用户名: 密码: 验证码:
基于SEBAL模型的黄淮海冬小麦和夏玉米水分生产力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄淮海平原作为我国北方重要的粮食生产基地,种植制度主要为冬小麦—夏玉米一年两熟,因地下水资源严重超采、降水量时空分布极不平衡、降水与作物需求不匹配等问题,成为我国水资源供需矛盾最突出的地区之一。如何提高农业用水效率,在保障高产前提下减少农业用水量,提高作物水分生产力,成为破解黄淮海平原农业用水短缺与粮食持续稳产高产矛盾的关键问题。本文以黄淮海平原2011~2012年MODIS影像为主要数据源,并辅以地面调查点,研究提取了冬小麦-夏玉米轮作信息,确定了冬小麦-夏玉米轮作系统在黄淮海平原的种植区域。在确定了SEBAL模型在黄淮海平原适用性的基础上,以2001~2002年、2006~2007年和2011~2012年MODIS多时相遥感影像、气象数据和作物生育期为基础,利用SEBAL模型,估算了冬小麦和夏玉米实际蒸散量(ETa)。通过MODIS NDVI光谱曲线特征及单产数据的耦合,将县域尺度作物单产“解集”到基于像元大小的产量栅格图,实现了冬小麦和夏玉米产量栅格化。在作物蒸散量模拟和产量栅格化的基础上,估算了黄淮海平原作物水分生产力(WP),并尝试找出冬小麦、夏玉米水分生产力的关键影响因素,研究区域作物水分生产力的提升途径。
     (1)估算了2001~2002、2006~2007和2011~2012三个时期冬小麦和夏玉米的作物实际蒸散量。2001~2002、2006~2007和2011~2012三个时期,夏玉米ETa平均值分别为448.9、440.4和354.8mm,高值区域主要位于河北、河南、北京、天津以及江苏地区,河南西部以及河北中部地区夏玉米ETa处于连续下降的态势。冬小麦ETa分别为630.7、550.8和538.4mm,高值区域位于河北、河南、苏北以及山东地区,北京、天津、河北以及山东中北部地区冬小麦ETa连续下降。两种作物ETa与地表温度呈显著负相关,与作物生长中后期的NDVI指数呈显著正相关。夏玉米ETa与经度显著负相关,而冬小麦ETa与纬度显著负相关。
     (2)实现了冬小麦和夏玉米产量栅格化。黄淮海地区粮食生产呈逐年增加的趋势。2001~2002、2006~2007和2011~2012三个时期,夏玉米单产平均值分别为383.4、408.5和439.6kg/亩,高产区域主要位于河北和山东地区,单产提高区域主要位于河北、江苏以及山东中北部地区。三个时期冬小麦单产区域平均值分别为332.0、380.9和420.8kg/亩,高产区域主要位于河北、河南和山东地区,单产提高区域主要位于河南、山东、江苏和安徽地区。
     (3)明确了冬小麦—夏玉米水分生产力时空分异特征。2001、2006和2011年夏玉米WP平均值分别为1.30、1.37和1.93kg·m-3,高值区主要位于山东地区,京津地区、河北、河南以及山东地区的,夏玉米WP一直处于提升的态势。2002、2007和2012年冬小麦WP平均值分别为0.81、1.09和1.21kg·m-3,高值区主要位于山东及河北地区。河北、山东中北部地区冬小麦WP表现出缓慢的提升。
     (4)探明了作物水分生产力与P-ETc(降水盈亏量)和ETa-ETc(需水盈亏量)的相关关系。结果表明,作物水分生产力与降水盈亏量成显著正向相关关系(P <0.05),与需水盈亏量成显著负相关(P <0.05)。夏玉米水分生产力提升潜力较大的区域位于黄淮海平原的西部地区,而冬小麦水分生产力提升潜力较大的区域主要位于黄淮海平原的中南部地区。针对黄淮海平原的农田水分收支的实际情况,提出的提高作物水分生产力的措施包括:第一,通过调节植物蒸腾、减少土面蒸发来减少作物实际蒸散量,第二,优化灌溉制度,减少水资源的不合理利用。
     作物产量形成和作物水分耗散是复杂的过程,不仅与气象要素相关,更多的是受到作物品种、人为管理等因素的影响。借助作物生长模型,对影响作物水分生产力的非气候要素以及影响机理进行研究,协同作物高产和高效用水提高作物水分生产力是未来发展的方向。
The Huang-Huai-Hai plain (3H plain) is recognized as an important grain production area innorthern China, and where winter wheat-summer maize rotation is the main cropping systems.Currently,3H plain has become one of the most prominent contradiction areas between water supplyand demand due to over-exploited water resources, uneven spatial-temporal distribution of precipitation,and mismatch between precipitation and crop water requirements. How to develop the agricultural wateruse efficiency, reduce agricultural water use and improve crop water productivity has become a keyissue to resolve contradictions between agricultural water and continued high yield in3H plain. As theprimary data source, MODIS remote sensing, statistics, meteorological data, crop growth period dataand ground survey data in2001-2002,2006-2007, and2011-2012were used in crop informationextraction, crop yields rasterizing, actual evapotranspiration estimation and crop water productivity(CWP) calculation. Spatial and temporal variation of crop water productivity was investigated in orderto reveal the key factors of crop water productivity. In addition, the way to improve crop waterproductivity was discussed in3H plain. The results is expected to provide a basis information foragricultural water management, improvement of crop water productivity and choice of adaptivemechanism under climate change in3H plain. The main results are as follows:
     (1) The water consumption by actual evapotranspiration is estimated with Surface Energy BalanceAlgorithm for Land (SEBAL) model taking meteorological data and MODIS products as input. Theaverage instantaneous net radiation flux, soil heat flux, sensible heat flux and latent heat flux of3Hplain were558.92W·m-2,56.97W·m-2,56.97W·m-2and282.22W·m-2respectively in97(April7th)2011. Average daily evapotranspiration of3H plain was4.39mm and4.87mm in winter wheat andsummer maize rotation, after extracted by the crop dominant map. Results showed that SEBAL issuitable for estimating evapotranspiration in winter wheat and summer maize rotation in3H plain, basedon the comparation between evapotranspiration measured by Yucheng (in Shandong province) andevapotranspiration estimated by SEBAL. Actual evapotranspiration of winter wheat and summer maizewere calculated by space interpolation method, and spatial distribution of actual evapotranspiration inwinter wheat and summer maize growing season were mapped. Actual evapotranspiration in winterwheat growing season was found higher than that in summer maize growing season. Average value ofevapotranspiration in summer maize growing season were448.87mm,440.39mm and354.83mmrespectively in2001to2002,2006to2007and2011to2012, while630.70mm,550.76mm and538.41mm in winter wheat growing season. Crop evapotranspiration showed a decreasing tendency inthese three periods. Crop evapotranspiration was found more relative to NDVI in mid and late growingstages. Compared to NDVI, significant negative correlation was detected between evapotranspirationand surface temperature. Evapotranspiration in summer maize growing season showed significantcorrelation with longitude, which increase1degree will lead an reduce of13.71mm in summer maizeevapotranspiration. There is a significant correlation between evapotranspiration of winter wheat and latitude. Latitude, for each additional1degree, evapotranspiration of summer maize will reduce19.93mm.
