用户名: 密码: 验证码:
气候变化对中国河北省玉米产量变化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国,玉米是第二大粮食作物,它在农业生产和国民经济中具有重要的作用。然而,这种生产可能会受到区域气候变化的影响。相关研究表明,与2000年相比全国年平均气温将在2020年上升1.3-2.1℃,2050年上升2.3-3.3℃。这种变化可能会极大地影响河北地区的玉米生产,继而影响世界玉米产量并给世界粮食供应造成巨大损失。本文利用已知区域气候影响研究(PRECIS)的A2和B2情景下,通过作物模型模拟,讨论了气候变化对中国河北省玉米生长和产量的影响,并提出了一些相应的管理措施和战略。本研究选择了1980至2010年9个河北气象站的气象数据作为数据基础,采用中国农业科学院农业信息研究所农业智能实验室研制的玉米生产仿真系统(MPES),来模拟玉米在未来气候条件下的生长情况,同时还进行了该模型对天气的敏感性分析。此研究的天气预报数据由PRECIS模拟驱动(1961年至1990年)。MPES模型仿真生长的结果是通过连通性验证技术和模拟分析在SRES A2和B2情景下预测21世纪2020s、2050s和2070s天气得到的。因此,为了得到更好地预测产量,考虑到了播种和种植的调整类型和新品种的适应措施。仿真数据采自于河北省不同区域气象观测站以及中国气象局。MPES模型归中国农业科学院农业信息研究所农业智能实验室所有。研究的主要结果如下:
     1、通过改变初始天气数据获得MPES模型对天气的敏感性。建立基础未来气候评价模型评估气候适应性。该MPES模型是基于玉米在河北省气候条件的适应性和验证以及玉米参数而设计的。
     2、模型对玉米产量模拟很好,除了几年的仿真模拟值和观测值的生育期偏差外,大部分站点夏玉米模拟的归一化的均方根NRMSE是9.81%。9个站点测量到的数据与模拟比较相关系数R2的值是0.70,置信度σ=0.01。所有站点的模拟结果也很显著。模拟年际间变化很大,不同站点年份产量可能或高或低,但整体误差较小。该模型在多数情况下展示了良好的性能。
     3、MPES仿真模型可以有效的再现品种差别,并对产生更高产量的最佳生长期进行模拟。然而,有些结果出现了允许误差。模型模拟情景与观察到的玉米产量相比说明可以达到产量最大化。
     4、MPES模型对温度和降水敏感。可以很好地模拟未来气候变化对玉米生产的影响。遗传参数的敏感性分析表明模型对玉米生长参数更加敏感,从而为确定玉米育种的未来发展方向提供理论依据。
     5、分析并修订了青县,曲周等7个站点观测到的气象数据来模拟每个站点玉米生长期和产量,并与实测值进行比较。结果表明,区域气候PRECIS模型与MPES模型参数兼容,可以用于评估未来气候变化度作物的影响。
     6、在A2、B2情景下对滦县,深州,宁晋和其他6个站点2070年气候因素的各种变化进行了预测并加以评价。A2情景比B2情景温度升高更多,A2情景下除了大河和怀来2个站点的降水量呈小幅下降趋势外,其他站点降水量增加。总体来说,大多站点降水量有增加的趋势。
     7、气候变化将导致玉米生长期变短,A2情景的生育期比B2的长。预测21世纪70年代A2情景下产量平均下降20%,B2平均下降11%。
     8、适当调整播种和耕种方法及引进新品种可以有效地提高玉米的产量。需要改进农业管理系统,以及提高肥科利用率来促进未来农业可持续发展。
Maize (Zea mays L.) is the second-largest food crop in China after rice (China Statistics Yearbook2012), and it plays an important role in agricultural production and in the national economy in the country. However, this production may be affected by climate changes in regional areas. The future prediction indicates that the nationwide annual mean air temperature would increase by1.3-2.1℃in2020and2.3-3.3℃in2050as compared with that in2000. This change may dramatically affect maize production in this part of the world and thus will decrease the world maize production, which will have huge damage on world's food supply. This thesis discussed the effect of climate change on maize growth and the impact on the predictive production in Hebei Province of China using the Providing Regional Climates for Impacts Studies (PRECIS) climate prediction under SRES A2and B2scenarios, and then proposed some appropriate adaptations and strategies. About9sites were selected and data from the meteorological station in Hebei province were analyzed in this study, baseline1980to2010. The Maize Production Emulation System (MPES) simulation model was used to simulate the maize growth under extreme climate scenarios, which is the propriety of the Agriculture Intelligent Technology Laboratory of the Agricultural Information Institute of Chinese Academy of Agricultural Science. The applicability of MPES model was evaluated in China, and its sensitivity analysis to the weather was checked. The weather forecast data used for this research were derived by PRECIS simulation baseline (1961-1990). The results of the simulation growth using MPES model is a combination of both connectivity verification techniques and simulation analysis of each site in the SRES A2, B2scenarios under2020s,2050s and2070s future weather. Hence, the adjustment type of sowing and cultivation, the introduction of measures to adapt to the new breed to predict better yield were considered. The simulation data was collected from different meteorological stations across Hebei Province area and some from the Nation Statistics Bureau of China. These data include historical observed field information, daily meteorological data and soil parameters data. The data obtained was used to build a database about growth period and simulated yield. The settings and calibration of MPES model were based on further validation and analysis of adaptation and weather sensitivity were established by using the combination of temperature settings, rain and crops parameters. The main results were as follows:
     1. The sensibility to weather of MPES was obtained by changing the initial weather inputs. Its capacity of climate adaptation was also evaluated by setting up a basis as a model for evaluation of future climate conditions.
     2. The maize yield has excellent simulation with the Normalized Root Mean Square Error (NRMSE) of9.81%, for the simulation to the growing period of summer maize in most of the sites, apart from a few years' simulation of growth period day's deviation. The trends of the simulated and observed values were quite close. The measured data in9locations compared with the simulated gave a correlation coefficient R2of0.70with a confidence level σ=0.01. Simulation performance results were also significant in all sites. Simulation for different years showed wide variation, very high or low depending on the sites performance, but with a small error in the set. The model has shown its effectiveness in most of the study areas.
