用户名: 密码: 验证码:
烟草种子和幼苗多胺代谢的调控及与其耐寒性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温冷害影响烟草种子发芽、出苗和幼苗生长,最终降低烟叶的质量和产量,因此提高烟草苗期的耐寒性具有重要意义。当植物处于各种逆境条件下时,细胞内常会积累大量的多胺(Polyamines)。多胺是生物体内具有生物活性的一类低分子量脂肪族含氮碱,在对植物低温胁迫的反应中起着重要作用。本文在筛选出耐寒型烟草品种红花大金元和低温敏感型品种MSk326的基础上,以这两个品种为材料,开展了烟草种子和幼苗内多胺调控与耐寒性关系的研究。主要研究结果如下:
     对烟草主栽品种发芽和苗期的耐寒性进行了鉴定。在变温(20~30℃)和低温(11℃)胁迫下测定了种子发芽特性以及幼苗素质等指标,将各性状低温与常温下测定值的比值作为耐寒性评价指标。结果表明,对低温胁迫,幼苗地上部比根部敏感。相关性分析表明,相对发芽率、相对发芽指数、相对地上部高、相对幼苗干重之间显著相关,是较好的耐寒性评价指标;通过聚类分析,将5个主栽品种分为耐寒型、中等耐寒型和低温敏感型3类。研究结果将为烟草抗寒性机理研究和育种提供选材依据。在各个品种中,红花大金元耐寒性较好,MSk326则对低温较敏感。
     在低温胁迫(5℃)下,研究了烟草幼苗地上部与根部抗氧化酶活性与丙二醛(MDA)含量变化,探讨其与生长率的关系。结果表明,低温胁迫期间,2个品种幼苗根部低温期间相对生长率占恢复期间相对生长率的百分率显著高于地上部,说明低温对地上部的影响较大。与常温对照相比,在低温胁迫下,耐寒型品种红花大金元地上部的过氧化物酶(POD)活性增高,而超氧化物歧化酶(SOD)活性降低,过氧化氢酶(CAT)活性变化较小;低温胁迫显著增加了红花大金元根部SOD和CAT活性,而POD活性变化较小。对于低温敏感型品种MSk326,低温胁迫增加了地上部SOD活性,但降低了根部CAT活性。低温胁迫增高了两个品种幼苗中MDA含量,但在常温(25℃)恢复生长4 d后,MDA含量较低温时期有所下降。表明烟草幼苗对短期低温胁迫具有一定的恢复能力。通过逐步回归分析,发现低温胁迫下幼苗相对生长率与CAT活性关系密切。
     以红花大金元和MSk326为材料,研究了低温胁迫下烟草幼苗地上部和根部干重、生长速率、多胺含量、多胺合成酶(精氨酸脱羧酶和乌氨酸脱羧酶)和氧化酶(二胺氧化酶和多胺氧化酶)活性的变化,并采用逐步回归方法分析得到与两烟草品种不同部位生长指标关系最密切的多胺组分。结果发现,短期低温胁迫处理降低了两个品种幼苗地上部与根部干重和相对生长率,恢复生长4 d后低温伤害有所减轻。在低温下,红花大金元幼苗相对生长率显著高于MSk326。两个品种根部多胺含量均高于地上部,说明多胺在烟草植株的不同部位间存在差异,同时也表明地上部受低温伤害严重可能与其多胺含量较低有关。通过回归分析表明,低温敏感型烟草幼苗在低温胁迫下的相对生长率主要与腐胺(Put)有关,耐寒型烟草幼苗的生长指标与Put和亚精胺(Spd)有关。在低温胁迫下,多胺合成酶和氧化酶活性均上升,乌氨酸脱羧酶(ODC)活性强于精氨酸脱羧酶(ADC),似乎说明多胺合成主要以ODC途径为主,但需要进一步证实。
     以MSk326和红花大金元为材料,利用多胺抑制剂D-Arg和DFMO处理四叶期幼苗,发现低温胁迫下,两种多胺抑制剂不同程度地抑制了烟草幼苗不同部位Put的合成;而在D-Arg和DFMO中分别加入Put合成前体精氨酸(Agm)和Put后,处理幼苗,发现抑制效果得到缓解。说明在低温下ADC途径和ODC途径均影响了烟草幼苗Put的合成。同时,DFMO的抑制效果显著大于D-Arg,说明烟草幼苗多胺合成主要以ODC途径为主。对膜透性分析表明,抑制剂处理增加了低温对幼苗的伤害作用,通过加入Agm或Put能减缓此伤害,说明多胺的合成在一定程度上有利于促进烟草幼苗的抗寒能力。
     以不同浓度(0.01,0.1和1 mM)的两种外源多胺(Put和Spd)浸种处理MSk326和红花大金元种子,研究各处理对低温胁迫下种子发芽、幼苗素质、抗氧化酶活性和MDA含量的影响。结果表明,低温下,两个烟草品种的发芽率、发芽指数、幼苗地上部高、根长以及幼苗干鲜重均较对照显著增高,平均发芽时间显著下降。低浓度(0.01mM和0.1 mM)Put浸种处理显著提高幼苗中SOD、POD、CAT和抗坏血酸氧化酶(APX)活性;外源Put和Spd浸种处理均降低了MDA含量,表明适宜浓度的多胺浸种处理能增强幼苗的耐寒能力。0.01 mM Put对抗寒型品种的效果较好,而0.1 mM Put对低温敏感型品种的效果较好,表明提高不同耐寒型烟草品种抗低温胁迫的能力需要不同的多胺浓度。
     研究了低温胁迫下,4种外源Put种子丸化处理(Coat-1,Coat-2,Coat-3,Coat-4)对MSk326和红花大金元种子低温发芽和短期低温胁迫下幼苗体内的抗氧化酶活性、MDA含量及内源多胺的影响。与未添加Put的干种丸化对照比,Coat-2和Coat-4处理提高了低温11℃下两个品种的发芽率、发芽指数、全苗长和干重。在5℃短暂低温胁迫后,Coat-4的幼苗SOD、POD、CAT和APX活性显著高于对照,而MDA含量低于对照。同时,在低温胁迫和恢复生长后,烟草幼苗的Put、Spd和Spm含量也有提高。上述结果表明,Put丸化处理有利于增强烟草幼苗抵御低温逆境的能力。综合看,丸化配方Coat-4(0.1 mM Put浸种48 h后丸化)的效果最佳。但Put和丸化材料间是否存在互作而影响提高耐寒效果有待于进一步研究。
Chilling stress affects seed germination and seedling growth of tobacco (Nicotiana tabacum L.), finally causes the loss of tobacco quality and yield. It is important to improve chilling tolerance of tobacco seedlings. Polyamines (PAs) accumulated in plants after suffering stress conditions. PAs are biologically ubiquitous aliphatic amines with low molecular weight that involved in the response of plants to environmental stress. In present research, the chilling-tolerant variety (Honghuadajinyuan) and chilling-sensitive variety (MSk326) of tobacco were used to investigate the modulation of polyamines in seeds and seedlings of tobacco and its relationship with chilling tolerance. The main results were as follows:
     The chilling tolerance of five tobacco cultivars, that were extensively planted, at germination and seedling growth stages was investigated by determining germination characteristics and seedling quality at normal temperature (20-30℃) and low temperature (11℃) stress. The ratios of trait values at low temperature to those at normal temperature were used to assess chilling tolerance. The results showed that the shoot of tobacco was more sensitive than the root to low temperature. The correlation analyses showed that the relative values of germination percentage, germination index, shoot height and seedling dry weight were significantly correlated with each other; they were suitable parameters for evaluating chilling tolerance. After the cluster analysis, tobacco cultivars were clustered into three groups: chilling tolerance, intermediate chilling tolerance and chilling sensitivity. The results will provide basis for material selection during research of cold resistance mechanism and breeding in tobacco. Honghuadajijnyuan (HHDJY) and MSk326 were selected as chilling-tolerant and chilling-sensitive varieties, respectively.