     (2) The statistical cropped area and production data were synthesized to calculate district-level landproductivity, which is then further extrapolated to pixel-level values with1km×1km using MODISNDVI product based on crop dominance map. An increasing tendency was detected in crop productivityin3H plain. Yield of summer maize in2001was approximately350to450kg/mu with the average valueof383.4kg/mu and with higher value detected in Shijiazhuang-Jinan line, as well as the southern partof Jiangsu province. Yield of summer maize was400to500kg/mu in2006, and high yield area waslocated in Hebei, Henan and Shandong provices. Summer maize yield has increased to more than400kg/mu in2011, with high yield area located in Hebei, Shandong and Jiangsu provinces. Yield ofwinter wheat yield was250to400kg/mu in2002with the average value of332.0kg/mu, and high yieldarea was located in southern Hebei, northern Henan and Shandong provices. Winter wheat yield hasincreased to350to450kg/mu area in2007, with high yield area located in Hebei, Henan and Shandongprovinces. Yield of winter wheat yield in2012can reach to400kg/mu in most part of3H plain, withhigher value detected in Shandong and Henan provinces.
     (3) WP maps are then generated by dividing the rice productivity map with the actualevapotranspiration (ETa) maps. WP of summer maize (MWP) in most part of3H plain was less than1.4kg·m-3in2001, with regional average value1.37kg·m-3. High MWP area was found located inShandong province. MWP in most part of3H plain has increased to more than1.4kg·m-3in2006, withhigher MWP area located in Shandong province. Average MWP has increased to1.93kg·m-3in2011,and high-value WP area was located in Shandong and Jiangsu Provinces. MWP showed animprovement in Beijing and Tianjin, Hebei, Henan and southwestern region of Shandong during thesethree periods, while in eastern part of Shandong and Jiangsu province, MWP was detected with avolatility increase trend. WP of winter wheat (WWP) was less than0.9kg·m-3in2002, with regionalaverage value of0.81kg·m-3. High-value WP area was located in east part of Shandong and mid part ofHebei. WWP increased to1.09kg·m-3in2007, and detected with higher value in Shandong, Henan andHebei provinces. The regional average value is1.21kg·m-3in2012. In addition, WWP showed a greatvolatility except Anhui, entral and northern part of Hebei and parts of Shandong, where WWP improvedslowly and steady.
     (4) Significantly positive correlation and negative correlation were detected between CWP andP-ETa (precipitation deficit) and ETa-Etc (crop water demand deficit) respectively over3H plain. Thewestern part was identified as potential area for MWP, while central and southern areas for WWP. Twomeasures should be strengthened to improve crop water productivity in inference to the actual situationof farmland water budget of3H plain followed by reducing ETa through regulating crop transpirationluxury and soil surface evaporation and then cutting down the unreasonable use of water resourcesthrough optimization of irrigation system.
     Crop yield and water consumption are acknowledged as a complex process due to crop varieties,human management and so on together with meteorological variables. The non-climatic factors andinfluence mechanism is expected to investigate based on crop model with the purpose of improvingcrop water productivity.
引文
1.陈博,欧阳竹,程维新,等.近50a华北平原冬小麦-夏玉米耗水规律研究.自然资源学报,2012,27(007):1186—1199.
    2.陈超,于强,王恩利,等.华北平原作物水分生产力区域分异规律模拟.资源科学,2009(9):1477—1485.
    3.陈静彬,岳意定.我国粮食安全研究进展.安徽农业科学,2008,36(35):15758—15760.
    4.陈鸣,潘之棣.用卫星遥感红外数据估算大面积蒸散量.水科学进展,1994,5(2):126—133.
    5.陈佑启,杨鹏.国际上土地利用土地覆盖变化研究的新进展.经济地理,2001,(01):95—100.
    6.崔读昌.我国粮食作物气候资源利用效率及其提高的途径.中国农业气象,2001,22(2):25—32.
    7.崔远来.非充分灌溉优化配水技术研究综述.灌溉排水,2000,19(1):66—70.
