用户名: 密码: 验证码:
Pim-1在前列腺癌中作用机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的目前,前列腺癌(Prostate Cancer,PCa)的发病率已跃居我国男性泌尿、生殖系统恶性肿瘤的第三位。对于晚期PCa以及雄激素非依赖型PCa,基因治疗可以作为一种很有前途的治疗手段。Pim-1是一种丝氨酸/苏氨酸蛋白激酶,已有研究显示Pim-1在细胞凋亡、增殖、分化和肿瘤发生过程中起重要作用,并证实其在Pca中有高表达。本研究旨在利用RNA干扰(RNAi)技术下调Pim-1基因的表达水平,研究其对PCa细胞在增殖、凋亡及侵袭等方面的影响,并确定Pim-1基因是否可作为PCa基因治疗的靶基因,进而为PCa基因治疗的临床应用奠定实验基础。方法利用RT-PCR和Western-blot筛选Pim-1表达水平最高的前列腺癌细胞系作为研究对象。利用相关软件设计、筛选出若干Pim-1 mRNA干扰序列,再通过BLAST及干扰靶点mRNA的二级结构进一步筛选出3条靶向Pim-1mRNA的干扰序列,长度均为19nt,分别靶向674-692、707-725和1080-1098位点。人工合成靶向Pim-1基因的siRNA转录模板,与shRNA表达载体相连接,成功构建针对PIM-1 mRNA上述位点的RNAi重组质粒pRNAT-U6.1/Neo-Pim1-shRNA-1,-2,-3。重组质粒在脂质体介导下转染前列腺癌细胞,利用RT-PCR和Western-blot检测Pim-1基因沉默效果,并筛选稳定转染的细胞克隆。利用流式细胞技术检测Pim-1基因沉默对前列腺癌细胞的细胞周期及凋亡的影响,利用Transwell实验检测细胞侵袭能力的变化。同时利用RT-PCR和Western-blot检测Pim-1表达下调后前列腺癌细胞中原癌基因c-Myc表达的变化情况。制备前列腺癌裸鼠移植瘤模型,肿瘤局部注射针对Pim-1基因的RNAi重组质粒和脂质体,观察前列腺癌组织细胞内Pim-1基因的沉默效果及RNAi重组质粒对前列腺癌在动物体内生长的抑制作用。RT-PCR和Western-blot检测中均以GAPDH的表达水平作内参照。结果RT-PCR检测显示3个RNAi重组质粒转染PC-3细胞后Pim-1 mRNA表达的相对量分别为0.324±0.025、0.136±0.013、0.125±0.016,与PBS对照组(表达量为1.078±0.132)相比均明显下降(P<0.05)。与重组质粒-1相比,RNAi重组质粒-2,-3具有更强的Pim-1基因沉默效应(P<0.05)。Western-blot检测显示,与PBS对照组相比这2个RNAi重组质粒均可以显著降低Pim-1蛋白的表达水平。将靶向1080-1098位点的RNAi重组质粒-3以脂质体为介导转染PC-3细胞,并筛选出稳定转染细胞。与PBS对照组相比,Pim-1基因沉默PC-3细胞的增殖速度、克隆形成能力及致瘤能力均显著下降,细胞周期中G1期细胞的比例升高而S期细胞的比例降低,说明G1期→S期进程受阻。Pim-1基因沉默对前列腺癌细胞的侵袭能力并无显著影响。而且,Pim-1基因沉默前列腺癌细胞中c-Myc蛋白水平显著降低(沉默组和PBS对照组c-Myc蛋白相对量分别为0.384±0.041和0.866±0.079,P<0.05),而其mRNA水平却无明显变化(沉默组和PBS对照组c-MycmRNA相对量分别为0.986±0.158和1.027±0.105,P>0.05)。与PBS对照组相比,种植瘤组织内注射Pim-1 RNAi重组质粒-3可以有效降低前列腺癌细胞内Pim-1 mRNA水平(Pim-1 mRNA的相对量分别为1.113±0.048和0.437±0.013,P<0.05)和Pim-1蛋白水平(Pim-1蛋白相对量分别为0.948±0.097和0.378±0.048,P<0.05)。另外,注射重组质粒可以显著抑制裸鼠皮下种植瘤的生长,重组质粒组和PBS对照组种植瘤的最后重量分别为0.33±0.08g和0.68±0.14g(P<0.05)。PBS对照组和空质粒对照组在各项指标检测中均无显著差异(P>0.05)。结论本实验成功构建了针对Pim-1 mRNA的RNAi重组质粒表达载体,并验证了靶向不同位点重组质粒载体的基因沉默效果。重组载体在脂质体的协助下能够高效的转染PC-3细胞,靶向Pim-1 mRNA 1080-1098位点的RNAi重组质粒能够有效的在转录后水平抑制前列腺癌细胞Pim-1基因的表达,并使PC-3细胞的细胞周期受到阻滞,抑制了细胞的增殖,同时诱发细胞凋亡。Pim-1可以在蛋白水平调控c-Myc的表达,对抑制肿瘤生长可能产生协同效应。裸鼠种植瘤模型的动物体内抑瘤实验显示,Pim-1可以作为前列腺癌基因治疗的有效靶点,具有潜在的临床应用价值。
Preliminary study on effective mechanism of Pim-1 in prostatecancer
     Objective In our country,the incidence of prostate cancer has increasedsignificantly in recent years and the prostate cancer has been the thirdcommon malignancy of genito-urinary system in man to date.Foradvanced and/or androgen-independent prostate cancer,the gene therapyis a promising treatment selection.Pim-1 belongs to a serine/threoninekinase family and is able to phosphorylate different targets,most ofwhich are involved in cell survival,proliferation,differentiation andtumorigenesis.Many studies have showed that there is over-expressedPim-1 in prostate cancer.In our study,by utilizing the RNA inference(RNAi)technique we intend to investigate the effective mechanism ofPIM-1 in the process of proliferation,apoptosis and migration of prostatecancer,and