用户名: 密码: 验证码:
不同氮效率小麦品种氮素吸收利用的生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2001~2003年度在河北农业大学教学实验基地进行。两年度中取得的主要研究结果如下:
     1.200l~2002年度,对28个不同小麦品种(基因型)在未施氮条件下的籽粒产量研究发现,不同小麦品种的籽粒产量具有明显差异。聚类分析结果表明,供试品种(基因型)可划分为氮高效、氮中效和氮低效三类,分别包括2、7和19个品种(基因型)。表明生产中应用的品种(基因型)中,耐低氮能力强的氮高效品种极少。在低氮下筛选的不同氮效率品种(基因型),对氮素响应能力上没有明显不同。
     2.在未施氮胁迫条件下,各种氮效率品种的成熟期植株全氮含量表现为氮高效<中效<低效;单位土地面积的植株干重和氮累积量则相反。表明氮高效品种在氮胁迫下单位土地面积具有较强的植株氮素积累和干物质生产能力。施氮使不同氮效率品种的籽粒产量、成熟期植株全氮含量、单位面积植株干重和氮累积量均明显增加。
     3.小麦氮效率(NUE)可分解为吸收效率(UPE)和利用效率(UTE)。在氮高效、中效和低效品种中,在UPE和UTE上均存在着高、中和低几种类型。施氮使各氮效率类型的NUE和UTE下降,而UPE在两种氮素水平下相近。表明在低氮胁迫条件下氮高效类型品种NUE的提高主要起因于UTE的增加。不同氮效率类型间的氮响应度均值的差异较小,且在同一类型间具有较大的变异系数。
     4.在未施氮条件下,氮高效品种的成熟期株高较中效和低效类型品种明显增加,成熟期株高可作为筛选耐低氮能力强的小麦品种的指标之一。不同氮效率品种成熟期的穗长、总小穗数和结实小穗数差异较小,成熟期单株粒重和单株干物重的表现与各自籽粒产量和氮效率的表现一致。与未施氮胁迫下相比,施氮使不同氮效率品种成熟期植株株高、穗长、总小穗数和结实小穗数均有不同程度的增加。
     5.不同氮效率品种的产量构成因素在未施氮胁迫条件下表现为下述特征:在单位面积穗数上,氮高效>中效>低效;在穗粒数上的表现与单位面积穗数相反;在干粒重上,以氮中效>高效>低效。单位面积穗数的多少对低氮胁迫下的氮效率和籽粒产量的高低具有重要影响。施氮使不同氮效率类型品种的单位面积穗数和穗粒数增加,千粒重降低。三个构成因素对施氮的反应在不同氮效率类型间没有差异。
     6.在不同氮水平下,不同氮效率品种间拔节期、抽穗期和成熟期的植株全氮含量均无明显差异。供试品种在施氮条件下各生育时期植株氮累积量的增加与植株干物质积累量的增大密切相关。拔节至成熟阶段植株氮累积量表现为氮高效>中效>低效。阶段氮累积量以氮高效品种对供氮反应较为迟钝、中效次之,低效较为敏感。
    
     7.在未施氮胁迫条件下,不同氮效率品种各生育时期的株高、叶面积系数
     (LA工)、群体干物重(PDw)和群体生长参数,包括:作物生长率(CGR)、净同化
    率(NAR)及光合势(Pp)均以氮高效>中效>低效;施氮条件下,各氮效率品种的
    NAR降低,除NAR外的上述其它群个体性状和生长参数增加。
     8.倒三叶和旗叶的光合速率(P。)、气孔导度(95)、叶绿素含量(Chl)以及
    叶绿素含量缓降期(RSP)、光合速率高值持续期(PAD)、平均Pn、叶面积(LA)和
    叶源量(LSC)在不同氮效率品种中,在未施氮胁迫下均表现为氮高效>中效>低效,
    施氮条件下上述参数的数值增大;胞间C02浓度(C。)在不同氮效率品种中的表现以
    及对施氮的反应则相反。在不同氮素水平下,供试品种倒三叶和旗叶叶源量LSC与
    光合生理参数PAD、RSP、LA及P。(平均)均呈极显著或显著正相关。
     9.研究表明,在低氮胁迫条件下,籽粒产量或NUE与倒三叶、旗叶的叶绿素含
    量缓降期(RSP)、平均P。和光合速率高值持续期(PAD)呈显著和极显著正相关,
    表明可用RSP和PAD的长短以及叶片平均P。作为评价低氮胁迫下籽粒产量和氮效率
    的重要指标。
     10.在不同氮素水平下,不同氮效率品种倒三叶和旗叶生长期间各测试点可溶
    蛋白含量(Sp)的动态变化呈单峰曲线,硝酸还原酶活性(NRA)的动态变化呈双
    峰曲线。在未施氮条件下,不同氮效率品种在上述叶位各测试点SP和NRA上的差
    异不明显,施氮使供试品种倒三叶和旗叶各测试点的Sp和NRA均有所增加。研究
    表明,叶片Sp和NRA作为预测小麦籽粒产量和氮效率高低指标的可行性仍有待今
    后进一步探讨。
The experiment was carried out at the experimental station of Hebei Agricultural University in 2001-2003. The results are summed as follows:
    1. In 2001-2002, 28 wheat varieties (genotypes) were selected to study the yield performance under nitrogen stress condition. It is found that there were obvious differences in grain yield among them. The cluster analysis indicated that the tested varieties could be classified into three categories with different nitrogen use efficiencies (NUE), including high efficiency, middle efficiency and low efficiency, corresponding 2, 7 and 19 varieties in each category. It showed that few varieties with high NUE could be found in the present wheat production. There had not big differences on the capability to nitrogen response in the tested 28 varieties.