    8.邓先瑞,汤大清,张永芳.气候资源概论.武汉:华中师范大学出版社,1995:3—5.
    9.杜嘉,张柏,宋开山,王宗明,曾丽红.基于MODIS产品和SEBAL模型的三江平原日蒸散量估算.中国农业气象,2010,31(1):104—110.
    10.杜鹏,李世奎.农业气象风险分析初探.地理学报,1998,53(3):202—208.
    11.房稳静,张雪芬,郑有飞.冬小麦灌浆期干旱对灌浆速率的影响.中国农业气象,2006,27(2):98—101.
    12.冯奇,吴胜军.我国农作物遥感估产研究进展.世界科技研究与发展,2006(3):32—36
    13.傅泽强,蔡运龙,杨友孝,等.我国粮食安全与耕地资源变化的相关分析[J].自然资源学报,2001,16(4)313—319.
    14.高占义,王浩.我国粮食安全与灌溉发展对策研究.水利学报,2008,11(9),1273—1278
    15.郭军,任国玉.天津地区近40年日照时数变化特征及其影响因素.气象科技,2006,34(4):415—420.
    16.郭淑敏,马帅,陈印军.我国粮食主产区粮食生产态势与发展对策研究.农业现代化研究,2006,27(1):1—6.
    17.郭晓晓,董华,王计平,等.基于多时相遥感影像的作物种植信息提取.农业工程学报,2012,28(2):134—141.
    18.郝卫平,梅旭荣,蔡学良,等.基于多时相遥感影像的东北三省作物分布信息提取.农业工程学报,2011,27(1):201—207.
    19.何玲,莫兴国,汗志农.基于MODIS遥感数据计算无定河流域日蒸散.农业工程学报,2007,23(5):114—150.
    20.何希吾.水资源在提高我国土地生产能力中的地位和作用.自然资源学报,1991,6(2):137—144.
    21.胡云峰,王倩倩,刘越,等.国家尺度社会经济数据格网化原理和方法.地球信息科学学报,2011,13(5):573—578.
    22.金善宝.中国小麦学.北京:中国农业出版社,1996.
    23.康少忠,党育红.作物水分生产函数与经济用水灌溉制度的研究.西北水利科技,1987,1:1-11.
    24.李佛琳,李本逊,曹卫星.作物遥感估产的现状及其展望.云南农业大学学报,2005,20(5):680—684.
    25.李守波,赵传燕.基于能量平衡的关川河流域蒸散发的遥感反演.遥感技术与应用,2008(6):521—526.
    26.李天平,刘洋,李开源.遥感图像优化迭代非监督分类方法在流域植被分类中的应用.城市勘测.2008,(1):75—77.
    27.李英能.华北地区节水农业标准初探.灌溉排水,1993,12(1):1—6.
    28.李忠佩,李德成,张桃林.土地退化对全球粮食安全的威胁及防治对策.水土保持通报,2001,21(4):19—23.
    29.刘昌明,周长青,张士锋,等.小麦水分生产函数及其效益的研究.地理研究,2005,24(1):1~10.
    30.刘昌明.水文水资源研究理论与实践—刘昌明文选.北京:科学出版社,2004:432.
    31.刘朝顺,施润和,高炜,等.利用区域遥ET分析山东省地表水分盈亏的研究.自然资源学报,2010,25(11):1938—1948.
    32.刘红辉,江东,杨小唤,等.基于遥感的全国GDP1km格网的空间化表达.地球信息科学,2005,7(2):120—123.
    33.刘钰,Preira L.S,Teixira,J.L等.参照蒸发量的新定义及计算方法对比.水利学报,1997,(6):27—33.
    34.刘忠,李保国.基于土地利用和人口密度的中国粮食产量空间化.农业工程学报,2012,28(9):1—8.
    35.吕丽华,胡玉昆,李雁鸣,王璞.灌水方式对不同小麦品种水分利用效率和产量的影响.麦类作物学报,2007,27(1):88—92.
    36.吕庆喆.农作物遥感估产方法介绍(上).中国统计,2001(5):56—57.
    37.吕婷婷,刘闯.基于MODIS数据的泰国耕地信息提取.农业工程学报,2010,26(2):244—250.
    38.梅旭荣,康绍忠,于强,等.协同提升黄淮海平原作物生产力与农田水分利用效率途径.中国农业科学,2013,6:008.
    39.梅旭荣,严昌荣,牛西午.北方旱作区节水高效型农牧业综合发展研究.北京:中国农业科学技术出版社,2005.
    40.潘志强,刘高焕.黄河二角洲蒸散的遥感研究[J].地球信息科学,2003(3):91—96.
    41.秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(I):中国气候与环境变化及未来趋势.气候变化研究进展,2005,1(1):4—9.
    42.山仑,陈培元.旱地农业生理生态基础.北京:科学出版社,1998.
    43.山仑,康绍忠,吴普特.中国节水农业.北京:中国农业出版社,2004.
    44.沈荣开,杨路华,王康.关于以水分生产率作为节水灌溉指标的认识.中国农村水力水电,2001,(5):9~11.
    45.沈荣开,张渝芳,黄冠华.作物水分生产函数与农田非充分灌溉研究述评.水科学进展,1995,6(3):248—253.
    46.沈振荣,苏人琼.中国农业水危机对策研究.北京:中国农业科技出版社,1998:235-242.
    47.苏桂武,方修琦.京津地区近50年来水稻播种面积变化及其对降水变化的响应研究[J].地理科学,2000,20(3):212—217.
    48.孙颔,石玉林.中国农业土地利用.南京:江苏科学技术出版社,2003.