     Growth rate, antioxidant enzymes and malondialdehyde (MDA) of seedlings of two tobacco, cv. MSk326 (chilling sensitive variety) and HHDJY (chilling tolerant variety) under chilling stress (5℃) were studied. The results showed that the ratio of relative growth rate in chilling period to that in recovery period was significantly higher in root than that in shoot in the both cultivars, suggesting that shoot growth was more easily affected by chilling stress. Chilling stress increased peroxidase (POD) activity and reduced superoxide dismutase (SOD) activity in shoot of HHDJY, and catalase (CAT) activity was little affected. In the root of HHDJY, chilling stress increased SOD and CAT activities, and had little effect on POD activity. For MSk326, chilling treatment increased SOD activity in shoot and declined CAT activity in root. MDA concentration of both varieties was increased suffering the chilling stress, while it was decreased after seedlings were recovery growth for 4 days at normal temperature (25℃). It showed that tobacco seedlings might have the capacity of recovering from chilling injury for a short term. The relationship between the growth rate and antioxidant enzyme activity was analyzed by stepwise regression, and it was found that there was a close relationship between relative growth rate of tobacco seedlings and CAT activity under chilling condition.
     MSk326 and HHDJY were used to study the effects of chilling stress (5℃) on dry weight, relative growth rate and PAs concentration, as well as the activities of ormithine decarboxylase (ODC), arginine decarboxylase (ADC), polyamine oxidase (PAO) and diamine oxidase (DAO) in shoots and roots of seedlings. The results showed that the seedling dry weight and relative growth rates of shoots and roots were decreased under chilling stress. And the chilling damage could be alleviated when seedlings were recovery growth at normal temperature (25℃) for 4 d. The seedling relative growth rate of HHDJY was significantly higher than that of MSk326 during chilling stress. PAs concentreation in roots was higher than that in shoots, suggesting PAs concentration was different in different parts of tobacco seedlings. It also indicated that the reason that shoots were more eazily affected by low temperature than roots was related with PAs concentration. The results of stepwise regression analysis showed that the relative growth rate in chilling-tolerant variety, HHDJY was mainly related with Put concentration, and it was mainly related with the concentration of Put and Spd in chilling-sensitive variety, MSk326 during chilling stress. The activities of polyamine synthase (ODC and ADC) and oxidase (PAO and DAO) increased during the chilling stress. ODC activity was higher than ADC activity, it indicated that Put might be formed mainly from the ODC pathway in tobacco seedlings.
     Tobacco seedlings of four-leaf age were treated by inhibitors, D-arginine (D-Arg) and difluoromethylornithine (DFMO), before chilling stress. D-Arg and DFMO treatments inhibited the biosynthesis of Put in shoots and roots of both varieties after suffering chilling stress. After treated with D-Arg + agmatine (Agm) and DFMO + Put, the inhibition of Put biosynthesis were alleviated. It suggested that Put biosynthesis was affected by both ADC and ODC pathways. The Put concentration in seedlings by DFMO treatment was significantly lower than that by D-Arg treatment, suggesting that biosynthesis of Put was mainly by ODC pathway, minorly by ADC pathway. Moreover, D-Arg and DFMO increased the membrane permeability of tobacco seedlings under chilling stress. And the chilling damage illustrated by the membrane permeability could be recovered when Agm or Put were added to the inhibitor solution. It indicated that the synthesis of PAs could improve the tolerance of tobacco seedling to chilling stress.
     Seeds of MSk326 and HHDJY were used to investigate the effects of seed soaking treatments with different concentrations (0.01, 0.1 and 1 mM) of Put and Spd on seed germination, seedling growth, antioxidant enzymes activities, as well as MDA concentration under chilling stress. The results showed that germination percentage, germination index, mean germination time, shoot and root length and seedling weight of soaking treatments with PAs were significantly higher than those of the untreated seeds under chilling stress in both varieties. The soaking treatments with low concentration (0.01 mM and 0.1 mM) of Put significantly increased the activities of antioxidant enzymes, including SOD, POD, CAT and ascorbate peroxidase (APX) in tobacco seedlings. During seedling growth, soaking treatments with PAs significantly reduced MDA accumulation. The results suggested that tobacco seeds soaking with PAs at a suitable concentration could improve germination and seedling growth under chilling stress condition. 0.01 mM Put treatment was better than other treatments for improving the chilling tolerance of chilling tolerant variety, while 0.1 mM Put was more effective for chilling sensitive variety. It suggested that different concentrations of PAs were needed for improving the tolerance of different chilling sensitive variety.
     Seeds of MSk326 and HHDJY were used to investigate the effects of four seed pelleting treatments with Put (Coat-1, Coat-2, Coat-3 and Coat-4) on inducing chilling tolerance of tobacco. Seed germination, antioxidant enzymes activities and MDA concentration, as well as PAs concentration were determined. During chilling stress at 11℃, Coat-2 and Coat-4 significantly increased germination percentage, germination index, seedling length and dry weight of both varieties compared to the control, that dry seed was pelleted without Put. When seedlings of four-leaf stage suffered a short chilling stress (5℃), Coat-4 improved the activities of antioxidant enzymes including SOD, POD, CAT and APX, increased endogenous Put, Spd and Spm concentration and decreased the MDA concentration. The results showed that Put pelleting treatments were available to enhance the chilling tolerance of tobacco seedlings. The optimal treatment of Put was Coat-4 (seed soaked in 0.1 mM Put for 48 h, and then pelleted). Moreover, the effects of Put may have interaction with pelleting materials. This link warrants further study.
引文
1.蔡秋华,张积森,郭春芳,刘文荣,饶进,翁笑艳,张木清.高等植物体内多胺的生理功能及其分子生物学研究进展.福建教育学院学报,2006,(10):118-124.
    2.柴士俊.种子丸粒化技术浅议.种子科技,1999,(3):21-22.
    3.陈卫国,周冀衡,杨虹琦.烟草抗寒性生理生化研究进展.作物研究,2007,(1):81-83.
    4.杜红阳,刘怀攀,李潮海,杨青华.植物体内特殊形态多胺与水分胁迫关系研究进展.河南农业科学,2007,(12):9-13.
    5.段九菊,郭世荣,康云艳,李璟,刘香娥.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响.应用生态学报,2008,19(1):57-64.
    6.范华,冯双庆,赵玉梅.黄瓜、番茄冷害以及黄瓜温度预处理与多胺的相关性.中国农业大学学报,1996,1(1):108-111.
    7.古红梅,刘怀攀.亚精胺对小麦幼苗耐冷性的影响.种子,2003,(4):26-28.