     3. The MPES model can reproduce the effect of variations in seed and simulate the best period of growth for better performance. However, some results showed some errors with reasonable limits. The performance of the model expressed by a better applicability of the simulation compared to the observed maize yield can be maximized.
     4. The MPES model is sensitive to temperature and precipitation. It can provide better approach for future climate changes impacts on maize production. The Sensitivity analyses of genetic parameters have demonstrated that the model is more sensitive to maize growth parameters, which provide a theoretical basis for determining the future direction of maize breeding.
     5. Observed weather data in Qingxian, Quzhou and7other sites were analyzed and revised to simulate the growth and yield of maize in each site when compared with the measured values. The results showed that the climate model SRES were compatible with the parameters of the model MPES and capacity can be adapted to assess the impact of future climate change.
     6. Prediction in Luanxian, Shenzhou, Ningji and other6sites under A2and B2scenarios in2070s of different changes in climatic factors were evaluated. In addition, the A2scenario, which provides a higher temperature increase in scenario B2, predicted an increase in precipitation, except for Dahe and Huailai under scenario A2which showed a slight downward trend sites. Overall, most sites showed a tendency to increased precipitation.
     7. Climate change will lead to a shorter period of maize growth. Maize growth period under A2scenario is longer than that of B2scenario. The predictions in yield provided a tendency to an average of20%decrease in A2scenario in2070s, as mean reduction of B2scenario is11%.
     8. To adjust appropriately seeding and cultivation, the introduction of new varieties can effectively improve the yield of maize. The management system of agriculture must be improved and the efficiency of fertilizers is necessary to be promoted for future agricultural sustainability.
引文
1. Allison M. Thomson, R. Cesar Izaurralde, Norman J. Rosenberg, Xiaoxia He. Climate Change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agriculture, Ecosystems and Environment 2006,114:195-209.
    2. Alfermann, A. Empt, Ursula; Wilhelm; Pras, Niesko; Petersen, and Maike.The use of plant cell cultures for the production of podophyllotoxin and related lignans. Journal of Applied Botany 2000, 74(3/4):145-150.
    3. Ambrosi P., Hourcade J.-C., Hallegatte S., Lecocq F., Dumas P., Ha-Duong M. Optimal control models and elicitation of attitudes towards climate damages, Environment Modeling and Assessment 2003,8:133-147.
    4. Ana Iglesias, Luis Garrote, Antonio Cancelliere and Francisco Cubillo. Coping with Drought Risk in Agriculture and Water Supply Systems:Drought Management and Policy Development Book, 2009.
    5. Andre Berger, Fedor Mesinger and Djordje Sijacki. Inferences from Paleoclimate and Regional Aspects, Springer 2012,182-199.
    6. Andrej ceglar and Lucka Kajfez-Bogataj. Trends in seasonal precipitation and temperature in Slovenia during 1951-2007. Journal of Regional Environmental Change 2012. (Research Article)
    7. Andrej Ceglar and Lucka Kajfez-Bogataj. Simulation of maize yield in current and changed climatic conditions:Addressing modeling uncertainties and the importance of bias correction in climate model simulations European Journal of Agronomy 2012,37:83-95.
    8. Asseng S, Fillery IRP, Anderson G.C, Dolling P.J, Dunin F.X, Keating B.A. Use of the APSIM wheat model to predict yield, drainage, and NO3-leaching for deep sand. Australian Journal of Agricultural Research 2008,49:363-378.
    9. Bechir Ben Nouna, Nader Katerji and Mastrorilli. Using-The CERES-Maize model in a semi-arid Mediterranean environment. Evaluation of model performance 2000.
    10. Belkys Yasmin Brancho Bravo. Application of Statistical Techniques to Modeling Crop growth. Dissertation Thesis of the University of Florida 2005.
    11. Boogaard. Climate change and India:vulnerability assessment and adaptation. Universities press 2003,45.
    12. Boogaard H.L., Van Diepen C.A., Rotter R.P., Cabrera J.M.C.A., Van Laar H.H. User's guide for the WOFOST 2011.
    13. Boogaard H., Wolf J., Supit I., Niemeyer S., Van Ittersum M. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field crop Research 1998 and 2013,143:130-142.
    14. Boote, K.J., J.W. Jones, and G. Hoogenboom.1997. Simulation of crop growth:CROPGRO model. Agricultural Systems Modeling 1997:651-692.
    15. Boote, J., M.I. Minguez, and F. Sau:Adapting the CROPGRO-legume model to simulate growth of faba bean. Agronomy Journal 2002 (in press).
    16. Budong Qian, Reinder De Jong, Jingyi Yang, Hong Wang, Sam Gameda,2011. Comparing simulated crop yields with observed and synthetic weather data. Agriculture and Forest Meteorology 2011,151:1781-1791.
    17. Castrignano A., N. Katerji, F. Karam, M. Mastrorilli and A. Hamdy 1998. A modified version of CERES-maize model for predicting crop response to salinity stress.Ecological Modeling 1998,111: 107-120.
    18. Catherine Van den Hoof, Emmanuel Hanert and Pier Luigi Vidale. Simulating Dynamic growth with an adapted Land Surface Model-JULES-SUCROS:Model development and validation 2010.
    19. Chao Chen, Enli Wang, and Qiang Yu,2010. Modeling Wheat and Maize Productivity as Affected by Climate Variation and Irrigation Supply in North China Plain. Agronomy Jounal-Article 2010, 102:1037-1049.
    20. Chavat, Karel (2001) Next steps in Precision Farming and GIS, Available online:http://www.geoplace.com/ge/2001/0801/0801ag.asp
    21. Chinese Annual Statistical Year Book 2006.
    22. Christopher J. Kucharik and Shawn P. Serbin. Impacts of recent climate change on Wisconsin corn and soybean yields trends. Environment Research Letters 2008,3:10.
    23. Climate change Fourth Report of IPCC (AR4).The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK 2007.
    24. Cubasch U, Meehl GA, Boer G.J, Houghton J.T, Ding Y, Griggs D.J. Projections of future climate change. Third Report (TAR) of IPCC on Climate Change. The scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York:Cambridge University Press 2001:525-82.
    25. Cynthia Rosenzweig, Francesco N., Tubiello, Richard Goldberg, Evan Mills and Janine Bloomfield. Increased damage crop in US from excess precipitation under climate change. Journal of Global Environment Change 2002,12:197-202.