    49.孙九林.中国农作物遥感动态监测与估产.北京:中国科学出版社,1996:118—124.
    50.田国良.黄河流域典艰地区遥感动态研究.北京:科学出版社,1989.
    51.王炳忠,张富国,李立贤.我国的太阳能资源及其计算.太阳能学报,1980,1(1):1—9.
    52.王和洲,张晓萍.调亏灌溉条件下的作物水分生态生理研究进展.灌溉排水,2001,20(4):73—75.
    53.王建源,冯晓云.基于GIS的主要农业气候资源分析:以山东省泰安市泰山区和岱岳区为例.中国农业气象,2004,25(3):77—80.
    54.王黎明.吉林省西部区域遥感蒸散模型研究及其应用.吉林:吉林大学,2005
    55.王人潮,黄敬峰.水稻遥感估产.北京:中国农业出版社:中国科学出版社,2002
    56.王石立,娄秀荣.华北地区冬小麦干旱风险评估的初步研究.自然灾害学报,1997,6(3):63—68.
    57.王万同.基于遥感技术的区域地表蒸散估算研究.河南大学,2012.
    58.吴少辉,高海涛,王书子,段国辉.干旱对冬小麦粒重形成的影响及灌浆特性分析.干旱地区农业研究,2002,20(2):50—52.
    59.谢云.我国的农业发展与全球变化—我国在全球变化研究中的地位和作用.北京师范大学学报(自然科学版),1997,33(3):422—426.
    60.辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展.遥感学报.2003,7(3):233—240.
    61.信乃诠,张燕卿,王立祥.中国北方旱区农业研究.北京:中国农业出版社,2002:3—30.
    62.信乃诠.中国北方旱区农业研究.中国农业出版社,2002.
    63.熊勤学,黄敬峰.利用NDVI指数时序特征监测秋收作物种植面积.农业工程学报,2009,25(1):144—148.
    64.徐同仁,刘绍民,秦军,等.同化MODIS温度产品估算地表水热通量.遥感学报,2009(6):989—1009.
    65.徐新刚,吴炳方,蒙继华,等.农作物单产遥感估算模型研究进展.农业工程学报,2008,24(2):290—298.
    66.许文波,田亦陈.作物种植面积遥感提取方法的研究进展.云南农业大学学报,2005,20(1):94—98.
    67.许文波,张国平,范锦龙,等.利用MODIS遥感数据监测冬小麦种植面积.农业工程学报,2007,23(12):144—149.
    68.闫慧敏,黄河清,肖向明,等.鄱阳湖农业区多熟种植时空格局特征遥感分析.生态学报,2008,28(9):4517—4523.
    69.阎雨,陈圣波,田静,等.卫星遥感估产技术的发展与展望.吉林农业大学学报,2004,26(2):187—196.
    70.杨宝中,樊鹏,冯朝山,等.两种作物水分生产函数模型的一致性分析..华北水利水电学院学报,2009,30(3):1—3.
    71.杨贵羽,汪林,王浩.基于水土资源状况的中国粮食安全思考.农业工程学报,2010,26(12):1—5.
    72.杨建莹,陈志峰,严昌荣,等.近50年黄淮海平原气温变化趋势和突变特征.中国农业气象,2013(1):1—7.
    73.杨建莹,梅旭荣,严昌荣,等.华北地区气候资源空间分布特征.中国农业气象,2011,31(S1):1—5
    74.杨建莹,梅旭荣,严昌荣,等.近48a华北区太阳辐射量时空格局变化特征研究.生态学报,2011,31(10):2748—2756.
    75.杨晓光,刘志娟,陈阜.全球气候变暖对中国种植制度可能影响Ⅰ:气候变暖对中国种植制度北界和粮食产量可能影响的分析.中国农业科学,2010,43(2):329—336.
    76.杨彦武,于强,王靖.近40年华北及华东局部主要气候资源要素的时空变异性.资源科学,2004,26(4):45—50.
    77.易玲,熊利亚,杨小唤.基于GIS技术的GDP空间化处理方法.甘肃科学学报,2006,18(2):54—58.
    78.翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化.地理学报,2003(增刊):12—20.
    79.张健康,程彦培,张发旺,等.基于多时相遥感影像的作物种植信息提取.农业工程学报,2012,28(2).134—141
    80.张晶,吴绍洪,刘燕华,等.土地利用和地形因子影响下的西藏农业产值空间化模拟.农业工程学报,2007,23(4):59—65.
    81.张秋平,郝晋珉,白玮.黄淮海地区粮食生产中的农业水资源经济价值核算.农业工程学报,2008,24(2):1—5.
    82.张仁华,孙晓敏,王伟民,等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础.中国科学: D辑,2004,34(Ⅱ):200—216.
    83.张仁华,孙晓敏,朱治林,等.以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验证.中国科学D辑,2002,32(12):1041—1051.
    84.张喜英,陈素英,裴冬,等.秸秆覆盖下的夏玉米蒸散,水分利用效率和作物系数的变化.地理科学进展,2002,21(6):583—592.
    85.张霞,焦全军,张兵,等.利用MODIS_EVI图像时间序列提取作物种植模式初探.农业工程学报,2008,24(5):161—165.
    86.张秀英,杨敏华,刘常娟.面向对象遥感分类新技术在第二次土地调查中的应用.遥感信息,2008,(03):77—81.
    87.郑长春,王秀珍,黄敬峰.多时相MODIS影像的浙江省水稻种植面积信息提取方法研究.浙江大学(农业与生命科学版),2009,35(1):98—104.
    88.中国农业年鉴编辑委员会.中国农业年鉴2011.北京:中国农业出版社,2011.