    8.关军锋,刘海龙,李广敏.干旱胁迫下小麦幼苗根、叶多胺含量和多胺氧化酶活性的变化.植物生态学报,2003,27:655-660.
    9.郭汉华,易建华,孙在军.低温胁迫对烟苗光合作用的后续影响.烟草科技,2004,(4):31-33.
    10.郭秀林,李广敏,商振清,李兴红,刘云惠.烟草叶片游离态多胺与抗TMV关系探讨.河北农业大学学报,1999,22:32-35.
    11.韩锦峰,林学梧,朱大恒,韩薇.多胺对烟草种子活力及幼苗生长生理效应的研究.烟草科技,1991,(4):35-38.
    12.韩锦峰,汪耀富,钱晓刚等.烟草栽培生理.北京:中国农业出版社.2003:270-275.
    13.韩锦峰,朱大恒,林学梧,韩薇.多胺对烟草种子活力及幼苗生长生理效应的研究.烟草科技,1991,(4):35-38.
    14.韩锦峰,朱大恒,林学梧,韩薇.多胺对苗床烟苗的壮苗作用及不同处理方法的效果比较.烟草科技,1992a,(1):31-34.
    15.韩锦峰,朱大恒,林学梧,韩薇.多胺对烟草根系生长发育的影响(简报).植物生理学通讯,1992b,28:124-126.
    16.韩锦峰,朱大恒,林学梧,韩薇.多胺对烟草抗渍性的生理效应(简报).植物生理学通讯,1992c,28(4):271-272
    17.韩锦峰,朱大恒,林学梧,王瑞新,韩薇,刘卫群.多胺对烟株生长发育及烤烟产质的生理效应.中国烟草,1992,1:1-6.
    18.胡良平.Windows SAS 6.12&8.0实用统计分析教程.北京:军事医学科学出版社,2001,pp.528-540.
    19.胡晋,徐盛春.小粒种子发芽/水培一体盒.中国.ZL200820082649.2,2008年11月5日.
    20.贾永霞,郭世荣,王素平,孙锦,黄保健.根际低氧胁迫下外源亚精胺对黄瓜幼苗多胺和抗氧化系统的影响.园艺学报,2007,34(6):1547-1550.
    21.蒋林,沈曾佑,张志良,颜季琼.多胺对裸大麦离体叶片活性氧代谢的影响.植物生理学报,1993,19(4):367-371.
    22.晋艳,杨宇虹,华水金,段玉琪,程新宇.低温胁迫对烟草保护性酶类及氮和碳化合物的影响.西南师范大学学报(自然科学版),2007,32(3):74-79.
    23.李广敏,檀建新,贾荣革.高等植物的多胺代谢.河北农业大学学报,1993,1(1):86-92.
    24.李璟,胡晓辉,郭世荣,王素平,王鸣华.外源亚精胺对根际低氧胁迫下黄瓜幼苗根系多胺含量和抗氧化酶活性的影响.植物生态学报,2006,30:118-123.
    25.李俊明,耿庆汉.低温下玉米不同耐冷型自交系的生理生化变化.华北农学报,1989,4:15-19.
    26.李六林,张绍铃.多胺在植物花发育中的作用.西北植物学报,2006,26(6):1282-1289.
    27.李明,姚东伟,陈利明.我国种子丸粒化加工技术现状(综述).上海农业学报,2004,20(3):73-77.
    28.李如铁,沈惠娟,李梅枝.酸胁迫对几种林木体内脯氨酸及腐胺含量的影响.南京林业大学学报,1995,3:88-93.
    29.李太盛.多胺与植物激素(综述).亚热带植物通讯,1999,28:66-69。
    30.李永平,徐盛春,马文广,郑昀晔,胡晋.不同品种烟草发芽和苗期耐寒性的鉴定.科技通报,2009,录用.
    31.林定波,刘祖祺,张石城.多胺对柑桔抗寒力的效应.园艺学报,1994,21(3):222-226.
    32.刘鸿先,王以柔,郭俊彦.低温对植物细胞膜系统伤害机理的研究.中国科学院华南植物研究所集刊,1989,5:31-38.
    33.刘惠静,王武台,张烈,孙立全,刘莉莉.小粒蔬菜种子丸粒化研究及其应用前景.天津农林科技,2005,(4):20-21.
    34.刘宽灿,梁秋芬,赵丽红,张治礼.多胺在植物生长发育过程中的生理作用.氨基酸和生物资源,2005,27(1):22-26.
    35.刘宁,高玉葆,贾彩霞,任安芝.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化.植物生理学通讯,2000,36:11-14
    36.乔勇进,冯双庆,李丽萍,张绍铃,刘招龙.多胺处理对黄瓜贮藏冷害及品质的影响.吉林农业大学学报,2005,27(1):55-58.
    37.邱美欢,李绍鹏.多胺在果树生长发育中的应用.广西园艺,2006,17(2):56-58.
    38.任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化.植物生态学报,2001,25:709-715.
    39.陶宗娅,邹琦.种子的吸胀冷害和吸胀伤害.植物生理学通讯,2000,36:368-376.
    40.徐仰仓,王静,刘华,王根轩.外源精胺对小麦幼苗抗氧化酶活性的促进作用.植物生理学报,2001,27:349-352.
    41.王富民,薛应龙.百合小鳞茎离体发生过程中内源多胺水平和多胺氧化酶活性的变化.植物生理学报,1988,14(4):350-354.
    42.汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990,(1):1-7.
    43.汪天,郭世荣,刘俊,高洪波.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用.植物生理学通讯,2004,40(3):358-360.
    44.汪耀富,王佩,宋世旭,杨天旭.渗透胁迫对不同供钾水平烤烟叶片多胺含量的影响.南京农业大学学报,2008,31(1):133-136.
    45.汪耀富,张瑞霞.渗透胁迫下烤烟内源多胺含量及其代谢酶活性变化.干旱地区农业研究,2005,23(6):88-92,97.
    46.王勇,陆旺金,张昭其,谢会.ABA和腐胺处理减轻香蕉果实贮藏冷害.植物生理与分子生物学学报,2003,29(6):549-554.
    47.熊远福,邹应斌,唐启源,刘灿明,黄见良.种衣剂及其作用机制.种子,2001,(2):35-37.
    48.颜启传.种子学.北京:中国农业出版社,2001,283.
    49.杨洪强,接玉玲.多胺与果树生长发育的关系.山东农业大学学报,1996,27(4):514-520.
    50.杨建昌,张亚洁,张建华,王志琴,朱庆森.水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系.作物学报,2004,30:1069-1075.
    51.杨浚,愈炳果.精胺对离体叶片中叶绿体和蛋白质含量的影响.植物生理学通讯,1989,(2):42-44.
    52.尹路明.多胺与激动素对稀脉浮萍离体叶状体衰老的影响.植物学报,1994,36(7):522-527.
    53.云南省烟草科学研究所,中国烟草育种研究(南方)中心.云南烟草栽培学.科学分社, 2006,14-15.
    54.袁小丽,傅家瑞,李卓杰.CaCl_2和多胺对萌发花生种子乙烯释放和提高种子活力的影响.中山大学学报(自然科学版),1990,29:92-99.
    55.张文明.种子包衣,丸化技术.种子,1998,(2):66-67.
    56.张小冰.多胺在植物生长发育过程中的生理作用.生物学教学,2007,32(10):9-10.