    26. Dai, A., and Kevin Trenberth E. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range, Journal of Climate, volume1999,12:2451-2473.
    27. Dai, A., Wigley T. M. L, Boville B. A., Kiehl J.T, and Buja L. E. Climates of the twentieth and twenty-first centuries simulated by the NCAR climate system model, Journal of Climate volume 2001,14:485-519.
    28. Daniel R., Chavas R. Izaurralde R., Cesar Thomson, Allison M., Gao Xuejie. Long-term climate impacts on agricultural productivity in Eastern China. Journal Agricultural and Forest Meteorogy 2009,149:1118-1128.
    29. David B. Lobell and Marshall B. Burke. On the use of the statistical models to predict crop yield response to climate change. Agriculture and Forest Meteorology 2010 (in press).
    30. David E. Schimmelpfennig, Bruce A. McCarl and Chi-Chun Chen. Yield Variability as Influenced by Climate:A Statistical Investigation 2007.
    31. David R. Easterling, Briony Horton, Philip D. Jones, Thomas C. Peterson, Thomas R. Karl, David E. Parker,M. James Salinger, Vyacheslav Razuvayev, Neil Plummer, Paul Jamason, Christopher K. Folland. Maximum and minimum temperature trends for the globe. Journal of Science 1997,277 (5324):364-367.
    32. David R. Easterling Gerald A. Meehl, Camille Parmesan, Stanley A. Changnon, Thomas R. Karl,Linda O. Mearns. Climate extremes:Observations, modeling, and impacts. Journal of Science 2000,289(5487):2068-2074.
    33. Deng Zhenyong, Zhang Qiang, Pu Jinyong, Liu Dexiang, Guo Hui, Wang Quanfu, Zhao Hong and Wang Heling. Impact of climate warming on crop planting and production in Northwest China. Journa Acta Ecologica Sinica 2008,28(8):3760-3768.
    34. Dhakhwa, G.B., and C. L. Campbell. Potential effects of differential day-night warming in global climate change on crop production. Journal of Climate Change, volume 1998,40:647-667.
    35. Dhakhwa, G B., Campbell, C. L., LeDuc, S. K. and Cooter, E. J. Maize growth:Assessing the effects of global warming and CO2 fertilization with crop models. Journal of Agricultural and Forest Meteorology., volume 1997,87(4):53-272.
    36. Easterling, D. R., Karl T. R., Mason E.H., Hughes P. Y., and Bowman D. P. United States Historical Climatology Network (USHCN) Monthly Temperature and Precipitation Data. ORNL/CDIAC-87, NDP-019/R3. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee,1996.
    37. ESRI (2006). Precision Agriculture and GIS. Available:http://www.esri.com/industries/agriculture/business/precision.html.
    38. Eric-Desire Tomoro, Yeping Zhu, HaiLong Liu, Shijuan Li, KaiMeng Sun, E Yue. Effects of Climate Change on Maize Yield (Zea Mays L.) In Hebei Province of China. International Journal of Engineering Research and Technology 2013,2(6):2578-2598.
    39. Eric Holt-Gimenez, Miguel A. Altieri, and Peter Rosset. Food First Policy Brief No.12:Ten Reasons Why the Rockefeller and the Bill and Melinda Gates Foundations' Alliance for Another Green Revolution Will Not Solve the Problems of Poverty and Hunger in Sub-Saharan Africa 2006.
    40. Evans L.T, Fischer R.A. Yield potential:its definition, measurement, and significance. Journal of Crop Science 1999,39:1544-1551.
    41. Estrella N., Tim H. Sparks, and Annette Menzell. Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Journal of Climate Resources 2009,39:235-248.
    42. Farquhar Graham D. and Roderick Michael L. Pinatubo, Diffuse Light, and the Carbon Cycle. Journal Science 2003,299.
    43. Fischer R., Aas W., De Vries W., Clarke N., Cudlin P., Leaver D., Lundin L., Matteucci G, Matyssek R., Mikkelsen TN, Mirtl M., Ozturk Y, Papale D, Potocic N, Simpson D, Tuovinen J-P, Vesala T., Wieser G and Paoletti E. Journal iForest-Biogeosciences and Forestry 2010, 4:167-171.
    44. Fischer Debra A, Geoffrey Marcy W., Paul Butler R., Steven S. Vogt.Gregory W. Henry,Dimitri Pourbaix, Bernard Walp, Anthony A. Misch, and Jason T. Wright. A Planetary Companion to HD 40979 and Additional Planets Orbiting HD 12661 and HD 38529. The Astrophysical Journal 2003, 586:1394-1408.
    45. Fraisse C.W., Breuer N.E., Zierden D., Bellow J.G, Paz J., Cabrera V.E., Garcia y Garcia A., Ingram K.T., Hatch U., Hoogenboom G, Jones J.W., O'Brien, J.J. AgClimate:A climate forecast information system for agricultural risk management in the southeastern USA. Journal of Computers and Electronics in Agriculture 2006,53:13-27.
    46. Francesco Besello. Assessing Climate Change Impacts:Agriculture. Working Paper of Climate Impacts Policy Division 2007.
    47. Fulu Tao, Zhao Zhang, Jiyuan Liu, Masayuki, Yokozawa. Modeling the impacts of weather and climate variability on crop productivity over large area:A new super-ensemble-based probabilistic projection. Agriculture and Forest Meteorology 2009,149:1266-1278.
    48. Fulu Tao, Masayuki Yokozawa, Yinlong Xu Yousay Hayashi and Zhao zhang. Climate change and trends in phenology and yields of field crops in China,1981-2000. Agriculture and Forest Meteorology 2006,138:82-92.
    49. Food and Agriculture Organization Statistics (FAOSTAT) report 2010 and 2013.
    50. Gao Feng, Morisette J.T.,Wolfe R.E., Ederer G, Pedelty J., Masuoka, E., Myneni R.,Tan, B., Nightingale, J. An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. Earth Resources Technology Inc., Annapolis Junction MD,2008.
    51. Gerrit Hoogenboom, Joel O. Paz, Melba Salazar, and Axel Garcia y Garcia. Agricultural Irrigation Water Demand Forecast Procedures for Estimating Monthly Irrigation Demand. The University of Georgia, Bio & Ag Engineering 1998,2000 and 2003.