    2. Under the condition without nitrogen application, the total nitrogen concentration in plants at maturity stage showed the highest in varieties of high NUE, then of middle NUE, the lowest of low NUE, and the adverse results were found on plant dry matter weight per area and nitrogen accumulation amount in the different NUE varieties. Then this showed that the high NUE varieties had stronger capabilities of N accumulation and dry matter production in plants under N stress condition. N application obviously increased the grain yields, total N concentration of plants at maturity stage, plant dry matter weights and N accumulation amounts of plants in all tested varieties.
    3. Wheat N use efficiency can be divided into uptake efficiency (UPE) and utilization efficiency (UTE). There existed types high efficiency, middle efficiency and low efficiency in UPE and UTE in the tested varieties. N application decreased NUE and UTE in all varieties. Similar UPE was found for each variety under different N conditions, indicating the increase of NUE in high NUE varieties under N stress condition came from the increase of UTE. The average value of N response degree changed little in different NUE varieties. Big variation coefficients in statistics were existed in varieties of same NUE category.
    
    
    4. Under N stress condition, the plant height at maturity in high NUE varieties was much higher than those in middle NUE and low NUE varieties. It can be used as one important index to screening wheat variety with higher ability to resist N stress. The spike length, total spikelet number and fruitful spikelet number had no obvious difference in tested varieties. The grain weight and dry matter weight per plant at maturity in varieties with different NUE had the same tendency as those in grain yield and NUE. Compared to N stress, N application increased the plant height at maturity, spike length, total spikelet number and fruitful spikelet number, grain weight dry matter weight per plant at different extent in the tested varieties.
    5. A follow characteristics on yield components in tested varieties under N stress condition was found as follows: The spike number per area showed the highest in high NUE, then middle NUE, the lowest in low NUE; The adverse effect to the spike number per area was found in kernel number per spike; The per 1000 grain weight was the highest in middle NUE, then high NUE, the lowest in low NUE. The spike number per area had important effect on the NUE and the grain yield under N stress condition. N application increased the spike number per area and kernel number per spike and decreased the per 1000 grain weight in tested varieties. No differences were found on responding to N in three yield components in tested varieties.