    57.张燕,方力,姚照兵,冯永新.PEG对烟草幼苗耐低温胁迫能力的生理效应.西北农业学报,2003,12(1):63-67.
    58.赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,2000a,36(1):1-6.
    59.赵福庚,刘友良.大麦幼苗多胺合成比脯氨合成对盐胁迫更敏感.植物生理学报.2000b,26(4):343-349.
    60.赵福庚,张国珍,张正钫,王晓云.花生叶片衰老中多胺代谢酶活性及游离多胺含量变化.植物生理学通讯,1996,32(5):351-353.
    61.赵维峰,孙光明,李绍鹏,杨小环,李茂富,杨文秀.多胺与植物的抗逆性.广西农业科学,2004,(6):443-447.
    62.郑光华,梁峥,林坚.种子吸胀冷害和渗透调控的研究.中国科学院院刊,2001,3:182-187.
    63.郑昀晔,胡晋,张胜,高灿红,宋文坚.玉米自交系发芽期和苗期耐寒性的鉴定.浙江大学学报(农业与生命科学版),2006,32(1):41-45.
    64.周小梅,赵运林,周朴华.多胺与植物渗透胁迫的关系.湖南城市学院学报,2007,16(2):62-65.
    65.周玉萍,王正询,田长思.多胺与香蕉抗寒性的关系的研究.广西植物,2003,23(4):252-256.
    66.朱大恒,韩锦峰,贾志旺,焦红霞.烟草叶片对外源腐胺的吸收及其在植株体内的运转.河南农业大学学报,1995,29(2):108-110,115.
    67.朱凤武,王景利,徐振国,黄桂琴.玉米种子丸粒化加工技术的研究.吉林农业大学学报,2000,22(2):100-102,107.
    68.Allen RD.Dissection of oxidative stress tolerance using transgenic plants.Plant Physiology,1995,107:1049-1054.
    69.Anderson MD,Prasad TK,Stewart CR.Changes in isozyme profiles of catalase,peroxidase,and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings.Plant Physiology,1995,109:1247-1257.
    70.Antognoni F,Fornale S,Grimmer C,Komor E,Bagni N.Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L.plants.Planta,1998,204:520-527.
    71.Asada,K.Production and action of active oxygen in photosynthetic tissue.In:Foyer CH,Mulineaux PM(Eds),Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants.1994,pp.77-104.
    72.Bais HP,Ravishankar GA.Synergistic efect of auxins and polyamines in hairy roots of Cichorium intybus L.during growth,coumarin production and morphogenesis.Acta Physiologiae Plantarum,2003,25:193-208.
    73.Bar Y,Apelbaum A,Kaflcafi U,Goren R,1998.Ethylene association with chloride stress in citrus plants.Scientia Horticulturae,73(2-3):99-109.
    74.Benavides MP,Aizencang G,Tomaro ML.Polyamines in Helianthus annuus L.during Germination under Salt Stress.Journal of Plant Growth Regulation,1997,16:205-211.
    75.Bertoldia D,Tassonia A,Martinelli L,Bagni N.Polyamines and somatic embryogenesis in two Vitis vinifera cultivars.Physiologia Plantarum,2004,120:657-666.
    76.Besford RT.Photosynthetic acclimation in tomato plants grown in high CO_2.Vegetation,1993,104:441-448.
    77.Bezold TN,Loy JB,Minocha SC.Changes in the cellar contents of polyamines in different tissues of seed and fruit of a normal and a hull-less seed variety of pumpkin during development.Plant Science,2003,164:743-752.
    78.Bhatnagar P,Glasheen BM,Bains SK,Long SL,Minocha R,Walter C,Minocha SC.Transgenic manipulation of the metabolism of polyamines in poplar cells.Plant Physiology,2001,125:2139-2153.
    79.Bolkhina O,Virolainen E,Fagerstedt KV.Antioxidants,oxidative damage and oxygen deprivation stress:a review.Annals of Botany,2003,91:179-94.
    80.Bouchereau A,Aziz A,Larher F,Martin-Tanguy J.Polyamines and environmental challenges:recent development.Plant Science,1999,140:103-125.
    81.Borrell A,Carbonell I,Farras R,Puig-Parelladaand P,Tiburcio AF.Polyamines inhibit lipid peroxidalion in senescing oat leaves.Physiologia Plantarum,1997,99:385-390.
    82.Bowler C,Van Montagu M,Inze D.Superoxide dismutase and stress tolerance.Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116.
    83.Bunn JM,Splinter WE.The effect of temperature,moisture and light on the germination probability of bright leaf tobacco seed.Tobacco Science,1961,5:63-66.
    84.Buuren ML,Guidi L,Fornal(?)S,Ghetti F,Franceschetti M,Soldatini GF,Bagni N.Ozone-response mechanisms in tobacco:implications of polyamine metabolism.New Phytologist,2002,156:389-398.
    85.Cakmak I.,Marschner H.Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves.Plant Physiology,1992,98:1222-1227.
    86.Camacho-Crist(?)bal JJ,Maldonado JM,Gonz(?)lez-Fontes A.Boron deficiency increases putrescine levels in tobacco plants.Journal of Plant Physiology,2005,162:921-928.
    87.Cao DD,Hu J,Gao CH,Guan YJ,Zhang S,Xiao JF.Chilling tolerance of maize(Zea mays L.)can be improved by seed soaking in putrescine.Seed Science and Technology,2008,36:191-197.
    88.Chatterjee S,Choudhuri MM,Ghosh B.Changes in polyamine contents during root and nodule growth of Phaseolus mungo.Phytochemistry,1983,22:1553-1556.
    89.Chattopadhayay MK,Tiwari BS,Chattopadhayay G,Bose A,Sengupta DN,Ghosh B.Protective role of exogenous polyamines on salinity-stressed rice(Oriza sativa)plants.Physiologia Plantarum,2002,116:192-9.
    90.Chaudhuri MM,Ghost B.Purification and characterization of diamine oxidase from rice embryos.Phytochemistry,1984,23:241-243.
    91.Chibi F,Matilla AJ,Angosto T,Garrido D,Bornman CH.Changes in polyamine synthesis during anther development and pollen germination in tobacco(Nicotiana tabacum).Physiologia Plantarum,1994,92:61-68.
    92.Cohen SS.Introduction to the Polyamine.Englewood Cliffs:Prentice-Hall,1979.
    93.Cvikrova M,Mala J,Hrubcova M,Eder J,Zo(?)J,Mach(?)kov(?)I.Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis.Plant Physiology Biochemistry,2003,41:251-259.
    94.Dadlani M.Seed coating to improve stand establishment in rice.Seed Science Technology,1992,20:307-313.
    95.Dat J,Vandenabeele S,Varanova E,Van Montagou M,Inze D,Van Breusegem F.Dual action of the active oxygen species during plant stress responses.Cellular and Molecular Life Sciences,2000,57: 779-795.
    96.Drolet G,Dumbroff EB,Legge RL,Thompson JE.Radical scavenging properties of polyamines.Phytochemistry,1986,25:367-371.
    97.Dumortier FM,Flores HE,Shekhwat NS,Galston AW.Gradients of polyamines and their biosynthetic enzymes in coleoptiles and roots of corn.Plant Physiology,1983,72:915-918.