    52. Gommes R. Non-Parametric crop yield forecasting, a didactic case study for Zimbabwe. Environment, Climate Change and Diversity Division of FAO 2003.
    53. Graham J.P Reily. Effects of high Temperature on the germination of maize. Journal Planta 1981, 151:68-74.
    54. Graham J.P. Riley. Effects of high temperature on the germination of maize (Zea mays L.). Journal Planta 1981,151(1):68-74.
    55. Grant, Bengough A. G. And Mullins C. E. Mechanical impedance to root growth:a review of experimental techniques and root growth responses. Journal of Soil Science,1990,41:341-358.
    56. Gregory Buyanovsky and Qi Hu. Climate Effects on Corn Yield in Missouri. Journal of Applied. Meteorology 2003,42:1626-1635.
    57. Groisman, P. Y. The relationship of cloud cover to near surface temperature and humidity: Comparison of Global Climate Model simulations with empirical data. Journal of Climate 2000,13: 1858-1878.
    58. Hamlet, A. F., and Lettenmaier D. P. Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resources Research.2007,43.
    59. Hirschboeck, K. K. Climate and floods. In National water summary 1988-89:Hydrologic events and floods and droughts, comp. R. W. Paulson, E. B. Chase, R. S. Roberts, and D. W. Moody. U.S. Geological Survey Water-Supply. Washington, DC:U.S. Government Printing Office 1991, 2375:99-104.
    60. Hughes, M., and A. Hall. Local and synoptic mechanisms causing Southern California's Santa Ana winds. Climate Dynamics,2010,34:847-857.
    61. Hughes M., A. Hall, and J. Kim. Human-induced changes in wind, temperature and relative humidity during Santa Ana events. Climatic Change 2011,109 (Suppl.1):119-132
    62. Hegerl, G C. Detectability of anthropogenic changes in annual temperature and precipitation extremes, Journal of. Climate 2004:3683-3700.
    63. Huang R.H, Wu Y.E The influence of ENSO on the summer climate change in China and its mechanisms. Journal of Advance in Atmospheric Science 1989,6:21-32.
    64. Iglesiasc A.M.L. Parry M.L., Rosenzweig C., Livermore M. And Fischer G Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Journal Global Environmental Change 2004,14:53-67.
    65. Im, K.S., Pesaran M.H., Y. Shin. Testing for Unit Roots in Heterogenous Panels. Working Paper 9526, Department of Applied Economics, University of Cambridge 1997.
    66. IPCC (International panel on Climate Change). Climate change:Impacts, Adaptation and Vulnerability. Contribution of Working Group 2 to the Third Assessment Report 2001.
    67. IPCC Third Report (TAR). Regional Climate Projections. Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge University Press 2007:881-885.
    68. IPCC, TAR. The Third Report of IPCC on Climate Change 2001.
    69. IPCC, AR4.The forth Report of IPCC on Climate Change:The Physical Science Basis,2007.
    70. IPCC, AR4. The forth Report of IPCC on Climate Change:Summary for Policymakers,2007.
    71. Jensen Olsen., P.K. B(?)cher T. Comparison of scales of climate and soil data for aggregating simulated yields of winter wheat in Denmark 2000.
    72. Jhorar OP, Mathauda SS, Gurdip S. Relationship s between climate variables and Ascochyta blight disease of chickpea in Punjeb, India. Journal of Agricultural and Forest Meteorology 1998,87 (2-3):171-177.
    73. Jia Yingsuo and Xie Junliang "Maize in Hebei" 2006 Supported by international project of science and Technology 2006,39-59 and 135-144 (In Chinese).
    74. JianPing Li, J.,2005:Coupled air-sea oscillations and climate variations in China. Climate and Environmental evolution in China. In:D. Qin (Eds.) Beijing:China Meteorological Press,2005, 1:324-333.
    75. JianPing Li, Ding R. and Chen B. Review and prospect on the predictability study of the atmosphere. Review and Prospects of the Developments of Atmosphere Sciences in Early 21st Century, China Meteorology Press 2006:96-104.
    76. John Reilly, Sergey Paltsev, Benjamin Felzer, Xiaodong Wang, David Kicklighter, John Melillo, Ronald Prinn, Marcus Sarofim, Andrei Sokolov and Chien Wang, (2007). Global Economic Effects of Changes in Crops, Pasture, and Forests due to Changing Climate, Carbon Dioxide, and Ozone. Journal of Science and Policy of Global change. Report 2007,149.
    77. Jones J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, J.T. Ritchie. The DSSAT cropping system model. European. Journal of. Agronomy 2003,18:235-265.
    78. Jones PG, Thornton PK. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environmental Change 2003,13:51-59.
    79. Ju Hui, Lin Er Da, Tim Wheeler, Andrew Challinor and Jiang Shuai,2013. Climate change modeling and roles to Chinese Crops Yield. Journal of Integrative Agriculture 2013,12(5): 892-902.
    80. Jugenheimer Robert. Corn:Improvement, Seed Production and Uses. Food and Agriculture Organization of the United Nations publication,1976:1-674 (Book).
    81. Kamel Didan. Ph.D., Thesis. Prototype Geographic Information System for Agricultural Water Quality Management. University of Arizona 1999.
    82. Kang Yinhong Thesis. Predictive Analysis of climate Impacts on Maize water use efficiency in Arid and semi-Arid Area:A case study of Murray Darling in Australia and Loess Plateau in China. Northwest A and F University 2010.
    83. Karl-Otto Wenkel, Michael Berg, Wilfried Mirschel, Ralf Wieland, Claas Nendel and Barbara Kostner. LandCaRe-DSS:An interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies. Journal of Environmental Management 2013,1127:168-183.
    84. Karim, M.A. Fracheboud, Y. and Stamp, P. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. Journal of Agronomy Crops science 2000, 184:217-223.
    85. Keating BA, Carberry PS, Hammer GL. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 2003,18:267-288.
    86. Kelly Robert Thorp. Integration of Remote Sensing and Crop modeling for Nitrogen Management Decision Support in Corn 2006.
    87. Ketiem P.K., Kipkorir E.C. and Omondi P. Modeling effect of climate change on maize production in Kenya:A case of two agro-climatic zones.11th KARI scientific Conference paper,10-14 November 2008.