    6. At different levels of N, there were not significant differences on total N concentration at jointing stage, booting stage and maturity stage in tested varieties. There existed a close correlation between the increase of N accumulation amount and enhancement of dry matter weight in plants at each growth stage. The N accumulation amounts in plant during jointing to maturity are the most in high NUE, then in middle NUE, the last in low NUE. The response to N application in the N accumulation amounts in high,
引文
[1] 荆家海主编.植物生理学[M].西安:陕西科学技术出版社,1994,59-60.
    [2] 中国农业年鉴编辑委员会编.中国农业年鉴[M].北京:中国农业出版社,2001,392.
    [3] 张国梁,章申.农田氮素淋失研究进展[J].土壤,1998,30(6):291-297.
    [4] Schepers J S, Below F E. Influence of corn hybrids on nitrogen uptake and utilization efficiency[A]. In: Wilkinson D(ed.). Proceedings of Forty-Second Annual Corn and Sorghum[C] Res. Conf. No. 42. American Seed Trade Assoc., 1987, 172-186.
    [5] 吕殿青,周延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.
    [6] 张维理,田哲旭,张宁,等.我国北方农用N肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [7] 张夫道.氮素营养研究中的几个热点问题[J].植物营养与肥料学报,1998,4(4):331-338.
    [8] 张福锁,江荣风.植物氮素和水分相互作用的机理[A].见:李韵珠,陆锦文,罗远培主编.土壤水和养分的有效利用[M].北京:北京农业大学出版社,1994,149-155.
    [9] 李韵珠,黄元仿.冬小麦的氮素利用率和供水关系[A].见:李韵珠,陆锦文,罗远培主编.土壤水和养分的有效利用[M].北京:北京农业大学出版社,1994,139-148.
    [10] Huggins D R, Pan W L. Nitrogen efficiency component analysis: An evaluation of cropping system differences in productivity[J]. Agronomy Journal, 1993, 85: 898-905.
    [11] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal, 1982, 74: 562-564.
    [12] Novoa R, Loomis R S. Nitrogen and plant production[A]. In: Monteith J, Webb C(eds), Soil and water-in mediterranean-type environments[M]. The Hugue. boston/London: Martinus Nijhoff/Dr. W. Jund Publishers, 1981, 177-204.
    [13] 刘建安,米国华,陈范骏,等.玉米杂交种氮效率基因型差异[J].植物营养与肥料学报,2002,8(3):276-281.
    [14] 张福锁,樊小林,李晓林主编.土壤与植物营养研究新动态(第二卷)[M].北京:中国农业出版社,1995,97.
    [15] 单玉华.王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异[J].江苏农业研究,2001,22(1):12-15.
    [16] 陆景陵主编.植物营养学(上) [M].北京:北京农业大学出版社,1994.
    [17] 刘建安,米国华,张福锁.不同基因型玉米氮效率差异的比较研究[J].农业生物技术学报,1999,7(3):248-254
    [18] Bahman E, Jerry W. Maranville Root development and nitrogen influx of corn genotypes grown under combined drought and N stress[J]. Agronomy Journal, 1993, 85: 147-152.
    [19] Comfort S D, Malzer G L, Busch R H. Nitrogen fertilization of spring wheat genotypes: influence on root growth and soil water depletion[J]. Agronomy Journal, 1988, 80: 114-120.
    [20] Zhang H, Forde B G. An Arabidops is MADs-box gene controlling nutrient-induced changes in root architecture[J].Science, 1998, 279: 407-409.
    [21] 王艳,米国华,陈范骏,等.玉米根系形态对光照、氮水平反应的基因型差异[J].土壤肥料,2001(3):12-16.
    
    
    [22] 李伏生,康绍忠.CO_2浓度、氮和土壤水分对春小麦养分利用效率的影响[J].中国农业科学,2002,35(8):953-958.
    [23] 严六零,彭永欣,郭文善,等.小麦栽培与生理:小麦根系在土壤中分布规律[M].南京:东南大学出版社,1992.
    [24] 张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系[J].华北农学报,1993,8(4):76-82.
    [25] 刘殿英.黄丙茹,董庆裕,等.栽培措施对冬小麦根系及其活力和植株性状的影响[J].中国农业科学,1993,26(5):51-56.