    98..Edreva A.Tobacco polyamines as affected by stresses induced by different pathogens.Biologia Plantarum,1997,40:317-320.
    99.Elizabeth T,Martin-Tangu YJ.Floral induction and floral development of strawberry.Plant Growth Regulation,1995,17:157-165.
    100.Evans PT,Malmberg RL.Do polyamines have roles in plant development? Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:235-269.
    101.Fadzilla NM,Gill V,Pinch RP,Burdon RH.Chilling,oxidative stress and antioxidant responses in shoot cultures of rice.Planta,1996,199:552-556.
    102.Flores HE,Galston WA.Analysis of polyamine in higher plants by high performance liquid chromatography.Plant Physiology,1982a,69:701-706.
    103.Flores HE,Galston AW.Polyamines and plant stress:cutivation of putrescine biosynthyesis by osmotic shock.Science,1982b,217:1259-1261.
    104.Floris G,Giartosio A,Rinaldi A.Diamine oxidase from lensesculenta seedlings:purification and properties.Phytochemistry,1983,22:1871-1874.
    105.Flores HE,Martin-Tanguy J.Polyamines and plant secondary metabolites.In:Slocum RD,Flores HE(Eds),Biochemistry and Physiology of Polyamines in Plants.Boca Raton:CRC Press.1991,pp.57-76.
    106.Flores HE,Protacio CM.Polyamine metabolism in plant cell and organ culture.In:Flores HE,Arteca RN,Shannon JC(Eds),Polyamines and Ethylene:Biochemistry,Physiology and Interactions.American Society of Plant Physiologists,1990,pp.126-137.
    107.Galston AW,Kaur-Sawhney RK.Polyamines in plant physiology.Plant Physiology,1990,94:406-410.
    108.Gao CH,Hu J,Zheng YY,Zhang S.Antioxidant enzyme activities and proline content in maize seedling and their relationships to cold endurance.Chinese Journal of Applied Ecology,2006,17:1045-1050.
    109.Gao CH,Hu J,Zhang S.Association of polyamines in governing the chilling sensitivity of maize genotypes.Plant Growth Regulation,2009,57:31-38.
    110.Gechev T,Willekens H,Van Montagu M,Inze D,Van Camp W,Toneva V,Minkov I.Different responses of tobacco antioxidant enzymes to light and chilling stress.Plant Physiology,2003,160:509-515.
    111.Gemperlov(?)L,Eder J,Cvikrov(?)M.Polyamine metabolism during the growth cycle of tobacco BY-2 cells.Plant Physiology and Biochemistry,2005,43:375-381.
    112.Gemperlova L,Novakova M,Vankova R,Eder J,Cvikrova M.Diurnal changes in polyamine content,arginine and ornithine decarboxylase,and diamine oxidase in tobacco leaves.Journal of Experimental Botany,2006,57:1413-1421.
    113.Geuns JMC,Smets R,Struyf T,Prinsen E,Valcke R,Onckelen HV.Apical dominance in Pssu-ipt-transformed tobacco.Phytochemistry,2001,58:911-921.
    114.Guarino LA,Cohen SS.Mechanism of toxicity of putrescine in Anacystis nidulans.Proceedings of the National Academy of Science,1979,76:3660-3664
    115.Guo Z,Ou W,Lu S,Zhong Q.Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity.Plant Physiology and Biochemistry,2006,44,828-836.
    116.Guye MG Exogenous polyamines and chill-protection in excised shoots of mung bean seeding.News Bulletin British Plant Growth Regulator Group,1987,9(2):10-14.
    117.Guye MG,Vigh L,Wilson JM.Polyamine titre in relatian to chill-sensitivity in Phaseolus sp.Journal of Experimental Botany,1986,37:1036-1043.
    118.Ha HC,Sirisoma NS,Kuppusamy P,Zweier JL,Woster PM,Casero RA.The natural polamine spermie functions directly as a free radical scavenger.Biochemistry,1998,95:11140-11145.
    119.Hakam N,Simon JP.Effects of low temperatures on the activity of oxygen-scavenging enzymes in two populations of the C_4 grass Echinochloa crus-galli.Physiologia Plantarum,1996,97:209-216.
    120.Han T,Huang MQ,Li LP,Feng SQ,Lu P.Changes of chilling injury index and polyamine content in stored tomatoes with polyamine biosynthetic inhibitors,heat treatments and their correlations.Acta Botanica Boreali Occidentalia Sinica,2005,25(5):962-967.
    121.Haroon M,Long RC,Weybrev JA.Effect of day/night temperature on seedling establishment of Nicotianna tobacco L.in controlled environments.Agronomy Journal,1972,64:491-493.
    122.He LX,Nada K,Tachibana S.Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants(Cucumis sativus L).Journal of the Japanese Society for Horticultural Science,2002,71(4):490-498.
    123.He L,Nada K,Kasukabe Y,Tachibana S.Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of Sadenosylmethionine decarboxylase activity in leaves of spinach(Spinacia oleracea L.).Plant and Cell Physiology,2002,.43:196-206.
    124.He SG,Huang XL,Fu JR.Catalytic characteristics of polyamine oxidase from cowpea primary leaves.Journal of Plant Physiology and Molecular Biology,2002,28:11-16.
    125.Helga K,Sigrid L.Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiology and Biochemistry,2002,40:51-59.
    126.Hiatt AC,Malmberg RL.Utilization of putrescine in tobacco cell lines resistant to inhibitors of polyamine systhesis.Plant Physiology,1988,86:441-446.
    127.Hill JM.Diamine oxidase(pea seedlings).Methods in Enzymology,1971,17:730-735.
    128.Hodges DM,Hamilton RJ,Charest C.A chilling resistant test for inbred maize lines.Canadian Journal of Plant Science,1994,74:687-691.
    129.Hodges DM,Hamilton RI,Charest C.A chilling response test for early growth phase maize.Agronomy Journal,1995,87:970-974.
    130.Hu J,Zhu ZY,Song WJ,Wang JC,Hu WM.Effect of sand priming on germination and field performance in direct-sowing rice(Oryza sativa L.).Seed Science and Technology,2005,33:243-248.
    131.Hu W,Shi K,Song X,Xia X,Zhou Y,Yu J.Different effects of chilling on respiration in leaves and roots of cucumber(Cucumis sativus).Plant Physiology and Biochemistry,2006,44:837-843.
    132.Huang CK,Chang BS,Wang KC,Her SJ,Chen TW,Chen YA,Cho CL,Liao LJ,Huang KL,Chen WS,Liu ZH.Changes in polyamine pattern are involved in floral initiation and development in Pelianthes tuberose.Journal of Plant Physiology,2004,161:709-713.
    133.Hummel I,Cou(?)e I,Amrani EA,Martin-Tanguy J,Hennion F.Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica.Journal of Experimental Botany,2002,53:1463-1473.
    134.Hunt R.Plant growth curve-The functional approach to plant growth analysis.London,Edward Arnold,1982.
    135.Icekson I,Apelbaum A.Evidence for transglutaminase activity in plant tissue.Plant Physiology,1987,84:972-974.
    136.Imai A,Matsuyama T,Hanzawa Y,Akiyama T,Tamaoki M,Saji H,Shirano Y,Kato T,Hayashi H,Shibata D,Tabata S,Komeda Y,Takahashi T.Spermidine synthase genes are essential for survival of Arabidopsis.Plant Physiology,2004,135(9):1565-1573.