    88. Lence S.H. AJAE Appendix 2009:Joint Estimation of Risk Preferences and Technology:Flexible Utility or Futility. Unpublished manuscript 2009.
    89. Li shijuan, Zhu Yeping, sun Kai meng and Yue E. "Wheat-corn field production simulation model for intelligent decision making 2001 and 2003.
    90. Li Shijuan and Zhu Yeping. Simulating field production by wheat-maize continuous cropping intelligent decision system. China Academic Journal Electronic Publishing House 2007:162-165.
    91. Li Shijuan and Yeping Zhu. Maize Production Emulation System Based on Cooperative Models. Computer and Computing Technologies in Agriculture Volume2. The international Federation for Information Processing 2008,259:1213-1221.
    92. Liming Ye, Wei Xiong, Zhengguo Li, Peng Yang, Wenbin, Guixia Yang, Yijiang Fu, Jinqiu Zou, zhongxin Chen, Eric Van Ranst and Huajun Tang. Climate Change impact on China food security in 2050. Journal of Agronomy Sustainable Development 2012, Research Article.
    93. Lin Erda Xiong Wei, Ju Hui, Xu Yinlong.The Threshold of Temperature Increase Due to Climate Change for Chinese Agriculture and Its Uncertainties. Journal of Advances in Earth Science 2006, 1:70-76.
    94. Liu Hai Long,Yang Jing-yi, He Ping, Bai You-lu, Jin Ji-yun, Craig F Drury, Zhu Ye-ping, Yang, Xue-ming, Li Wen-juan, Xie Jia-gui,Yang Jing-min and Gerrit Hoogenboom. Optimizing Parameters of CSM-CERES-Maize Model to Improve Simulation Performance of Maize Growth and Nitrogen Uptake in Northeast China. Journal of Integrative Agriculture 2012,11:1898-1913.
    95. Liu Hailong, YePing Zhu, Jing Yi Yang, Ping He, Ji Yun Ji. Simulation and evaluation of DSSAT Model under long term continuous maize production far agricultural intelligent decision. Journal of Material science and Engineering 2013,709:551-554.
    96. Liu Hailong Ph.D. Thesis. Simulation and Evaluation of DSSAT Model under Water and Nitrogen Management in Crop Production System. Chinese Academy of Agricultural Sciences CAAS 2011.
    97. Liu X H, Han X L. Chinese Multi-cropping. Beijing:Beijing Agricultural University Press,1987: 14-45. (In Chinese).
    98. Lobell D.B, Burke M.B, Tebaldi C. Prioritizing climate change adaptation needs for food security in 2030. Science 2008,319:607-610
    99. Long S.P. and Ainsworth E.A. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Oxford Journals, life science, experimental journal of botany 2005,60 (10):2859-2876.
    100. Long Stephen P. Andrew D.B. Leakey, Martin Uribelarrea, Elizabeth A. Plant physiology journal 2006,140(2):779-790.
    101. Long Stephen P., Elizabeth A. Ainsworth, Andrew D. B. Leakey, Donald R. Ort, Josef Nosberger, and David Schimel. Food for Thought:Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations. Science Journals 2007,26:459-460.
    102. Ma Z G, Huang G, Gan W Q, Chen M L. Multi-scale temporal characteristics of the dryness/wetness over northern China during the last century. Chinese Journal of Atmospheric Sciences 2005,29(5):671-681. (In Chinese).
    103. Masanganise J., Chipindu B., Mhizha T. and Mashonjowa. Model Prediction of Maize yield responses to climate change in North-Eastern Zimbabwe. African Crop Science Journal 2012,20: 505-515.
    104. Matt Camden, Lexi Crawford, Joel Kirk and Nic Wetaz. Geographical Information Systems. An Overview,2006.
    105. Mendelshon R., Dinar A and Williams L. The distributional impact of climate change on rich and poor countries. Journal of Environment and Development Economics 2005,11:159-178.
    106. Mendelsohn Robert and Neumann James E. The Impact of Climate Change on the United States Economy. Cambridge University Press 1994.
    107. Meng, E.C.H., Ruifa Hu, Xiaohua Shi, and Shihuang Zhang.Maize in China:Production Systems, Constraints, and Research Priorities. Mexico, D.F.:CIMMYT,2006.
    108. Morton JF. The impact of climate change on smallholder and subsistence agriculture. PNAS 2007, 104 (50):19680-19685.
    109. Muhammad Mubeen, Ashafaq Ahmad, Aftab Wajid, Tasneem Khaliq and Allah Baksh,. Evaluating CSM-CERES-Maize Model for irrigation scheduling in semi-arid condition in Punjab, Pakistan. International Journal of Agriculture and Biology 2013,15:1-10.
    110. Muller Christoph, Alberte Bondeau, Alexander Popp, Katharina Waha and Marianela Fader. Climate Change impacts on agricultural yields. Background note to the World Development Report 2010.
    111. Msughter Adamgbe E. and Fanan Ujoh. Effect of Variability in Rainfall Characteristics on Maize Yield in Gboko, Nigeria. Journal of Environmental Protection 2013,4:881-887.
    112. Murphy, J. M. Quantification of modeling uncertainties in a large ensemble of climate change simulations, Nature 2004,430:768-772.
    113. Nathaniel Beck. Time-Series-Cross-Section Methods,2006.
    114. Nakicenovic, N., Alcamo, J., Davis, G, de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T.Y., Kram, T., La Rovere, E.L., Michaelis, L., Mori, S., Morita, T, Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., Dadi Z.IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2000:1-599.
    115. NBSC. The National Bureau of Statistics of China, P.R. China. China Statistical Yearbook China Statistical Press, Beijing, China 2010.
    116. Odekunle T. O., Orinmoogunje I. O. O. and Ayanlade A. Application of GIS to assess rainfall variability impacts on crop yield in Guinean Savanna part of Nigeria. African Journal of Biotechnology 2007,6(18):210O-2113.
    117. Olesen A.R and Stevens, D.L., Jr. Spatially-restricted random sampling designs for design-based and model-based estimation GB.M. Heuvelink and M.J.P.M. Lemmens editors. Accuracy 2000:609-616. In Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Amsterdam, Delft University Press, Delft, The Netherlands,
    118. Openshaw, S., Turner, A. Predicting the impact of global climatic change on land use in Europe. Medalus3 Project 9.1, GIS-based socio-economic modeling 1998.