    [26] 赵爱芬,黄学文.春小麦根系生长动态研究[J].华北农学报,1993,8(1):88-93.
    [27] Sattelmacher B, Walter J Horst, Hciko C. Becker. Factors that contribute to genetic variation for nutrient efficiency of crop plants[J] . Z. Pflanzenemahr. Bodcnk., 1994, 157: 215-224.
    [28] 周顺利,张福锁,王兴仁,等.高产条件下不同品种冬小麦氮素吸收与利用特性的比较研究[J].土壤肥料,2000(6):20-24.
    [29] 黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报,2001,7(3):293-297.
    [30] 张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1996,86-109.
    [31] Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. I.Dry matter and nitrogen accumulation[J]. Crop Science, 1985a, 25: 430-435.
    [32] Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. Ⅱ.Nitrogen assimilation in relation to grain and protein[J]. Crop Science, 1985b, 25: 435-440.
    [33] Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation In wheat. Ⅲ. Nitrogen translocation in relation to grain and protein[J]. Crop Science, 1986, 26: 737-740.
    [34] Dhugga K S, Waines J G. Analysis of nitrogen accumulation and use in bread and durum wheat[J]. Crop Science, 1989,29: 1232-1239.
    [35] May L, Van Sanford D A, Mackown C T, et al. Genetic Variations for nitrogen use in soft red×hard red winter wheat populations[J]. Crop Seience, 1991, 31: 626-630.
    [36] 何新华,安·奥克斯,李明启.C_3和C_4禾本科作物的氮素利用效率[J].植物学通报,1995,12(3):20-27.
    [37] 田纪春,张忠义.梁作勤.高蛋白和低蛋白小麦品种的氮素吸收和运转分配差异的研究[J].作物学报,1994,20(1):76-83.
    [38] 童依平,李继云.李振声.不同小麦品种(系)吸收利用氮素的差异及有关机理研究.Ⅰ.吸收和利用效率对产量的影响[J].西北植物学报,1999,19(2):270-277.
    [39] 童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素的差异及有关机理研究.Ⅱ.影响吸收效率的因素分析[J].西北植物学报.1999,19(3):393-401.
    [40] 樊小林,李玲.氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应[J].植物营养与肥料学报,1998,4(2):131-137.
    [41] 黄生斌,陈新平,张福锁.不同品种冬小麦土壤及植株测试氮肥推荐指标的研究[J].中国农业大学学报2002,7(5):26-31
    [42] 蒋纪芸,张宝军,杨慧霞.硬粒小麦灌浆期间营养器官对籽粒蛋白质积累的影响[J].国外农学—麦类作物,
    
    1996,12(1):22-23.
    [43] 杜金哲,李文雄,胡尚连,等.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):253-260.
    [44] 刘晓冰,李文雄.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的初步研究[J].作物学报,1996,22(6):736-740.
    [45] Jenner C F, Ugalde T D, Aspinal D. The physiology of starch and protein in deposition in the endosperm of wheat[J]. Aust J Plant Physiol, 1991, 18: 211-226.
    [46] 张庆江,张立言,毕桓武,等.春小麦品种氮的吸收积累和转运特征及与籽粒蛋白质的关系[J].作物学报,1997,23(6):712-718.
    [47] Barneix A J, Amozis P A, Guitman M R. The regulation of nitrogen accumulation in the grain of wheat plants(Triticum aestavumL.) [J]. Physiol. plant, 1992, 86: 609.
    [48] 周琴,姜东,戴廷波.等.不同基因型小麦籽粒蛋白质和淀粉积累与碳氮转运的关系[J].南京农业大学学报,2002,25(3):1-4.
    [49] 张林生,张保军,汪沛洪,等.施氮水平对小麦籽粒发育过程中氨基酸含量的影响[J].西北植物学报,2002,22(3):646-650.
    [50] Pollmer W G, Eberhard D, Klein D, etal. Genetic control of nitrogen uptake andtranslocation in maize [J] Crop Science, 1979,19: 82-86.