investigate the molecular mechanism of tumorigenesis anddevelopment of prostate cancer further.Our study will provide anexperiment base for the clinical use of gene therapy targeting Pim-1 inprostate cancer.Methods RT-PCR and western-blot were used toscreen the prostate cancer cell strain expressing Pim-1 highly.siRNAoligos of Pim-1 mRNA were designed and screened through the onlinesiRNA design software,and then the secondary structure of the targetmRNA were analyzed by the RNA-structure software 3.2 edition.At lastthree siRNA oligos have been determined which target the 674-692、707-725 and 1080-1098 nucleotides of Pim-1 mRNA respectively.Byinserting the artificially-synthesized expression frame of shRNA intolined pRNAT-U6.1/Neo plasmid,three recombinant plasmids ofpRNAT-U6.1/Neo-Piml-shRNA-1,-2-,3 were constructed successfully.The recombinant plasmids were transfected into PC-3 cells by liposome.The silence effect of the 3 recombinant plasmids on Pim-1 gene were investigated by RT-PCR and Western-blot technique,and thestable-transfection cells were screened by G418.The influence of thesilence of Pim-1 on cell-cycle and apoptosis in PC-3 cells were evaluatedby FCM,and the change of the invasion capability of PC-3 cells weredetected by Trans-well.The expression of c-Myc gene in Pim-1gene-silenced PC-3 cells was observed meanwhile.To establish xenograftprostate cancer model,PC-3 cells were inoculated subcutaneously on theventro-anterior surface of nude mice.The mixture of liposome andpRNAT-U6.1/Neo-PIM1-shRNA-3 recombinant plasmids were injectedinto the implanted tumors.The silence effect of Pim-1 gene in tumor cellsand the suppression effect in tumor growth were studied then.GAPDHserves as inner control in RT-PCR and western-blot assay.Results Threerecombinant plasmids of pRNAT-U6.1/Neo-PIM1-shRNA-1,-2,-3 candown-regulate the level of Pim-1 mRNA,and the more significantsilence effect on Pim-1 expression of the latter two of them wereobserved.The shRNA-expression recombinant plasmid targeting the1080-1098 nucleotides of Pim-1 mRNA was transfected into the PC-3cell,and the PC-3 cells of stable transfection were obtained by G418screen.Compared with the PBS contrast group,the ability ofproliferation,clone formation and tumorigenesis of the PC-3 cells withsilenced PIM-1 gene had decreased remarkably.The percentage of cellsin G1 stage increased,at the same time the percentage in S stage reduced.And there was no change in the invasive capability of PC-3 cell withdown-regulation of Pim-1.Notably,we observed also that c-Myc geneexpression of those PC-3 cell were inhibited at translation orpost-translation level but not transcription level.At last,the expression ofPIM-1 gene was suppressed in the tumor cells of xenograft prostatecancer by combined-injection with recombinant plasmid and liposome.Consequently,the growth of the implanted tumors in nude mice