    119. Oseni T.O. and Masarirambi. Effect of climate change on maize (Zea mays) production and Food security in Swaziland. American-Eurasian Journal of Agriculture and Environment Science 2011, 11(3):385-391.
    120. Panmao Zhai, Xuebin Zhang, Hui Wan, and Xiaohua Pan, (2004). Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. Jounal of Climate 2004(18):1096-1108.
    121. Parry M., Rosenzweig C., Iglesias A., Fischer, G and Livermore M. Climate change and world food security:a new assessment, Global Environmental Change 1999 (9):51-67.
    122. Parry M.L., C. Rosenzweig, A. Iglesias, M. Livermore, and G Fischer. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Journal Global Environ. Change 2004 (14):53-67.
    123. Pearson, C. J. Thermal adaptation of pennisetum seedling development. Australian Journal of Plant Physiology 1975,2:413-424.
    124. Peter C. Le Roux, Melodie A. McGeoch, Mawethu J. Nyakatya, Steven L. Chown,2005. Effects of a short-term climate change experiment on a sub-Antarctic keystone plant species. Journal of Global Change Biology 2005,11:1628-1639.
    125. Peter G And Philip K. Thornton. Global Environmental Change Book 2003.
    126. Pramod Aggarwal K., Naresh Kumar S., Himanshu Pathak. Impacts of climate change on growth and yield of rice and wheat in upper Ganga Basin. WWF-India, report 2010.
    127. Qin Z, Li W, Tang H. Characteristics of climate for agriculture in China. Journal of Integrative Agriculture 2013.
    128. Qin Z, Tang H, Li W. Modeling impact of agro-drought on grain production in China. International Journal of Disaster Risk Reduction 2013.
    129. Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor. Climate Models and Their Evaluation.Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2007.
    130. Ren, Qiang, Jie Fan, Zhizhong Zhang, Xiaoying Zheng, and G Robert DeLong.2008. "An Environmental Approach to Correcting Iodine Deficiency:Supplementing Iodine in Soil by Iodination of Irrigation Water in Remote Areas." Journal of Trace Elements in Medicine and Biology Vol.22 (1):1-8.
    131.Reidsma P., Ewert F. And Alfons Oude Lansink. Adaptation to climate change and climate variability in European agriculture:The importance of farm level responses.European Journal of Agronomy 2010,32 (2010) 91-102.
    132. Richardson Alec Georges Thesis Analysis of Impact of Climate Change Production:A simulation study. Mississippi State University 2003.
    133. Ritchie J.T., Jones J.W., Hoogenboom G, Porter C.H., Boote K.J., Batchelor W.D Hunt L.A. Wilkens P.W., Singh U. and Gijsman A.J. The DSSAT cropping system model. European Journal of Agronomy 2003,18:235-265.
    134. Robert Finger and Stephanie Schmid. The Impact of Climate Change on Mean and Variability of Swiss Corn Production. Ph.D. Thesis for the Institute for Environmental Decisions, Agri-Food and Agri-Environmental Economics Group, ETH Zurich, Switzerland 2007.
    135. Rosenzweig, C., Hillel,D. Climate Change and the global Harvest. Potential Impacts of the Greenhouse Effect on Agriculture. Oxford University Press, Oxford, New York 1998 and 1999.
    136. Rosenzweig, C. Iglesias, A. Potential impacts of climate change on world food supply. Data sets from a major modeling study 2001.
    137. Roger Temam. Navier-Stokes Equations Theory and Numerical Analysis. Universite de Paris-Sud, Orsay, France, Ecole Polytechnique, Palaiseau, France 1977.
    138. Rosenzweig, C., and M.L. Parry,1994:Potential impact of climate change on world food supply. Nature 1994,367:133-138.
    139. Rowan F. SAGE and David KUBIEN. The temperature response of C3 and C4 photosynthesis. Journal of Plant, Cell& Environment 2007:1086-1106.
    140. Richardson C.W and Wright D.A.WGEN:A Model for Generating Daily Weather Variables United States Department of Agriculture Research 1984.
    141. Ruksana Haque Rimi, Syed Hafizur Rahman Samarendra Karmakar Sk., Ghulam Hussain 2010. Trend Analysis of climate change and investigation on its probable Impacts on Rice Production at Satkhira, Bangladesh. Pakistan Journal of Meteorology 2010,6 (11):37-50.
    142. Saha, A., C.R. Shumway, and H. Talpaz."Joint Estimation of Risk Preference Structure and Technology Using Expo-Power Utility." American Journal of Agricultural Economics 1994, 76:173-184.
    143. Santer, B. D. Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions, Proc. Natl. Acad. Sci.2006,103:905-910.
    144. Schmidhuber J, Tubiello FN. Global food security under climate change. PNAS 2007,104 (50): 19703-19708.
    145. Schlenker, W., and M. J. Roberts. Nonlinear effects of weather on corn yields, Review. Agricultural Economic.2006,28:391-398.
    146. Shawna L. Ainsworth. Naidu, Alistair Rogers, Donald R. Ort. Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought. Journal Plant Physiology 2006,140 (2):779-790.
    147. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2007.
    148. Simelton E. Food self-sufficiency and natural hazards in China. Food Security 2011,3:35-52
    149. Soden, B. J., and I. M. Held, an assessment of climate feedbacks in coupled ocean-atmosphere models, Journal of Climatology 2006,19:3354-3360.
    150. Stainforth, D. A. Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Nature,2005,433:403-406.
    151. Stephen G. Saupe and Lucas C. Plant Physiology 2008, Book.
    152. Stone, D., and A. Weaver (2003), Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model, Clim. Dyn.2003,20: 435-445.
    153. Sun, B. The temporal changes in the observed relationship between clouds cover and surface air temperature. Journal of Climatology 2000,13,4341-4357.
    154. Schimmelpfennig, D.E. Uncertainty in Economic Models of Climate Change Impacts. Climatic Change Annual Report 1996,33:213-234.
    155. Schimmelpfennig, D.E. and G. Yohe. "Vulnerability of Agricultural Crops to Climate Change:A Practical Method of Indexing," Global Environmental Change and Agriculture:Assessing the Impacts, G. Frisvold and B. Kuhn, eds. Northampton, MA:Edward Elgar Publishing Limited 1999:193-217.