    89.钟凯文,黎景良,张晓东.土地可持续利用评价中GDP数据空间化方法的研究.测绘信息与工程,2007,32(3):10—12.
    90.左丽君,董婷婷,汪潇,等.基于MODIS/EVI的中国北方耕地复种指数提取.农业工程学报,2009,25(8):141—146.
    91.左丽君,张增祥,董婷婷,等.MODIS/NDVI和MODIS/EVI在耕地信息提取中的应用及对比分析.农业工程学报,2008,24(3):167—172.
    92. Alexander Platonov, Prasad S. Thenkabail, Chandrashekhar M. Biradar, et al. Water productivitymapping (WPM) using Landsat ETM+data for the irrigated croplands of the Syrdarya River Basinin Central Asia. Sensors,2008,8:8156-8180.
    93. Allen R G,Tasumi M,Morse A,et al. A Landsat based energy balance and evapotranspiration modelin Western US water rights regulation and planning. Irrigation and DrainageSystems,2005,19(3):251-268.
    94. Allen R G. The ASCE Standardized Reference Evapotranspiration Equation. American Society ofCivil Engineers,2005.
    95. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. Crop evapotranspiration: guidelines for computingcrop water requirements. FAO irrigation and Drainage paper no.56, Rome, Italy,1998.
    96. Anderson M C,Norman J M, Diak G R, et al. A two source time-integrated Model for EstimatingSurface Fluxes Using Thermal infrared Remote Sensing. Remote Sensing of Environment,1997,60(2):195-216.
    97. Aubinet M,Grelle A,Ibrom A,et a1.Estimates of the annual net carbon and water exchange ofEuropean forests:the EUROFLUX methodology.Adv.Ec01.Res.,2000,30:l13.175.
    98. Baldoechi D, Falge E, Gu L, et a1. Fluxnet: A New Tool to Study the Temporal and SpatialVariability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletinof the American Meteorological Socicty,2001,81:2415-2434.
    99. Baldoeehi D D,Falge E,Cu L,et a1.FLUXNET:A New tool to study the temporal and spatialvariability of ecosystem.scale carbon dioxide.Water Vapor and Energy Flux Densities,2001,82(I1):2415-2434.
    100. Bartholome E, and Belward A S GLC2000: A new approach to global land covers mapping fromEarth observation data. International Journal of Remote Sensing,2005,26(9-10):1959-1977.
    101. Bastiaanssen W G M SEBAL based Sensible and Latent Heat Fluxes in the Irrigated Gediz BasinTurkey. Journal of Hydrology,2000,229(1/2):87-100.
    102. Bastiaanssen W G M, Bandara K M P S. Evaporative Depletion Assessments for IrrigatedWatersheds in Sri Lanka. lrrig. Sci,2001(21):1-15.
    103. Bastiaanssen W G M, Noordman E J M, Pelgrum H D, et al. SEBAL Model with Remotely SensedData to Improve Water-resources Management under Actual Field Conditions. ASCE Journal ofIrrigation and Drainage Engineering,2005,131(1):85-93.
    104. Bastiaanssen W G M, Pelgrum H,Wang J, et al. A Remote Sensing Surface Energy BalanceAlgorithm for Land (SEBAL). Validation. Journal of Hydrology,1998,213(1/4):213-229.
    105. Bastiaanssen W G M,Molden D J, Makin I W. Remote Sensing for Irrigated Agriculture: Examplesfrom Research and Possible Applications. Agricultural Water Management,2000,46(2),137-155.
    106. Bastiaanssen W G M. Remote Sensing in Water Resources Management: The State of the Art[M].Colombo, Sri Lanka:IWMI Press,1998:118.
    107. Batra N S, Islam V, Venturini G, et al. Estimation and Comparison of Evapotranspiration fromMODIS and AVHRR Sensors for Clear Sky Days over the Southern Great Plains. Remote Sensingof Environment,2006.103(1):1-15.
    108. Blyth E M, Harding R J. Application of Aggregation Model to Surface Heat Flux from the SahelianTiger Bush. Agricultural and Forest Meteorology,1995,72(3/4):213-215
    109. Brotzge J A. Kenneth C C. Examination of the Surface Energy Budget: A Comparison of EddyCorrelation and Bowen Ratio Measurement Systems. Journal of Hydrometeorology,2003,4(2):160-178.
    110. Cai X.L., B.R. Sharma. Integrating remote sensing, census and weather data for an assessment ofrice yield, water consumption and water productivity in the Indo-Gangetic river basin. AgriculturalWater Management,2010,97:309-316.
    111. Carlson T N, Capehart W J,Gillies R R. A New Look at the Simplified Method for Remote Sensingof Daily Evapotranspiration. Remote Sensing of Environment,1995,54(2):161-167.
    112. Chahal G.B.S., Anil Sood, S.K.Jalota, et al. Yield, evapotranspiration and water productivity of rice(Oryza sativa L.) wheat (Triticum aestivum L.) system in Puniab (India) as influenced bytransplanting date of rice and weather parameters. Agricultural Water Management,2007,88:14-22.
    113. Chalmers D J, Burge G, Jerie P H, Mitchell P D. The mechanism of regulation of―Barlett‖pearfruit and vegetative growth by irrigation withholding and regulated deficit irrigation. Journal ofAmerican Soceity Horticulture Science,1986,111(6):904-907.
    114. Chattopadhyay N, Hulme M. Evaporation and potential evapotranspiration in India underconditions of recent and future climate change. Agricultural and Forest Meteorology,1997,87,55-73.
    115. Davies W J, Zhang J. Root signals and the regulation of growth and development of plants indrying soil. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55-76.