wasinhibited obviously by the injection of recombinant plasmid and liposome and the final weight of implanted tumor in treatment group andPBS control group were 0.3 3±0.08g and 0.68±0.14grespectively(P<0.05).Conclusion we have successfully constructedthree recombinant plasmids which can express shRNA in vivo targetingthe PIM-1 mRNA,and we have investigated their silence effect on PIM-1gene respectively.Mediated by liposome,the recombinant plasmidtargeting 1080-1098 nucleotides of PIM-1 mRNA was transfected intoPC-3 cells.The cell cycle of the PC-3 cells whose PIM-1 gene expressionwere suppressed was blocked,the proliferation was inhibited and theapoptosis was induced of those cells meanwhile.It was postulated thatthere was a synergistic mechanism of Pim-1 and c-Myc in inhibiting thegrowth of Prostate cancer,in which Pim-1 could regulate c-Mycexpression at the translation level.In conclusion,Pim-1 gene can serve asa effective target of gene therapy for prostate cancer and this strategymay have a potential value in clinical practice deserving furtherinvestigation.
引文
[1]叶定伟.前列腺癌的流行病学及中国的发病趋势[J].中华外科杂志,2006,44(6):362-364.
    [2]Paul CP,Good PD,Winer I,et al.Effective expression of small interfering RNA in human cells[J].Nat Biotechnol,2002,20(5):505-508.
    [3]Sui G,Soohoo C,Affarel B,et al.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells[J].Proc Natl Acad Sci U S A,2002,99(8):5515-5520.
    [4]Wang Z,Bhattacharya N,Weaver M,et al.Pim-1:a serine/threonine kinase with a role in cell survival,proliferation,differentiation and tumorigenesis[J].J Vet Sci,2001,2 (3):167-179.
    [5]Cibull TL,Jones TD,Li L,et al.Overexpression of Pim-1 during progression of prostatic adenocarcinoma[J].J Clin Pathol,2006,59(3):285-288.
    [6]Xu Y,Zhang T,Tang H,Zhang S,et al.Overexpression of PIM-1 is a potential biomarker in prostate carcinoma[J].J Surg Oncol,2005,92 (4):326-330.
    [7]张彤,徐勇,张晓光,等.前列腺癌中PIM-1的表达及其临床意义[J].中华泌尿外科杂志,2006,27(9):621-623.
    [8]Verbeek S,van Lohuizen M,van der Valk M,et al.Mice bearing the E mu-myc and E mu-Pim-1 transgenes develop pre-B-cell leukemia prenatally[J].Mol Cell Biol,1991,11 (2):1176-1179.
    [9]张彤,徐勇,张晓光,等.Pim-1与c-myc在前列腺癌中的表达及其临床意义.临床泌尿外科杂志[J],2007,22(2):122-124.
    [10]Carter BS,Carter HB,Isaacs JT.Epidemiologic evidence regarding predisposing factors to prostate cancer[J].Prostate,1990,16:187-197.
    [11]Saris CJ,Domen J,Berns A.The Pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG[J].EMBO J,1991,10(3):655-664
    [12]van Lohuizen M,Verbeek S,Krimpenfort P,et al.Predisposition to lymphom agenesis in Pim-1 transgenic mice:cooperation with c-myc and N-myc in murine leukemia virus-induced tumors[J].Cell,1989,56 (4):673-682.
    [13]Mochizuki T,Kitanaka C,Noguchi K,et al.Pim-1 kinase stimulates c-Myc mediated death signaling upstream of caspase-3 (CPP32)-like protease activation[J].Oncogene,1997,15(12):1471-1480.
