] Wendy T.J., Raymond R.T., Dominic C.Y.F. A graphical representation of carbon footprintreduction for chemical processes [J]. Journal of Clearner Production,2010,18:848-856.
    [95] Consortium on green design and manufacturing [EB/OL]. http://cgdm.berkeley.edu/,2013-12-13.
    [96] Thiede S., Seow Y.Y., Andersson J., Johansson B. Environmental aspects in manufacturingsystem modeling and simulation-state of the art and research perspectives[J]. CIRP Journal ofMnaufacturing Science and Technology,2013,6(1):78-87.
    [97] Hermann C., Thiede S. Process chain simulation to foster energy efficiency in manufacturing[J]. CIRP Journal of Manufacturing Science and Technology,2009,1(4):221-229.
    [98]马福民,王坚.面向企业能源消耗过程的模糊Petri网模型研究[J].计算机集成制造系统,2007,13(9):1679-1685.
    [99]特莱霍夫[苏]著,江泽民译.机械制造厂电能的合理使用[M].上海:上海交通大学出版社,2008.
    [100] Seow Y., Rahimifard S. A framework for modeling energy consumption within manufacturingsystem [J]. CIRP Journal of Manufacturing Science and Technology,2011,4(3):258-264.
    [101] Rahimifard S., Seow Y., Childs T. Minimising embodied product energy to support energyefficient manufacturing[J].CIRP Annals-Manufacturing Technology,2010,59(1):25-28.
    [102] Diaz N.E., Jondral A., Greinacher S., Dornfeld D., Lanza G., Assessment of lean and greenstrategies by simulation of manufacturing systems in discrete production environments [J].CIRP Annals–Manufacturing Technology,2013,62(1):475-478.
    [103] Weinert N., Chiotellis S., Seliger G. Methodology for planning and operating energy-efficientproduction systems[J]. CIRP Annals-Manufacturing Technology,2011,60(1):41-44.
    [104] Bruzzone A.A.G., Anghinolfi D., Paolucci M., Tonelli F. Energy-aware scheduling forimproving manufacturing process sustainability: a mathematical model for flexible flow shops[J]. CIRP Annals–Manufacturing Technology,2012,61(1):459-462.
    [105] Benedetto De.L. Klemes J. The environmental performance strategy map: an integrated LCAapproach to support the strategic decision-making process [J].Journal of Cleaner Production,2009,17(10):900-906.
    [106] Fang K., Uhan N., Zhao F., Sutherland J.W. A new approach to scheduling in manufacturingfor power consumption and carbon footprint reduction[J].Journal of Manufacturing Systems,2011,30(4):234-240.
    [107] Wang X.Q., Ding H.W., Qiu M.M., Dong J. A low-carbon production scheduling systemconsidering renewable energy [A].2011IEEE International Conference on ServiceOperation,Logistics, and Information, Beijing, China,10-12July,2011, pp.101-106.
    [108]袁宝荣,聂祚仁,狄向华,左铁镛.中国化石能源生产的生命周期清单(I)—能源消耗与直接排放[J].现代化工,2006,26(3):59-64.
    [109]袁宝荣,聂祚仁,狄向华,左铁镛.中国化石能源生产的生命周期清单(II)—能源消耗与直接排放[J].现代化工,2006,26(4):59-61.
    [110]马忠海.中国几种主要能源温室气体排放系数的比较评价研究[D].北京:中国原子能科学研究院,2002.
    [111]杨建新.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
    [112]陈清林,尹清华,王松平,华贲.过程系统能量流结构模型及应用[J].化工进程,2003,22(3):239-243.
    [113]政府间气候变化专门委员会.2006年IPCC国家温室气体排放清单指南(中文版)[Z],IPCC国家温室气体清单计划,2006.
    [114]国家统计局能源统计司,国家能源局综合司.中国能源统计年鉴[M],北京:中国统计出版社,2008.
    [115] Ou X.M., Yan X.Y., Zhang X.L. Life-cycle energy consumption and greenhouse gasemissions for electricity generation and supply in China [J]. Applied Energy,2011,88(1),289-297.
    [116]郭湘,苏祥生,林郁郁,许培兰,饶国平. GB/T15587-1995.工业企业能源管理导则[S].北京:中国标准出版社,1995.
    [117]中国钢铁工业协会.中国钢铁统计年鉴2007[M].北京:中国统计出版社,2007.