    116. Dobson J E, Bright E A, Coleman P R, et al. LandScan: a global population database for estimatingpopulation at risk. Photogrammetric Engineering and Remote Sensing,2000,55(7):849-857.
    117. Dong B., D.Molden, R.Loeve, et al. Farm level practices and water productivity in ZhangheIrrigation System. Paddy Water Environ,2004,2:217-226.
    118. Droogers P,Bastiaanssen W. Irrigation performance using hydrological and remote sensingmodeling. Journal of Irrigation and Drainage Engineering,2002,128(1):11~18.
    119. Duffie J A, Beckman W A. Solar engineering of thermal processes. New York: Wiley,1991.
    120. FAO. World agriculture: towards2015/2030: an FAO perspective. Earthscan, London,2003.
    121. Friedl M A, McIver D K, Hodges J C F, et al. Global land cover mapping from MODIS:Algorithms and early results. Remote Sensing of Environment,2002,83(1-2):287-302.
    122. Frolking S, Qiu J, Boles S, et al. Combining remote sensing and ground census data to developnew maps of the distribution of rice agriculture in China[J]. Global Biogeochem. Cycles,2002,16(4)38, GB001425:1-10.
    123. Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., Li, C., Qin, X. Combining remotesensing and ground census data to develop new maps of the distribution of rice agriculture in China.Global Biogeochem.2002,Cycles16(4),1-10.
    124. Frolking, S., Xiao, X., Zhuang, Y., Salas, W., Li, C. Agricultural land-use in China: a comparisonof area estimates from ground-based census and satellite-borne remote sensing. Global Ecol.Biogeogr.1999,8(5),407-416.
    125. Gao G, Chen D, Ren G, Chen Y, Liao Y. Spatial and temporal variations and controlling factors ofpotential evapotranspiration in China:1956-2000. Journal of Geographical Sciences,2006,16,3-12.
    126. Gonzalez, M.P., L.Mateos. Spectral vegetation indices for benchmarking water productivity ofirrigated cotton and sugarbeet crops. Agricultural Water Management,2008,95(1),48-58.
    127. Groten, S.M.E.. NDVIcrop monitoring and early yield assessment of Burkina Faso. Int.J.RemoteSensors,1993,14(8),1495-1515.
    128. Harvey, J.T. Estimating census district populations from satellite imagery: some approaches andlimitations. Int. J. Remote Sens.2002,23(10),2071-2095.
    129. Henk Pelgrum, Tom Schmugge, Al Rango, et al. Length-scale analysis of surface albedo,temperature, and normalized difference vegetation index in desert grassland. Water resourceresearch,2000,36(7):1757-1765.
    130. Homer C, Huang C, Yang L, Wylie B, and Coan M. Development of a2001nationalland-cover database for the united states. Photogrammetric Engineering and Remote Sensing,2004,70(7):829-840.
    131. Hurtt, G.C., Rosentrater, L., Frolking, S., Moore III, B. Linking remote-sensing estimates of landcover and census statistics on land use to produce maps of land use of the onterminous UnitedStates. Global Biogeochem.2001,Cycles15(3),673-685.
    132. Hussein O Farah, Wim GM Bastiaanssen. Impact of spatial variations of land surface parameterson regional evaporation: a case study with remote sensing data. Hydrological processes,2001(15):1585-1607.
    133. Idso S B. Reginato R J, Jackson R D. An Equation for Potential Evaporation from Soil, Water andCrop Surfaces Adaptable to Use by Remote Sensing. Geophysical Research Letters.1977(4),187-188.
    134. Jackson R D,Reginato R J,Idso S B. Wheat Canopy Temperature: a Practical Tool for EvaluatingWater Requirements. Water Resource Research,)977,13(3):651-656.
    135. Jones H G. Crop characteristics and the ratio between assimilation and transpiration. Journal ofApplied Ecology,1976,13(2):605-622.
    136. Justice C O, Townshend J R G. Special issue on the moderate resolution imaging spectroradiometer(MODIS): a new generation of land surface monitoring. Remote Sensing of Environment,2002,83(1/2):1-2.
    137. Kang S Z, Liang Z S, Hu W, Zhang J H. Water use efficiency of controlled alternate irrigation onroot-divided maize plants. Agricultural Water Management,1998,38(1):69-76.
    138. Kang S Z, Shi W J, Zhang J H. An improved water-use efficiency for maize grown under regulateddeficit irrigation. Field Crops Research,2000,67(3):207-214.
    139. Khan M R, de Bie C A J M, van Keulen H, et al. Disaggregating and mapping crop statistics usinghypertemporal remote sensing[J]. International Journal of Applied Earth Observation andGeoinformation,2010,12(1):36-46.
    140. Kijne J,Barker R,Molden D. Water productivity in agriculture: Limits and opportunities forimprovement. Wallingford,UK:Comprehensive assessment of Water Management in Agriculture,CABI Press,2003.
    141. Kijne J.W., R.Barker, D.Molden. Water productivity in agriculture: limits and opportunities forimprovement. Cambridge MA USA,2003.
    142. Klein G K, Beusen A, Van D G, et al. The HYDE3.1spatially explicit database of human inducedglobal land use change over the past12000years. Global Econology and Biogeography,2011,20:73-86.
    143. Klein G K, Van D G, Bouwman A E. Contemporary global cropland and grassland distributions ona5×5minute resolution. Journal of Land Use Science,2006,2:167-190.
    144. Klein G K. Estimating global land use change over the past300years: the HYDE Database. GlobalBiogeochem Cycles,2001,15:417-433.
    145. Kong F, Cai W, Shi L, Chen F. The Characteristics of annual water consumption for winter wheatand summer maize in North China Plain. Procedia Engineering,2012,28,376-381.