    [14] Ellwood-Yen K, Graeber T, Wongvipat J, et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors[J]. Cancer Cell, 2003;4(3):223-238.
    [15] Thompson J, Peltola K, Koskinen P, et al. Attenuation of androgen receptor dependent transcription by the serine/threonine kinase Pim-1[J]. Lab Invest, 2003;83(9):1301-1309.
    [16] Roh M, Gary B, Song C, et al. Overexpression of the oncogenic kinase Pim-1 leads to genomic instability[J]._Cancer Res, 2003,63(23):8079-8084.
    [17] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans[J]. Nature,1998,391(6669):806-811.
    [18] Zamore PD. Ancient pathways programmed by small RNAs [J]. Science, 2002, 296(5571): 1265-1269.
    [19] Doi N, Zenno S, Ueda R, etal. Short interfering RNA mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors [J]. Curr Biol, 2003, 13(1): 41-46.
    [20] Tuschl T, Zamore PD, Lehmann R, et al. Targeted mRNA degradation by double-standed RNA in vitro [J]. Genes Dev, 1999, 13(24): 3191-3197.
    [21] Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J]. Nat Biotechnol, 2004, 22(3): 326-330.
    [22] Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs [J]. Methods, 2002,26: 199-213.
    [23] Hirohiko H. RNA interference (RNAi) induction with various types of synthetic oligonucleotide duplexes in cultured human cells [J]. FEBS Lett, 2002, 521(1-3): 195-199.
    [24] Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA [J]. Molecular Cell, 2002, 10(3): 549-561.
    [25] May RC and Plasterk RH. RNA interference spreading in C elegans [J]. Methods Enzymol, 2005, 392: 308-315.
    [26] Devroe E, Silver PA. Therapeutic potential of retroviral RNAi vectors [J]. Expert Opin Biol Ther, 2004, 4(3): 319-327.
    [27] Musatov S, Chen W, Pfaff DW, et al. RNAi-mediated silencing of estrogen receptor {alpha} in the ventromedial nucleus of hypothalamus abolishes female sexual behaviors [J]. Proc Natl Acad Sci USA, 2006, 103(27): 10456-10460.
    [28] Li CX, Parker A, Menocal E, et al. Delivery of RNA interference [J]. Cell Cycle, 2006, 5(18): 2103-2109.
    [29] Maurer N, Mori A, Palmer L, et al. Lipid-based systems for the intracellular delivery of genetic drugs [J]. Mol Membr Biol, 1999, 16(1): 129-140.
    [30] Sui G, Soohoo C, Affar el B, et al. A DNA vector based RNAi technology to suppress gene expression in mammalian cells [J]. Proc Nati Acad Sci, 2002, 99: 5515-5520.
    [31] Yu JY, Taylor J, DeRuiter SL, et al. Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors [J]. Mol Ther, 2003,7(2):228-236.
    [32] Sui G, Soohoo C, Affarel B, et al. A DNA vectorbased RNAi technology to suppress gene exprssion in mammalian cells [J]. Proc Natl Acad Sc l,2002, 99(8): 5515-5520.
    [33] Brummelkamp TR, Bernards R, Agami R. A system for sta ble expression of short interfering RNAs in mammalian ceils [J]. Science,2002,296(5567):550-553.
    [34] Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs[J]. Proc Natl Acad Sci, 2003,100(4):2014-2018.
    [35] Mochizuki T, Kitanaka C, Noguchi K, et al. Pim-1 kinase stimulates c-Myc-mediated death signaling upstream of caspase-3(CPP32)-like protease activation[J].Oncogene,1997,15:1471-1480.
    [36] Mikkers H, Nawijn M, Allen J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth faciors[J]. Mol Cell Biol,2004,24:6104-6115.
    [37] Heinrich PC, Behrm arm I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signaling and its regulation[J]. J Biol Chem,2003,374:l-20.
    [38] Kim KT, Baird K, Ahn JY, et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival[J]. Blood,2005,105:1759-1767.
    [39] Alessio Zippo, Alessandra De Robertis, Monia Bardelli, et al. Identification of Flk-1 target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro[J]. Blood, 2004,103(12):4536-4544.
    [40] Blyth K, Terry A, Mackay N,et al. Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging[J]. Oncogene ,2001,20:295-302.