    137.Irene H,Ivan C,Abdelhak EA,Josette MT,Francoise H.Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica.Journal of Experimental Botany,2002,53(373):1463-1473.
    138.ISTA.International Rules for Seed Testing.International Seed Testing Association,Switzerland,2006.
    139.Jan K,Kazywanski Z.Changes in polyamine concentration and proteases activity in spring barley during increasing water stresss.Acta Physiologiae Plantarum,1991,(13):13-20.
    140.Janda T,Szalai G,Rios-Gonzalez K,Veisz O,P(?)ldi E.Comparative study of frost tolerance and antioxidant activity in cereals.Plant science,2003,164,301-306.
    141.Jouve L,Engelmann F,Noirot M,Charrier A.Evaluation of biochemical markers(sugar,proline,malondialdehhyde and ethylene)for cold sensitivity in microcuttings of two coffee species.Plant Science.1993,991:109-116.
    142.Kasinathan V,Wingler A.Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana.Physiologia Plantarum,2004,121:101-107.
    143.Kim JD,Kwon CH,Kim SG,Kim JK,Hur SN.Development of seed pelleting technique for surface sowing of alfalfa.Journal of Animal Science and Technology,2005,47(3):475-480
    144.Kim TE,Kim SK,Han TJ,Lee JS,Chang SC.ABA and polyamines act independently in primary leaves of cold-stressed tomato(Lycopersicon esculentum).Physiologia Plantarum,2002,115(3):370-376.
    145.Koetje DS,Kononowicz H,Hodges TK.Polyamines metabolism associated with growth and embryogenic potential of rice.Journal of Plant Physiology,1993,141:215-221.
    146.Kondo S,Ponrod W,Sutthiwal S.Polyamines in developing mangosteens and their relationship to postharvest chilling injury.Journal of Japanese Society Horticultural Science,2003,72:318-320.
    147.Kong L,Attree SM,Fowke LC.Effects of polyethylene glycol and methylglyoxal bis(guanylhydrazone)on endogenous polyamine levels and somatic embryo maturation in white spruce(Picea giauca).Plant Science,1998,133:211-220.
    148.Konigshofer H,Lechner S.Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiology and Biochemistry,2002,40:51-59.
    149.Kramer GF,Wang CY.Correlation of reduced chilling injury with increased spermidine and spermine levels in zucchini squash.Physiologia Plantarum,1989,76:479-482.
    150.Kramer GF,Wang CY.Effects of chilling and temperature preconditioning on the activity of polyamine biosynthetic enzymes in zucchini squash.Journal of Plant Physiology,1990,136:115-119.
    151.Kubis J.Exogenous spermidine alters in different way membrane permeability and lipid peroxidation in water stressed barley leaves.Acta Physiologiae Plantarum,2006,28:27-33.
    152.Kubis J.Exogenous spermidine differentially alters activities of some scavenging system enzymes,H_2O_2 and superoxide radical levels in water-stressed cucumber leaves.Journal of Plant Physiology,2008,165:397-406.
    153.Kumria R,Rajam MV.Ornithine decarboxylase trans gene in tobacco affects polyamines,in vitro-morphogenesis and response to salt stress.Journal of Plant Physiology,2002,159:983-990.
    154.Kushad MM,Yelenosky G.Evalution of polyamine and proline levels during low temperature acclimation of Citrus.Plant Physiology,1987,84(3):692-695.
    155.#12
    156.Kwon SW,Ko BR,Bai DG Changes in antioxidant enzymes and polyamines in response to low temperature chilling in watermelon plants.Acta Horticulturae,2003,620:111-117.
    157.Laurenzi M,Rea G,Federico R,Tavladorald P,Angelini R.De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesoeotyl:a role in the photomodulation of growth and cell wall differentiation.Planta,1999,208:146-154.
    158.Lee DH,Lee CB.Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays.Plant Science,2000,159:75-85.
    159.Lee TM.Polyamine regulation of growth and chilling tolerance of rice(Oryza sativa L)roots cultured in vitro.Plant science,1997,122(2):111-117.
    160.Lee TM,Lur HS,Chu C.Role of abscisic acid in chilling tolerance of rice(Oryza sativa L)seedlings Ⅱ.Modulation for free polyamine levels.Plant Science,1997,126:1-10.
    161.Lee TM,Lur HS,Chu C.Abscisic acid and putrescine accumulation in chilling-tolerant rice cultivars.Crop Science,1995,35:502-508.
    162.Lenka G,Marie N,Radom(?)ra V,Josef E,Milena C.Diurnal changes in polyamine content,arginine and ornithine decarboxylase,and diamine oxidase in tobacco leaves.Journal of Experimental Botany,2006,57(6):1413-1421.
    163.Lepri O,Bassie L,Safwat G,Thu-Huang P,Trung-Nghia P,Holtta E,Christou P,Capell T.Over-expression of a c-DNA for human ornithine decarboxylase in transgenic rice plants alters the polyamine pool in a tissue-specific manner.Molecular Genetics and Genomics,2001,266:303-312.
    164.Li CZ,Jiao J,Wang GX.The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress.Plant Science,2004,16:303-316.
    165.Li J,Hu XH,Guo SR,Wang SP,Wang MH.Effect of exogenous spermidine on polyamine content and antioxidant enzyme activities in roots of cucumber seedlings under root-zone hypoxia stress.Journal of Plant Ecology,2006,30(1):118-123.
    166.Li XG,Xu PL,Zhao JP,Meng JJ,He QW.Ferredoxin-quinone reductase benefits cyclic electron flow around photosystem 1 in tobacco leaves upon exposure to chilling stress under low irradiance.Photosynthetica,2006,44(3):349-354.
    167.Liquori AH,Constantino L.Complexes between DNA and polyamines:a molecular model.Journal of Molecular Biology,1967,24:113-122.
    168.Liu HP,Dong BH,Zhang YY,Liu ZP,Liu YL.Relationship between osmotic stress and the levels of free,conjugated and bound polyamines in leaves of wheat seedlings.Plant Science,2004,166(5):1261-1267.
    169.Liu HP,Zhu ZX,Liu TX,Li CH.Effects of osmotic stress on the kinds,forms and levels of polyamines in wheat coleoptiles.Journal of Plant Physiology and Molecular Biology,2006,32(3):293-29.
    170.Liu J,Nada K,Pang X,Honda C,Kitashiba H,Moriguchi T.Role of polyamines in peach fruit development and storage.Tree Physiology,2006,26:791-798.
    171.Liu K,Bei QX,Luan S,Fu HH.Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements.Plant Physiology,2000,124:1315-1325.
    172.Lyons JM,Raison JK,Steponkus PL.The plant membrane in response to low temperature:an overview.In:Lyons JM,Graham D,Raison JK(Eds),Low Temperature Stress in Crop Plants:The Role of the Membrane.Academic Press,1979:1-24.
    173.Lovaas E.Antioxidant and met al-chelating effects of polyamines.In:Sies H(Ed),Advances in Pharmacology.Antioxidants in Disease Mechanisms and Therapy 38,Academic Press,New York,1996,pp.119-149.
    174.Masgrau C,Altabella T,Farr(?)s R,Flores D,Thompson AJ,Besford RT,Tiburcio AF.Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants.The Plant Journal:for Cell and Molecular Biology,1997,11:465-73.