    146. Lambin E F, Ehrlich D. The Surface Temperature-Vegetation Index space for Land cover andLand-cover Change Analysis. International Journal of Remote Sensing,1996,17(3):463-487.
    147. Leff B, Ramankutty N, Foley J A. Geographic distribution of major crops across the world. GlobalBiogeochem Cycles,2004,18, GB1009:1-27.
    148. Li Hongjun, Li Zheng, Lei Yuping, et al. Estimation of water consumption and crop waterproductivity of winter wheat in North Chin Plain using remote sensing technology. AgriculturalWater Management,2008,95:1271-1278.
    149. Liu BH, Xu M, Henderson M et al. Observed trends of precipitation amount, frequency, andintensity in China,1960-2000. Journal of Geophysical Research,2005,110: D08103
    150. Liu C M, Zhang X Y, Zhang Y Q. Determination of daily evaporation and evapotranspiration ofwinter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agricultural andForest Meteorology,2002,111(2):109-120.
    151. Liu Q, Yang Z, Cui B, Sun T. The temporal trends of reference evapotranspiration and itssensitivity to key meteorological variables in the Yellow River Basin, China. HydrologicalProcesses,2010,24,2171-2181.
    152. Mausel P W. Optimum Band Selection for Supervised Classification of亩ltispectral Data.PE&RS,1990,(01):50-60.
    153. Maxwell S K, Hoffer R M. Mapping agriculture crops with multidate Landsatta[C]//Proceedings ofthe National ASPRS/ACSM1996Annual Convention, Baltimore, MD,1996:433-443.
    154. Maxwell S K, Nuckols J R, Ward M H, et al. An automated approach to mapping corn fromLandsat imagery. Comput. Electron. Agric.,2003,43:3-54.
    155. Maxwell S K, Nucools J R, Ward M H. A method for mapping corn using the US GeologicalSurvey1992National Land Cover Dataset. Comput. Electron. Agric.,2006,51:54-65.
    156. McCoy, R.M. Field Methods in Remote Sensing. Guilford Press, New York,2004,159.
    157. Mesev, V. The use of census data in urban image classification. Photogramm. Eng. Remote Sens.1998,64(5),431-438.
    158. Moden, D.K.Frenken, R.Barker, et al. Trends in water and agricultural development. In: Molden, D.(Ed.), Water for Food, Water for Life: A Comprehensive Assessment of Water Management inAgriculture. Earthscan, London,2007:57-89.
    159. Molden D J. Accounting for water use and productivity.Colombo,Sri Lanka:InternationalIrrigation Management Institute,1997.
    160. Monfreda C, Ramankutty N, Foley J A. Farming the planet:2.Geographic distribution of crop areas,yields, physiological types, and net primary production in the year2000[J]. Global Biogeochem.Cycles,2008,22, GB1022:1-19.
    161. Moulin S, Kergoat L,Viovy N, et al. Global scale assessment of vegetation phenology usingNOAA/AVHRR satellite measurements. Journal of Climate,1997,10(6):1154-1170.
    162. Moulin, S., A.Bondeau, R., Delecolle. Combining agricultural crop models and satelliteobservations: from field to regional scales. Int. J. Remote Sensors,1998,19(6),1021-1036.
    163. Neto E R, Hamburger D S. Census Data Mining for Land Use Classifcation. Data Mining forBusiness Applications,2008:241.
    164. Cao, L., Yu, P.S., Zhang, C., Zhang, H.(Eds.), Data Mining for Business Applications. Springer,USA, pp.2009,241-251.
    165. Nordhaus W D. Geography and macroeconomics: new data and new findings[C]//Proceedings ofthe National Academy of Sciences of the United States of America,2006,103(10):3510-3517.
    166. Nordhaus W, Azam Q, Corderi D, et al. The GEcon database on Girded Output: Methods and Data.Yale University, New Haven,2006.
    167. Norman J M, Kustas W P, Humes K S. A Two-source Approach for Estimating Soil and VegetationEnergy Fluxes from Observation of Directional Radiometric Surface Temperature. Agricultural andForest Meteorology,1995(77):263-293.
    168. Prater M R, Delucia E H. Non-native Grasses Alter Evapotranspiration and Energy Balance inGreat Basin Sagebrush Communities. Agricultural and Forest Meteorology,2006,139(1/2);154-163.
    169. Priestley C H B,Taylor R J.On the Assessment of Surfaee HeatFlux and Evaporation UsingLarge-Scale Pameters. Monthly Weather Review,1972,100:81-92
    170. Qiu Jianjun, Tang Huajun, Steve Frolking, et al. Mapping single double, and triplecrop agriculturein china at0.5×0.5by combining county-scale census data with a remote sensing-derived landcover map. Geocarto international,2003,18(2):3-13.
    171. Rindfuss, R.R., Stern, P.C. Linking remote sensing and social science: the need and the challenges.In: Liverman, D., Moran, E.F., Rindfuss, R.R., Stern, P.C.(Eds.), People and Pixels: LinkingRemote Sensing and Social Science. National Academy Press, Washington, DC,1998, pp.1-27.
    172. Sanchez J M, Caselles V, Niclos R,et al. Evaluation of the B-method for Determining ActualEvapotranspiration in a Boreal Forest from MODIS Data. International Journal of Remote Sensing,2007,28(6):1231-1250.
    173. Schmugge T J, Kustas W P, Ritchie J C, et al. Remote Sensing in Hydrology. Advances in WaterResources,2002,25(8/12):1367-1385.
    174. Schmugge T, Hook S J, Coll C. Recovering surface temperature and emissivity from thermalinfrared multispectral data. Remote Sensing of Environment,1998,65(2):121-131.