    156. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and Miller H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
    157. Tao F, Zhang Z. Adaptation of maize production to climate change in North China Plain:quantify the relative contributions of adaptation options. European Journal of Agronomy 2010,33:103-116.
    158. Travasso MI, Magrin GO, Baethgen WE, Castano JP, Rodriguez GR,Pires JL, Gimenez A, Cunha G, Fernandes M. Adaptation measures for maize and soybean in southeastern South America. AIACC working paper 2006,28.
    159. Tebaldi, C., L. O. Mearns, D. Nychka, and R. L. Smith. Regional probabilities of precipitation change:A Bayesian analysis of multi model simulations, Geophys. Resources. Letters 2004,31.
    160. Tan G, Shibasaki R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modeling 2003,168:357-370.
    161. Tao F, Yokozawa M, Liu J. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research 2008,38:83-94.
    162. Tebaldi, C., K. Hayhoe, J. M. Arblater, and G. A. Meehl. Going to the extremes:An intercomparison of model-simulated historical and future changes in extreme events, Clim. Change 2006,79:185-211.
    163. Tidjani M.A. and Akponikpe P.B.I,2012. Evaluation des strategies paysannes d'adaptation aux changements climatiques:cas de la production de mais au Nord Benin. African Crop Science Journal 2012,20:425-441 (In French).
    164. Timothy Mitchell D., Timothy Carter R., Philip Jones D., Mike Hulme and Mark New. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe:the observed record (1901-2000) and 16 scenarios (2001-2100) 2003.
    165. Tubiello, F.N., M. Donatelli, C. Rosenzweig, and C.O. Stockle,2000:Effects of climate change and elevated CO2 on cropping systems:Model predictions at two Italian locations. Euro. J. Agron.,12,179-189.
    166. Tumbo S.D., Kahimba F.C, Mbilinyi B.P., Rwehumbiza F.B., Mahoo H.F., Mbungu W.B. and Enfers E.,2012. Impact of projected climate on agricultural production in semi-arid areas of Tanzania:A case of same district. African Crop Science Journal 2012(S2):453-463.
    167. Udo Gowik, Peter Westhoff. The Path from C3 to C4 Photosynthesis Journal of Plant Physiology 2011,155(1):56-63.
    168. US Census Bureau report,2011.
    169. Van Den Hoof and Huysman 2010.Managing knowledge sharing:Emergent and engineering perspectives. Information & Management 2010,46(1)1-8.
    170. Van Ittersum and Amthor. Crop Physiology:Applications for Genetic Improvement and Agronomy, chapter 20:Crop physiology, Modeling and Climate Change, Academic Press 2009:524-543.
    171. Van GM, Merckx R, Vlassak K. Microbial biomass responses to soil drying and rewetting:The fate of fast and slow growing microorganisms in soils from different climates. Soil Biology & Biochemistry1993,25:109-123.
    172. Verpoorte R, and Wilhelm Alfermann A. Metabolic Engineering of Plant Secondary Metabolism, book 2000.
    173. Villeneuve, C. et Richard, F. Vivre les changements climatiques:《 Quoi de neuf? 》ditions MultiMondes 2007 (In French).
    174. Vose, R. S., D. R. Easterling, and B. Gleason. Maximum and minimum temperature trends for the globe:An update through 2004, Geophysics Resource Letters.2005.
    175. Wang J, Mendelsohn R, Dinar A, et al. The impact of climate change on China's agriculture. Agricultural Economics 2009,40:323-337.
    176. Wang B.Prediction of East Asian Summer Monsoon Intensity. Presented to FORCRAⅡ 2011 April 6-8,2011 Beijing.
    177. Wang JinXia, Huang JiKun and Yang Jun. Overview of impacts of climate change and adaptation on China's agriculture. Journal of Integrative Agriculture 2013(in press).
    178. Wang Qixian. Study on grain yield and quality formation in summer corn Nongda 108 regulated by nitrogen application strategy. Beijing College of Agriculture and Biotechnology, China Agricultural University 2001.
    179. Wann E. Van. Reduced Plant Growth in Tomato Mutants high pigment and dark green Partially Overcome by Gibberellin. Journal of Hort science 1995,30(2):379.
    180. Wataru Yamori, Kouki Hikosaka, Danielle A. Way. Temperature response of photosynthesis in C3, C4, and CAM plants:temperature acclimation and temperature adaptation. Journal of Photosynthesis and Resources 2013.
    181. Webb, M. J. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles, Climate Dynamic 2006,27:17-38.
    182. Wei Liu and Tao Sang. Potential productivity of Miscanthus energy crop in Loess plateau of China under climate change. Journal of Environment Letter 2013,8:10.
    183. Wilfried Mirschel, Ralf Wieland, Karl-otto Wenkel, Claas Nendel and Christian Guddat. YIELDSTAT-A Spatial Yield Model for Agricultural Crops. European Journal of Agronomy 2013 (in Press).
    184. William E. Easterling1, Netra Chhetri and Xian zheng Niu. Adaptation to Climate Change: Simulation Technological Substitution. Kluwer Academic Publisher 2003:149-221.
    185. Williams, J.R., Jones, C.A., Kiniry, J.R., Spanel, D.A.,1989. The EPIC crop growth model. Trans. ASAE 1987,32:497-511.
    186. Wit,1965. Book of Precision Agriculture. Cambridge University Press.
    187. Wood, R. Natural ups and downs. Nature 2008,453:43-44.
    188. World Bank report 2002.
    189. Xiao GJ, Zhang Q, Yao YB. Impact of recent climatic change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China. Agriculture, Ecosystems and Environment 2008,127:37-42.
    190. Xiong W, Holman I, Conway D. A crop model cross calibration for use in regional climate impacts studies. Ecological modeling 2008,213:365-380
    191. Xiong W, Conway D, Holman I. Evaluation of CERES-Wheat simulation of
    192. Wheat production in China. Agronomy Journal,2008100:1720-1728.
    193. Xue-Jie GAO, WANG Mei-Li and Filippo GIORGI Climate Change over China in the 21st Century as Simulated by BCC_CSM1.1-RegCM4.0. Atmospheric and Oceanic Science Letters 2013,6(5):381-386.