    175.Massuda H,Suziki Y.Purification and properties of the diamine oxidase from vicia faba leaves.Plant Cell Physiology,1981,22:737-746.
    176.Marini F,Betti L,Scaramagli S,Biondi S,Torrigiani P.Polyamine metabolism is upregulated in response to tobacco mosaic virus in hypersensitive,but not in susceptible,tobacco.New Phytologist,2001,149:301-309.
    177.Martin-Tanguy J.Conjugated polyamines and reproductive development:biochemical,molecular and physiological approaches.Physiologia Plantarum,1997,100:675-688.
    178.Martin-Tanguy J.Metabolism and function of polyamines in plants:recent development(new approaches).Plant Growth Regulation,2001,34(1):135-148.
    179.Mauricio HM,Jesus NR,Catalina P.Changes in polyamine content are related to low temperature resistance in potato plants.Acta Biologica Colombiana,1999.4:27-47.
    180.Mc Connell RI,Gardner CO.Selection for cold germinations in two corn populations.Crop Science,1979,19:765-768.
    181.McDonald RE,Kushad MM.Accumulation of putrescine during chilling injury of fruit.Plant Physiology,1986,82:324-326.
    182.Mo H,Pua EC.Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard(Brassica juncea)in response to stress.Physiologia Plantarum,2002,114(3): 439-449.
    183.Nadeau P,Delaney S,Chouinard L.Effects of cold hardening on the regulation of polyamine levels in wheat(Triticum aestivum L.)and Alfalfa(Medicago sativa L.).Plant Physiology,1987,84:73-77.
    184.Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast.Plant and Cell Physiology,1981,22:867-880.
    185.Navakoudis E,Lutz C,Langebartels C.Ozone impact on the photosynthetic apparatus and the protective role of polyamines.Biochim Biophys Acta,2003,(62):160-169.
    186.Nayyar H.Putrescine increases floral retention,pod set and seed yield in cold stressed chickpea.Journal of Agronomy and Crop Science,2005,191(5):340-345.
    187.Nayyar H,Chander S.Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea.Journal of Agronomy and Crop Science,2004,190:355-365.
    188.Negrel J,Vallee JC,Martin C.Ornithine decarboxylase activity and the hypersensitive reaction to tobacco mosaic virus inNicotiana tabacum.Phytochemistry,1984,23:2747-2751.
    189.N(?)meth M,Janda T,Horv(?)th E,P(?)ldi E,Szalai G.Exogenous salicylic acid increases polyamines content but may decrease drought tolerance in maize.Plant Science,2002,162:569-574.
    190.Nishida I,Murata N.Chilling sensitivity in plants and cyanobacteria:the crucial contribution of membrane lipid.Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:541-568.
    191.N(o|¨)lke G,Schneider B,Fischer R,Schillberg S.Immunomodulation of polyamine biosynthesis in tobacco plants has a significant impact on polyamine levels and generates a dwarf phenotype.Plant Biotechnology Journal,2005,3:237-247.
    192.Omran RG.Peroxide levels and the activities of catalase,peroxidase,and indoleacetic acid oxidase during and after chilling cucumber seedlings.Plant Physiology,1980,65,407-408.
    193.Paldi E,Szalai G,Marton CL,P(?)l M,Janda T.Role of some N-containing compounds in chilling tolerance of maize.Acta Biologica Szegediensis Proceedings of the 7th Hungarian Congress on Plant Physiology,S2-P11,2002,46:99-100.
    194.Park KY,Lee SH.Effects of ethylene and auxin on polyamine levels in suspension-cultured tobacco cells.Physiologia Plantarum,1994,90:382-390.
    195.Parvanova D,Popova A,Zaharieva I,Lambrev P,Konstantinova T,Taneva S,Atanassov A,Goltsev V,Djilianov D.Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans,or glycine betaine.Variable chlorophyll fluorescence evidence.Photosynthetica,2004,42(2):179-185.
    196.Paschalidis KA,Roubelakis-Angelakis KA.Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs / tissues of the tobacco plant.Correlations with age,cell division/expansion,and differentiation.Plant Physiology,2005,138:142-152.
    197.Pelat J,Durand D,Doucet J Livolant F.DNA mesophases induced by speridine:structural properties and biological implications cations.Biophysical Journal,1996,71(1):48-63.
    198.Pignatti C,Tantini B,Stefanelli C,Flamigni F.Signal transduction pathways linking polyamines to apoptosis.Amino Acids,2004,7:359-365.
    199.Pillai MA,Akiyama T.Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes.Molecular Genetics and Genomics,2004,271(2):141-149.
    200.Posmyk MM,Bailly C,Szafrariska K,Janas KM,Corbineau F.Antioxidant enzymes and isoflavonoids in chilled soybean(Glycine max(L.)Merr.)seedlings.Journal of Plant Physiology,2005,162,403-412.
    201.Prasad TK.Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings.Plant Physiology,1997,114:1369-1376.
    202.Prasad TK,Anderson MD,Martin BA,Stewart CR.Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.The Plant Cell,1994,6:65-74.
    203.Qiu J.,Wang R.,Yan J.,Hu J.,2005.Seed film coating with uniconazole improves rape seedling growth in relation to physiological changes under waterlogging stress.Plant Growth Regulation,47:75-81.
    204.Raison JK,Chapman EA.Membrane phase changes in chilling sensitive Vigna radiata and their significance to growth.Australian Journal of Plant Physiology,1976,3:291-299.
    205.Rao KVM,Sresty TVS.Antioxidant parameters in the seedlings of pigeon pea(Cajanus cajan(L.)Millspaugh)in response to Zn and Ni stresses.Plant Science,2000,157,113-128.
    206.Rey M.Diaz SC,Rodriguez R.Exogenous polyamines improve rooting of hazel micro shoots.Plant Cell,Tissue and Organ Culture,1994,36(3):303-308.
    207.Roberts DR,Dumbroff EB,Thompson JE.Exogenous polyamines alter membrane fluidity in bean leaves-a basis for potential misinterpretation of their true physiological role.Planta,1986,167: 395-401.
    208.Sanchez DH,Cuevas JC,Chiesa MA,Ruiz OA.Free spermidine and spermine content in Lotus glaber under long-term salt stress.Plant Science,2005,168(2):541-546.
    209.Seano M,Martinez,Madrid MC,Pretel MT,Riquelme F,Romojaro F.Modified atmosphere packaging minimizes increases in putrescine seine and abscisic acid levels caused by chilling injury in pepper fruit.Journal of Agricultural and Food Chemistry,1997,45:1668-1672.
    210.Sen Gupta A,Webb RP,Holaday AS,Allen RD.Overexpression of superoxide dismutase protects plants from oxidative stress.Plant Physiology,1993,103,1067-1073.
    211.Serafini-Fracassini D,Del Duca S,Monti F,Poli F,Sacchetti G,Bregoli AM,Biondi S,Delia Mea M.Transglutaminase activity during senescence and programmed cell death in the corolla of tobacco(Nicotiana tabacum)flowers.Cell Death and Differentiation,2002,9:309-321.
    212.Serrano M,Pretel MT,Mainez-Madrid MC,Romojaro F,Riquelme F.CO_2 treatment of zucchini squash reduces chilling-induced physiological changes.Journal of Agricultural and Food Chemistry,1998,46:2465-2468.