    [51] Lafitte H R, Edmeades G O. Improvement for tolerance to low soil nitrogen in tropical maize. Ⅰ Selection criteria[J]. Field Crop Research, 1994, 39: 1-14.
    [52] Tsai C Y, Huber D M, Gover D V, etal. Relationship of N deposition to grain yield and responsonse of three maize hybrids[J]. Crop Science, 1984, 24: 277-281.
    [53] 向春阳,常强,马兴林.等.玉米不同基因型对氮营养胁迫的反应[J].黑龙江八—农垦大学学报,2002.14(4):5-7
    [54] Broadbent F E, Detta S K, Laureles E V. Measurment of nitrogen utilization efficiency in rice genotypes [J]. Agronomy Journal, 1987, 79: 786-791.
    [55] Wu P, Tao Q N. genotype response and selection pressureon nitrogen use efficiency in rice under different nitrogen regimes[J]. Plant nutrition, 1995, 18(3):487-500.
    [56] De Datta S K, Broadbent F E.Nitrogen use efficiency of 24 rice genotypes on N deficient soil[J].Field Crop Research, 1990, 23: 81-92.
    [57] De Datta S K, Broadbent F E.Methodology for evaluating nitrogen utilization efficiency by rice genotypes [J] Agronomy Journal, 1988, 80: 793-798.
    [58] 朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238.
    [59] 万书波,封海胜,左学青.等.花生不同类型品种氮素利用效率的研究[J].山东农业科学,2001,(2):18-20.
    [60] 汪自强,王美娥.春大豆氮利用效率基因型变异和性状间的相关研究[J].生物数学学报,2002,17(2):221-228
    [61] 牛立元,茹振钢,赵花周,等.小麦叶片叶绿素含量系统变化规律研究[J].麦类作物,1999.19(2):36-38.
    [62] 周竹青,张清良.小麦品种(系)叶绿素含量变化及其与光合叶面积关系研究[J].孝感学院学报,2001,21(6):
    
    5-8.
    [63] 康建宏,何文寿,张晓岗,等.春小麦NPK营养效率基因型差异的生理机理研究.Ⅱ:光合能力的基因型差异[J].宁夏农学院学报.2000,21(2):33-39.
    [64] 康建宏,何文寿,储燕宁.等.春小麦NPK营养效率基因型差异的生理机理研究.Ⅰ:硝酸还原酶活性和CO_2同化能力的基因型差异[J].宁夏农学院学报,1999,20(2):18-24.
    [65] 王仁雷,魏锦城.杂交水稻及三系生育过程RuBP羧化酶中及有关光合酶的变化[J].作物学报,1996,22(1):6-12
    [66] Simmons S R. Growth, development and physiology[A]. In: Heyne E G(ed.). Wheat and wheat improvement[M], 2nd ed. American Society of Agronomy, Madison/WL, 1987, 77-113.
    [67] Dean C, Leech R M. Genome expression during normal leaf development: Direct correlation between ribulose bisphosphate carboxylase content and nuclear ploidy in a polyploidy series of wheat[J]. Plant Physiol., 1982, 70: 1605-1608.
    [68] Evans J R. The relationship between carbon dioxide limited photosynthetic rate and ribulosel, 5bisphosphate carboxylase content in two nuclearcytoplasm substitution lines of wheat and the coordination of ribulosel, 5bisphosphate carboxylase and electron transport capacities[J]. Planta, 1986, 167: 351-358.
    [69] Raven J A, Glidwell S M. Process limiting Photosynthetic Conductance [A]. In Johnson C B(ed.) . Physiological Process Limiting Plant Productivity [M]. Butterworth, London, 1981: 109-136.
    [70] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Ann. Rev. of plant physiol., 1982, 33:317-345.
    [71] 赵致,陈坤陵,张军.不同类型小麦品种抽穗后光合生理性状的变化[J].西南农业学报,1997.10(4):20-25.
    [72] Frederick J R, Camberato J J. L, eafnet CO_2-exchange rate and associated Leaf trait of winter wheat grown with various spring nitrogen fertilization rates[J]. Crop Science, 1994, 34 (3-4) : 432-439.