    194. Yang X, Lin E.D, Ma SM, Ju H, Guo LP, Xiong W. Adaptation of agriculture to warming in Northeast China. Climatic Change 2007,84:45-58.
    195. Yamori W, Noguchi K, Kashino Y, Terashima I. The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. Plant Cell Physiol 2008,49:583-591
    196. Yamori W., Kouki Hikosaka and Danielle A. Way. Temperature response of photosynthesis in C3, C4, and CAM plants:temperature acclimation and temperature adaptation. Photosynthesis Research Journal 2013.
    197. Yang X., Ch. Chen, Q. Luo, L. Li, Q. Yu. "Climate change effects on wheat yield and water use in oasis cropland" 2010.
    198. Yinhong Kang, XiaoYi Ma and Shahbaz Khan. Predicting climate change impact on maize crop productivity and water use efficiency in loess plateau. Published on Wiley online Library 2013.
    199. Zhang H X. The problem concerning the response of China's cropping systems to global climatic changes I:The effect of climatic changes on cropping systems in China. China Journal of Agrometeorology 2000,21(1):9-13. (In Chinese).
    200. Zhang Jian Bin and YePing Zhu," Intelligent Simulation of Wheat-corn Continuous Cropping System and Its Implementation on Internet. Master Thesis 2006 (In Chinese).
    201. Zhang H D, Xiao F J, Wang C Y. Impact of climatic change on agriculture and its adaptation countermeasures in China. Journal of Natural Disasters 2006,15(6):327-331. (In Chinese).
    202. Zhao Tong-ke, Zhang Guo-yin, Ma Li-min and Sun Zu-yu,2001. The contents, Form and Distribution of Sulfur in soil of Hebei. Journal of Plant Nutrition and Fertilizer Science 2001,7(2): 178-182. (In Chinese).
    203. Zhijuan Liu, Xiaoguang Yang, Kenneth G Hubbard, Xiao maolin. Maize potential yields and yield gaps in the changing climate of Northeast China. Primary Research Article 2012.
    204. Zhu Yeping. Wheat Continuous Cropping Environment Simulation and Intelligent Decision System WMCCIDS. Journal of computer and Agriculture 2001,11:41-44 (In Chinese).
    205. Zhou J J, Wang J A, Mao R. Dynamic spatial and temporal analysis of population, grain yield and precipitation in northern area of China over forty years. Journal of Beijing Normal University: Natural Science 2004,40(4):540-547. (In Chinese).
    206. Wang Z Q, Fang W H, He F, Xu H. Effect of climate change on wheat yield in Northern China:a research based on EPIC model. Journal of Natural Disasters 2008,17(1):109-114. (In Chinese).
    207. Yan H M, Liu J Y, Cao M K. Remotely sensed multiple cropping index variations in China during 1981-2000. Acta Geographica Sinica.
    208. Yang, H.S., Dobermann, A., Lindquist, J.L., Walters, D.T., Arkebauer, T.J., Cassman, K.G. Hybrid-maize—a maize simulation model that combines two crop modeling approaches. Field Crops Resources 2004,87:131-154.
    209. Yun Y R, Fang X Q, Wang L Y, Tian Q. Adapted regulation of crop grown border line to climate warming in China. Crops 2007(3):20-23. (In Chinese).
    210.李月华,侯大山,刘强.收获期对夏玉米千粒重及产量的影响.河北业科学2008,12(7):1-3,6.
    211.孙月轩,鲍继友.夏玉米灌浆与温度,籽粒含水率关系的初步探讨.玉米科学,1994(1):54-58.
    212.史红志,王振学.气温变化后鲁西南地区夏玉米适宜收获期研究.山东农业科学,2009(12):59-60.
    213.刘宇,陈泮勤,张稳.一种地面气温的空间插值方法及其误差分析.大气科学,2006,31:146-152
    214.河北省农业区域区划办公室,河北省气象局.河北省农业气候及其区划.北京:气象出版社,1988.
    215.翁恩生,周广胜.用于全球变化研究的中国植物功能型划分.植物生态学报,2005,29:81-97
    216.刘丹,杜春英,于成龙.黑龙江省玉米的生态适宜性评价及种植区划.玉米科学,2009,17:160-163
    217.吕新,张伟,胡昌浩.玉米种植区气候生态因素优势综合评价研究.干旱区研究,2005,22:387-390
    218.周俊菊,王静爱,毛睿.中国北方人口粮食和降水量的时空变化.北京师范大学学报:自然科学版,2004,40(4):540-547.
    219.马柱国,黄刚,甘文强陈明代中国北方干湿变化趋势的多时段特征.大气科学,2005,29(5): 671-681.
    220.王志强,方伟华,何飞,徐宏.中国北方气候变化对小麦产量的影响-基于EPIC模型的模拟研究.自然灾害学报,2008,17(1):109-114.
    221.刘巽浩,韩湘玲.中国的多熟种植.北京:北京农业大学出版社,1987:14-45.
    222.张厚瑄.中国种植制度对全球气候变化响应的有关问题:气候变化对我国种植制度的影响.中国农业气象.2000,21(1):9-13
    223.云雅如,方修琦,王丽岩,田青.我国作物种植界线对气候变暖的适应性响应.作物杂志,2007(3):20-23.
    224.闫慧敏,刘纪远,曹明奎.20年中国耕地复种指数的时空变化.地理学报,2005,60(4):559-566.
    225.陈素英张喜英邵立威孙宏勇。农业技术和气候变化对农作物产量和蒸散量的影响.中国生态农业学报2011,19(5):1039-1047.
    226.李晔.收获期对夏玉米产量性状的影响.中国种业,2007(10):42.
    227.鲍继友,张金龙.夏玉米最佳收获期试验研究.玉米科学,1993(3):23-25.
    228.邓振镛.武威县玉米气候适应性分析及种植区划.农业气象,1983,1:23-28
    229.李季贞,刘东辉.黑龙江省玉米适种区区划.农业气象,1987,1:6-10
    230.徐德源.新疆农业气候资源及区划.北京:气象出版社,1989.326
    231.贾银锁,谢俊良:河北玉米.中国农业科学技术出,2006.
    232.张喜英,农业技术和气候变化对农作物产量的影响,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700