    213.Shen W,Nada K,Tachibana S.Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber(Cucumis sativus L.)cultivars.Journal of the Japanese Society for Horticultural Science,1999,68:967-73.
    214.Shen WY,Nada K,Tachibana S.Involvement of polyamines in the chilling tolerance of cucumber cultivars.Plant physiology,2000,124:431-440.
    215.Shih LM,Kaur-Sawhney R,Fuhrer J,Samanta S,Galston AW.Effects of exogenous 1,3-diaminopropane and spermidine on senescence of oat leaves:Ⅱ.Inhibition of ethylene biosynthesis and possible mode of action.Plant Physiology,1982,70(6):1597-1600.
    216.Simon EW,Minchin A,McMenamin MM,Smith JM,The low temperature limit for seed germination.New Phytologist,1976,77:301-311.
    217.Slocum RD,Kaur-Sawhney R,Galston AW.The physiology and biochemistry of polyamines in plants.Archives of Biochemistry and Biophysics,1984,252:283-303.
    218.Smith TA.Polyamine oxidase(oat seedlings).Methods in Enzymology,1983,94:311-314.
    219.Smith TA.The di-and polyamine oxidases of higher plants.Biochemical Society Transactions,1985,13:319-322.
    220.Solomon A,Beer S,Waisel Y,Jones GP,Paleg LG.Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline related compatible solutes.Physiologia Plantarum,1994,90:198-204.
    221.Songstad DD,Duncan DR,Widholm JM.Proline and polyamine involvement in chilling tolerance of maize suspension cultures.Journal of Experimental Botany,1990,41:289-294.
    222.Stamp P.Chilling tolerance of young plants demonstrated on the example of maize(Zea mays L.).Journal of Agronomy and Crop Science,1984,7:1-83.
    223.Stewart CR,Martin BA,Reding L,Cerwick S.Seedling growth,mitochondrial characteristics,and alternative respiratory capacity of corn genotypes differing in cold tolerance.Plant Physiology,1990,92,761-766.
    224.Tang CF,Liu YG,Zeng GM,Li X,Xu WH,Li CF,Yuan XZ.Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L.under Cd~(2+)stress.Journal of Integrative Plant Biology,2005,47(4):428-434.
    225.Tassoni A,Van Buren M,Francescheti M,Fornal(?)S,Bagni N.Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development.Plant Physiology and Biochemistry,2000,38:383-393.
    226.Theiss C,Bohley P,Voigt J.Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii.Plant Physiology,2002,128:1470-1479.
    227.Thomas T,Thomas TJ.Polyamine in cell growth and cell death:molecular mechanisms and therapeutic applications.Cell and Molecular Life Science,2001,58:244-258.
    228.Tiburcio AF,Campos JL,Figueras X,Besford RT.Recent advances in the understanding of polyamines functions during plant development.Plant Growth Regulation,1993,12:331-340.
    229.Tiburcio AF,Altabella T,Borrel A,Masgrau C.Polyamine metabolism and its regulation.Physiologica Plantarum,1997,100:664-674
    230.Torriglani P,Rabiti AL,Bortolotti C,Beth' L,Marani F,Canova A.Bagni N.Polyamine Synthesis and accumulation in the hypersensitive response to TMV in Nicotiana tabaocum.New Phytologist,1997,135:467-473.
    231.Urano K,Yoshiba Y,Nanjo T,Igarashi Y,Seki M,Sekiguchi F,Yamaguchi-Shinozaki K,Shinozaki K.Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages.Plant,Cell and Environment,2003,26:1917-1926.
    232.Wada N,Shinozaki M,Iwamura H.Flower induction by polyamines and related compoundsin seedlings of morning glory(Pharbitis nil ev.Kidachi).Plant and Cell Physiology,1994,35:469-472.
    233.Wang CY.Relationship between free radical scavenging enzymes and chilling tolerance in zucchini squash.ISHS Acta Horticulturae,1995,398:205-213.
    234.Waie B,Rajam MV.Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene.Plant Science,2003,164:727-734.
    235.Walters DR.Polyamines and plant disease.Phytochemistry,2003,64:97-107.
    236.Willekens H,Chamnongpol S,Davey M,Schraudner M,Van Montagu M,Inze D,Inze D,Van Camp W.Catalase is a sink for H_2O_2 and is indispensable for stress defence in C_3 plants.EMBO Journal 1997,16,4806-4816.
    237.Wolukau JN,Zhang SL,Xu GH,Chen DX.The effect of temperature,polyamines and polyamine synthesis inhibitor on in vitro pollen tube growth of Pmnus mume.Scientia Horticulturae,2004,99:289-299.
    238.Wu FB,Zhang GP,Dominy P.Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity.Environmental and Experimental Botany.2003,50,67-78.
    239.Xu SC,Hu J,Tan H,Zhang S.Effects of genotype and environment on vitamin C content and its heterosis in towel gourd fruits.Journal of the Science of Food and Agriculture.2008,88:290-293.
    240.Yang SJ,Hosokawa M,Mizuta Y,Yun JG,Mano J,Yazawa S.Antioxidant capacity is correlated with susceptibility to leaf spot caused by a rapid temperature drop in Saintpaulia(African violet).Scientia Horticulturae,2001,88,59-69.
    241.Yoshihisa K,He LX,Kazuyoshi N,Shuhei M,Izumi I.Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of varous stress-regulated genes in transgenic Arabidopsis thaliana.Plant Cell Physiology,2004,45:712-722.
    242.Young ND,Galston AW.Putrescine and acid stress.Plant Physiology,1983,71:767-771.
    243.Young ND,Galston AW.Physiological control of arginine decarboxylase activity in potassium deficient oat shoots.Plant Physiology,1984,76:331-335.
    244.Zeng SH,Liu FH.A study on effects of low temperature at 5 ℃ on transgenic tobacco with SOD or POD over-expressed.Guihaia,2006,26:488-491.
    245.Zhang GY,Li P,Dai YR.Arginine Decarboxylase Activity is Increased in Tobacco(Nicotiana tabacum)Suspension Cells by Exogenous Melatonin During Cold Stress.Chinese Bulletin of Botany,2005,22(5):555-559.
    246.Zhang S.,Hu J.,Zhang Y.,Xie X.J.,Knapp A.,2007.Seed priming with brassinohde improves lucerne(Medicago sativa L.)seed germination and seedling growth in relation to physiological changes under salinity stress.Australian Journal of Agricultural Research,58:811-815.
    247.Zhang XZ.The measurement and mechanism of lipid peroxidation and SOD,POD and CAT activities in biological system.In:Zhang XZ(Ed).Research Methodology of Crop Physiology,Agriculture Press,Beijing.1992,pp.208-211.
    248.Zhang Y,Fang L,Yao ZB,Feng YX,Wu YC.Effects of PEG and chilling stress on some physiological characters of tobacco seedlings.Journal of Jilin Agricultural University,2002,24:14-19.
    249.Zhao S,Blumwald E.Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation.Physiologia plantarum,1998,104,134-142.
    250.Zheng YY,Hu J,Xu SC,Guan YJ,Wang XJ.Relationship between polyamine changes in embryos of maize and seed imbibitional chilling tolerance.Seed Science ant Technology,2009,Accept.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700