    [73] 肖凯,张树华,邹定辉,等.不同形态氮素营养对小麦光合特性的影响[J].作物学报.2000,26(1):53-58.
    [74] Eichelberger K D, Berger R J, Lambert F E, et al. Divergent phenotypic recurrent selection for nitrate reductase activity in maize Ⅱ. Efficient use of fertilizer nitrogen[J]. Crop Science, 1989b, 29: 1398-1402.
    [75] 周竹青,朱旭彤.11个小麦品种苗期硝酸还原酶活性的测定与系统聚类分析[J].湖北农业科学,1997,4:13-16.
    [76] 林振武,陈敬样.硝酸还原酶作为作物育种的生理生化指标研究[J].河北农业大学学报,1987,10(3):104-110
    [77] Deckard E L, Lanbert R J. Nitrate reductase activity in corn leaves related to yields of grain protein[j]. Crop Science, 1973, 13(4): 243-250.
    [78] 梁万福,幸亨泰.土壤氮素对小麦硝酸还原酶活性的影响[J].西北师范大学学报(自然科学版),1996,32(1):52-56.
    [79] 洪剑明,柴小清,曾晓光,等.小麦硝酸还原酶活性与营养诊断和品种选育研究[J].作物学报,1996.22(5):633-637.
    [80] 李春喜,姬生栋,石惠恩,等.小麦生育中后期硝酸还原酶活性及其与穗粒重关系的研究[J].麦类作物,1998,18(3):48-51.
    
    
    [81] 严小龙.张福锁.植物营养遗传学[M] 北京:中国农业出版社,1997:1-179
    [82] 杨铁钊,林彩丽,丁永乐,等.不同基因型烟草对氮素营养响应的差异研究[J].烟草科技/栽培与调制,2001,(6):32-35.
    [83] 姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉累积的影响[J].中国农业科学,2002,35(2):157-162.
    [84] 刘安勋.施氮量对小麦蛋白质的影响[J].青海大学学报(自然科学版),2000,18(3):4-6.
    [85] 张林生,张保军,汪沛洪,等.施氮水平对小麦籽粒发育过程中氨基酸含量的影响[J].西北植物学报,2002,22(3):646-650.
    [86] 刘尊英,郭天财,朱云集,等.氮素供应对小麦子粒蛋白质组分及积累动态的影响.河南农业大学学报,1999,33(4):317-320.
    [87] 王立秋.靳占忠,曹敬山.氮肥不同追肥比例和时期对春小麦子粒产量和品质的影响[J].麦类作物,1996,(6):45-48.
    [88] 李金才,魏凤珍.氮素营养对小麦产量和籽粒蛋白质及组分含量的影响[J].中国粮油学报2001,16(2):6-8.
    [89] 潘庆民,于振文,王月福.追氮时期对小麦光合作用、(14)~C同化物运转分配和硝酸还原酶活性的关系[J].西北植物学报,2001,21(4):631-636.
    [90] 李春喜,张根发,石惠恩,等.氮肥对小麦硝酸还原酶活性和籽粒蛋白质含量变化动态的影响[J].西北植物学报,1995,15(4):276-281.
    [91] 中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983,67-116.
    [92] 赵世杰.叶绿体色素的测定[A].邹琦主编,植物生理学实验指导[M].北京:中国农业科学出版社,2000,72-75.
    [93] 张荣铣,程在全.小麦叶片光合速率高值持续期初步研究[J].南京师范大学学报(自然版),1992,15:76-86.
    [94] 张荣铣,刘晓忠.方志伟,等.小麦叶片展开后光合固碳能力—叶源量的估算[J].中国农业科学,1997,30(1).84-89.
    [95] Read S M, Northcote D H. Minimization of variation in the response to different protein of the Coomassic Blue G dyedinding: assay to protein[J]. Annal biochem., 1981, 116: 53-64.
    [96] 上海植物生理学会.植物生理学实验手册[M].上海:上海科技出版社,1985.213-216.