    175. Seguin B, Itier B. Using Midday Surface Temperature to Estimate Daily Evaporation from SatelliteThermal IR Data. International Journal of Remote sensing,1983,4(2):371-383.
    176. Shen B C, Yun F L, Thomas A.2006. Climatic change on the Tibetan Plateau: potentialevapotranspiration trends from1961-2000. Climatic Change,76,291-319.
    177. Shuttleworth W J, Gurney, R J. The Theoretical Relationship between Foliage Temperature andCanopy Resistance in Sparse Crop [J]. Quarterly Journal of Royal Meteorological Society,1990,116(492):497-519.
    178. Singh R, R.A. Feddes. Water productivity analysis of irrigated crop s in Sirsa district, India.Agricultural Water Management,2006,82:253-278.
    179. Song Z W, Zhang H L, Snyder R L, Anderson F E, Chen F. Distribution and trends in reference
    180. Sutton, P., Roberts, D., Elvidge, C., Baugh, K. Census from heaven: an estimate of the globalhuman population using nighttime satellite imagery. Int. J. Remote Sens.2001,3061-3076.
    181. Tasumi M, Allen R G. Satellite-based ET Mapping to Assess Variation in ET with Timing of CropDevelopment. Agricultural Water Management,2007,88(1/3):54-62.
    182. Thomas A. Spatial and temporal characteristics of potential evapotranspiration trends over China.International Journal of Climatology,2000,20,381-396.
    183. Timsina,J., E.Humphreys, D.Godwin, et al. Evaluation of options for increasing water productivityof wheat using CSM-Wheat V4.0. Melboume, Australia,2005.
    184. Tomita A, Inoue Y, Ogawa S, et al. Vegetation patterns in the Chao Phraya Delta,1997dry seasonusing satellite image data. Proceedings of the international conference: The Chao Phraya Delta:Historical development, dynamics and challenges of Thailand's rice bowl. Thailand,2000.
    185. Toshihiro S, Cao V P, Aikihiko K. Analysis of rapid expansion of inland aquaculture and triplerice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-seriesimagery. Landscape and Urban Planning,2009,92(1),15:34-46.
    186. Toshihiro S, Nhan V N, Hiroyuki O. Spatio-temporal distribution of rice phenology and croppingsystems in the Mekong Delta with special reference to the seasonal water flow of the Mekong andBassac rivers. Remote Sensing of Environment,2006,100(1):1-16.
    187. Wang Y, Jiang T, Bothe O, Fraedrich K. Changes of pan evaporation and referenceevapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology,2007,90,13-23.
    188. Wang H, Zhang L, Dawes W R, Liu C. Improving water use efficiency of irrigated crops in theNorth China Plain-measurements and modeling. Agricultural Water Management,2001,48(2):151-167.
    189. Wardlow B D, Egbert S L, Kastens J H. Analysis of time-series MODIS250m vegetation indexdata for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment,2007,108(3):290-310.
    190. Wardlow B D, Egbert S L. Large area crop mapping using time series MODIS250m NDVI data:An assessment for the U.S. Central Great Plains, Remote Sensing of Environment,2008,112(3):1096-1116.
    191. Wardlow B D, Kastens J H, Egbert S L. Using USDA crop progress data for the evaluation ofgreenup onset date calculated from MODIS250meter data. Photogrammetric Engineering andRemote Sensing,2006,72(11):1225-1234.
    192. Wataru Takeuchi. Mapping of Wetland and Paddy Feld in Asia by Satellite Remote Sensing. Tokyo:Faculty of Engineering, University of Tokyo,2004.
    193. Wesseling J.G., R.A.Feddes. Assessing crop water productivity from field to regional scale.Agricultural Water Management,2006,86:30-39.
    194. WRMS. Towards integrated water resources management: WRMS for Zimbabwe. Harare,2000.
    195. Yang, P., W.Wu, Q.Zhou, Y.Zha. Research progress in crop yield estimation models based onspectral reflectance data. Trans. CSAE,2008,24(10),262-268.
    196. You L, Wood S, Wood Sichra U. Generating plausible crop distribution maps for Sub SaharanAfrica using a spatially disaggregated data fusion and optimization approach. Agricultural System,2009,99:126-140.
    197. You L, Wood S. An entropy approach to spatial disaggregation of agricultural production[J].Agricultural System,2006,90:329-347.
    198. You L, Wood S. Assessing the distribution of crop production using a cross entropy method.International Journal of Applied Earth Observation and Geoinformation,2005,7(4):310-323.
    199. Yunusa I A M,Walker R R,Lu P.Evapotranspiration Components from Energy Balance,Sapflowand Microlysimetry Techniques for an Irrigated Vineyard in Inland Australia. Agriculture andForest Meteorology,2004,127(1-2):93-107.
    200. Zhang L, Lemeur R, Goutorbe J P. A one-layer Resistance Model for Estimating RegionalEvapotranspiration Using Remote Sensing Data. Agricultural and Forest Meteorology,1995,77(3/4):241-261.
    201. Zhang X Y, Chen S Y, Liu M Y, Pei D, Sun H Y. Improved water use efficiency associated withcultivars and agronomic management in the North China Plain. Agronomy Journal,2005,97(3):783-790.
    202. Zhang X Y, Pei D, Hu C S. Conserving groundwater for irrigation in the North China Plain.Irrigation Science,2003,21(4):159-166.
    203. Zwart S J, Bastiaanssen WGM. Review of measured crop water productivity values for irrigatedwheat, rice, cotton and maize. Agricultural Water Management,2004,69:115-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700