    [118]中国有色金属工业协会.中国有色金属工业年鉴2007[M].北京:中国统计出版社,2007.
    [119]国家统计局能源统计司.中国能源统计年鉴2008[M].北京:中国统计出版社,2008.
    [120] Saadat M., Tan M.C.L., Owliya M. Changes and disturbances in manufacturing systems: acomparison of emerging concepts [A]. World Automation Congress, Waikoloa, Hawaii, USA,2011, pp.1-6.
    [121] Subramaniam V., Raheja A. MAOR: A heuristic-based reactive repair mechanism for job shopschedules [J]. International Journal of Advanced Manufacturing Technology,2003,22(9-10),669-680.
    [122] Leit o P., Restivo F. Predictive disturbance management in manufacturing control systems
    [A]. Proceedings of the IMS International Forum, Como, Italy,2004, pp.589-596.
    [123] Najam A. World business council for sustainable development: the greening of business or agreenwash [A]. In: Yearbook of International Co-operation on Environment and Development.UK: Earthscan Publications,1999, pp.65-75.
    [124] Verfaillie H.A., Bidwell R. Measuring eco-efficiency: a guide to reporting companyperformance [EB/OL]. www.wbcsd.org/web/publications/measuring_eco_efficiency. pdf,2013-11-26.
    [125] Kiyotaka T., Masayuki S., Toshisuke O., Kazuo Y., Atsushi I. Comparison of “CO2efficiency” between company and industry[J]. Jounal of Cleaner Production,2005,13(13-14):1301-1308.
    [126] Kyounghoon C., Songtak L., Tak H. Eco-efficiency approach for global warming in thecontext of Kyoto Mechanism [J]. Ecological Economics,2008,67(2),274-280.
    [127] Diaz N., Choi S., Helu M., Chen Y., Jayanathan S., Yasui Y., Kong D., Pavanaskar S.,Dornfeld D. Machine tools design and operation strategies for green manufacturing [A].Proceeding of the4th CIRP Internal Conference on High Performance Cutting, Gifu, Japan,2010, pp.271-276.
    [128] Ashby M.F. Materials and the environment: eco-informed material choice [M]. Burlington,USA: Butterworth-heinemann,2009, pp.112-291.
    [129] Dahmus J.B., Gutowski T.G. An environmental analysis of machining [A].2004ASMEInternational Mechanical Engineering Congress and RD&D Expo, Anaheim, California, USA,2004, pp.643-652.
    [130] Gutowski T.G., Dahmus J., Thiriez A. Electrical energy requirements for manufacturingprocesses [A]. Proceeding of13th CIRP Internal Conference on Life Cycle Engineering,Leuven, Belgium,2006, pp.623-627.
    [131] Haapala K., Sutherland J., Rivera J. Reducing environmental impacts of steel productmanufacturing [J]. Transation of NAMRI/SME,2009,37:419-426.
    [132] Venkata R.R., Gandhi O.P. Failure cause analysis of machine tools using digraph and matrixmethods [J]. International Journal of Machine Tools&Manufacture,2002,42:521-528.
    [133] Zhang Y.Z., Zheng R., Shen G.X., Chen B.K. Reliability analysis for CNC machine tool basedon failure interaction[J]. Intelligent Computing and Information Science,2011,134:489-496.
    [134] Mazzola M., Merlo A., Aggogeri F. Analysis of machine tool failures using advancedreliability models for complex repairable systems [A]. Proceedings of2008ASMEInternational Mechanical Engineering Congress and Exposition, Boston, Massachusetts, USA,October31-November6,2008.
    [135] Birolini A. Reliability Engineering-Theory and Practice [M].Berlin, Heidelberg: Springer,2010.
    [136]谢里阳,王正,周金宇,武滢.机械可靠性理论与方法[M].北京:科学出版社,2009.
    [137] Abernethy R.B. The new weibull handbook-reliability and statistical analysis for predictinglife, safety, supportability, risk, cost and warranty claims [M].North Palm Beach, Fla.: R.B.Abernethy,2006.
    [138] Serope K. Manufacturing engineering and technology [M].3rded. USA: Addison Wesley,1995.
    [139]解天荣,王静.交通运输业碳排放量比较研究[J].综合运输,2011,(8):20-24.