    [97] 邹琦主编.植物生理学[M].北京:中国农业出版社,2000,58-59.
    [98] Vasilas B L, R L Nelson, J J Fuharmann etal.Relationship of nitrogen utilization patterns with soybean yield and seed-fill period[J]. Crop Science, 1995, 35: 809-803.
    [99] Spaeth S C, T R Sinclair. Variation in nitrogen accumulation and distribution among soybean cultivars[J]. Field Crop Research, 1983, 7: 1-12.
    [100] Zeiher C D, D B Egli, J E Legget etal .Cultivar differences in N redistribution in soybeans[J]. Agronomy Journal, 1982, 74: 375-379.
    [101] Leffel R C, P B Bolgiano, D J thibeau. Nitrogen metabolism of normal and high-seed-protein soybean[J].Crop Science, 1992, 32: 747-750.
    [102] 刘晓冰,金剑,张秋英,等.大豆科学不同大豆基因型氮素积累运转研究简报[J].2001,20(4):298-301.
    
    
    [103] Minchin F R, R J Summerfield, M C P News.Carton metabolism, nitrogen assimilation, and seed yield of cowpea (Vignaunguiculata L.Walp.)grown in an adverse temperature regime[J].J.Exp.Bot., 1980, 31: 1327-1347.
    [104] Salado-Navarro L R, K Hinson, T R Sinclair. Nitrogen partitioning and dry matteral location in soybeans with different seed protein concentration [J]. Crop Science, 1985, 25: 451-455.
    [105] Mackay A D , Barber S A. Effect of nitrogen on root growth of two corn genotypes in the field [J]. Agronomy Journal, 1986, 78: 699-703.
    [106] Wiesler F, Horst W J. Differentces between maize cultivation in yield formation, nitrogen uptake and associated depletion of soil nitrate[J]J.Agron Crop Sci., 1992, 168: 226-237.
    [107] Loffler C M. Selection for grain protein, grain yield and nitrogen partitioning efficiency in hard red spring wheat[J]. Crop Science, 1982, 22: 591-595.
    [108] 胡霭堂主编.植物营养学(上\下册).北京:北京农业大学出版社,1995.
    [109] 何文寿,陈素生,康建宏,等.春小麦NPK营养效率的基因型差异研究.Ⅰ:几项差异评价指标的总变异及其相关分析[J].宁夏农学院学报,1998.19(3):7-12.
    [110] 何文寿,陈素生,康建宏,等.不同基因型春小麦NPK养分效率指标与其农艺性状之间的相关性[J].干旱地区农业研究,2000,18(3):37-43.
    [111] 童依平,李继云,李振声.农作物N素利用效率基因型差异及其机理[J].生态农业研究,1999,7(2):23-27.
    [112] 何文寿,张晓岗,康建宏.等.春小麦NPK营养效率的基因型差异研究.Ⅲ:差异筛选结果的验证及差异机理探讨[J].宁夏农学院学报,1999,20(2):12-17.
    [113] 何文寿,郭瑞英,康建宏.高产高蛋白与高氮肥效率结合的小麦品种筛选研究[J].宁夏农学院学报,2002,23:1-4.
    [114] 刘强,荣湘民,朱红梅,等.不同水稻品种在不同栽培条件下氮代谢的差异[J].湖南农业大学学报(自然科学版),2001,27(6):415-420.
    [115] Anderson E L, Kamprath E J, Moll R H. Prolificacy and N fertilizer efficiects on yield and N utilization in maize [J]. Crop Science, 1985, 25: 598-605.
    [116] Muchow R C.Effection of nitrogen supply on the comparative productivity of maizeand sorghum in a Semiarid tropical environment. Ⅱ Grain yield and nitrogen accumulation[J]. Field Crop Research, 1988, 18: 31-43.
    [117] Oritiz M R, Sayre K D, Rajaram S, etal. Genetic Progress in wheat yield and nitrogen use effiencicy under four nitrogen rates[J]. Crop Science, 1994, 37(3): 898-904.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700