    [140] Mehmet A.I., Surendra M.G. Environmentally conscious manufacturing and product recovery(ECMPRO):a review of the state of the art[J].Journal of Environmental Management,2010,91:563-591.
    [141] Deif A.M. A system model for green manufacturing [J]. Journal of Cleaner production,2011,19(14):1553-1559.
    [142] Buss M., Glocker M., Hardt M., Stryk O.V., Bulirsch R., Schmidt G. Nonlinear hybriddynamical systems: modeling, optimal control, and applications [A]. In: Engell S., Frehse G.,Schnieder E., eds. Modeling, Analysis and Design of Hybrid Systems, Lecture Notes inControl and Information Sciences (LNCIS). Heidelberg, Berlin: Springer,2002.
    [143] Balduzzi F., Giua A., Menga G. Frist-order hybrid petri nets: a model for optimization andcontrol [J].IEEE Transaction on Robotics and Automation,2000,16(4):382-399.
    [144] Balduzzi F., Giua A., Menga G. Modelling and simulation of manufacturing system withfirst-order hybrid Petri nets [J]. International Journal of Production Research,2001,39(2):255-282.
    [145] Giua A., Pilloni M.T., Seatzu C., Modeling and simulation of a bottling plant using hybridpetri nets [J]. International Journal of Production Research,2005,43(7):1375-1395.
    [146]江志斌. Petri网及其在制造系统建模与控制中的应用[M].北京:机械工业出版社,2004.
    [147] WWF,2007. Saving energy, emphasis on the action-twenty ways for energy saving [EB/OL].http://www.wwfchina.org/aboutwwf/whatwedo/climate/publication.shtm,2013-12-20.
    [148] Herrmann C., Thiede S., Kara S., Hesselbach J. Energy oriented simulation of manufacturingsystems-concept and application[J]. CIRP Annals–Manufacturing Technology,2011,60(1),45-48.
    [149] Heilala J. Simulation with sustainability aspects in the manufacturing system concept phase
    [A]. Proceedings of the2012Winter Simulation Conference, Berlin, Germany,2012.
    [150] L fgren B., Tillman A.M. Relating manufacturing system configuration to life-cycleenvironmental performance: discrete-event simulation supplemented with LCA [J]. Journal ofCleaner Production,2011,19(17-18):2015-2024.
    [151] Brondi C., Carpanzano E. A modular framework for the LCA-based simulation of productionsystems [J]. CIRP Journal of Manufacturing Scienc&Technology,2011,4(3):305-312.
    [152] Joung C.B., Carrell J., Sarkar P., Feng S.C. Categorization of indicators for sustainablemanufacturing [J]. Ecological Indicators,2012,24:148-157.
    [153] Berker, K.R. Introduction to sequencing&scheduling[M].New York: Wiley,1974
    [154]雷英杰,张善文,李续武,周创明. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2004.
    [155]韩瑞锋.遗传算法原理与应用实例[M].北京:兵器工业出版社,2010.
    [156]余有明,刘玉树,阎光伟.遗传算法的编码理论与应用[J].计算机工程与应用,2006,(3):86-89.
    [157]刘民,吴澄.制造过程智能优化调度算法及其应用[J].北京:国防工业出版社,2008.
    [158]张超勇.基于自然启发式算法的作业车间调度问题理论与应用研究[D].武汉:华中科技大学,2006.
    [159] Branham M., Gutowski T.G., Jones A., Sekulic D.P. A thermodynamic framework foranalyzing and improving manufacturing processes [A]. Proceeding of the2008IEEEInternational Symposium on Electronics and the Environment, San Francisco, USA,May19-20,2008.
    [160]刘飞,王秋莲.机械制造系统能效评价的特点、研究现状及发展趋势[J].中国机械工程,2013,24(11):1550-1556.
    [161] Georgiadis P., Michaloudis C. Real-time production planning and control system for job-shopmanufacturing: a system dynamics analysis [J].European Journal of Operational Reserarch,2012,216:94-104.
    [162] Fattahi P., Fallahi A. Dynamic scheduling in flexible job-shop system by consideringsimultaneously efficiency and stabiligy [J]. CIRP Journal of Manufacturing Science andTechnology,2010,2:114-123.
    [163] Li Y.F., He Y., Wang Y., Yan P., Liu X.H. A framework for characterizing energy consumptionof machining manufacturing systems [J]. International Journal of Production Research,2014,52(2):314-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700