    [41] Cameron ER, Blyth K, Hanlon L, et al. The Runx genes as dominant oncogenes[J].Blood Cells Mol Dis,2003,30:194-200.
    [42]Aho TL,Sandholm J,Peltola K J,et al.Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity[J].BMC Cell Biol,2006,7:21.
    [43]Lilly M,Sandholm J,Cooper J J,et al.The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway[J].Oncogene,1999,18(27):4022-4031.
    [44]M(o|¨)r(o|¨)y T,Grzeschiczek A,Petzold S,et al.Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice[J].Proc Natl Acad Sci USA,1993,90(22):10734-10738.
    [45]Pircher TJ,Zhao S,Geiger JN,et al.Pim-1 kinase protects hematopoietic FDC cells from genotoxin-induced death[J].Oncogene,2000,19(32):3684-3692.
    [46]Mikkers H.,Nawijn M.,Allen J,et al.Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors[J].Molecular and Cellular Biology,2004,24(13):6104-6115.
    [47]Bachmann M,Hennemann H,Xing PX,et al.The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1(C-TAK1):a novel role for Pim-1 at the G2 / M cell cycle checkpoint[J].J Biol Chem,2004,279(46):48319-48328.
    [48]Wang Z,Bhattacharya N,Mixter PF,et al.Phosphorylation of the cell cycle inhibitor p21 Cipl/WAF1 by Pim-1 kinase[J].Biohim Biophys Acta,2002,1593:45-55
    [49]Dai JM,Zhang SQ,ZhangW,et al.Antisense oligodeoxynucleotides targeting the serine/threonine kinase Pim-2 inhibited proliferation of DU-145 cells[J].Acta Pharmacol Sin,2005,26:364-368.
    [50]Bhattacharya N,Wang Z,Davitt C,et al.Pim-1 associates with protein complexes necessary for mitosis[J].Chromosoma,2002,111:80-95.
    [51]Fox C J,Hammerman PS,Cinalli RM,et al.The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor[J].Genes Dev,2003,17:1841-1854.
    [52]Chen WW,Chan DC,Donald C,et al.Pim family kinases enhance tumor growth of prostate cancer cells[J].Mol Cancer Res,2005,3(8):443-51.
    [53]白阳,叶健,王敬泽.C-Myc功能及其下游靶点[J].细胞生物学杂志,2007,29:191-196.
    [54] Abate-Shen, C. & Shen, M. M. Molecular genetics of prostate cancer[J]. Genes Dev, 2000,14: 2410-2434.
    [55] Sears R, Nuckolls F, Haura E,et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability[J]. Genes Dev, 2000,14:2501-2514.
    [56] Welcker M, Orian A, Jin J, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation[J]. Proc Natl Acad Sci USA, 2004,101:9085-9090.
    [57] Malempati S, Tibbitts D, Cunningham M, et al.. Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias[J]. Leukemia, 2006, 2: 1572-1581.
    [58] Raught B, Gingras AC. eIF4E activity is regulated at multiple levels[J]. Int J Biochem Cell Biol, 1999,31:43-57.
    [59] Trumpp A, Refaeli Y, Oskarsson T, et al. c-Myc regulates mammalian body size by controlling cell number but not cell size[J]. Nature, 2001,414:768 - 773.
    [60] Zhang Y, Wang Z, Li X,et al. Pirn kinase-dependent inhibition of c-Myc degradation[J]. Oncogene, 2008,27(35):4809-4819.
    [61] Sumimoto H, Yamagata S, Shimizu A, et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference [J]. Gene Ther, 2005,12(1): 95-100.
    [62] Duxbury M S, Matros E, Ito H, et al. Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer [J]. Ann Surg, 2004, 240(4): 667-674.
    [63] Crallan RA, Georgopoulos NT, Southgate J. Experimental models of human bladder carcinogenesis [J]. Carcinogenesis, 2006,27(3): 374-381.
    [64] Lieberman J, Song E, Lee SK, et al. Interfering with disease: opportunities and roadblocks to harnessing RNA interference [J]. Trends Mol Med, 2003, 9:397-403.
    [65] Hommel JD, Sears RM, Georgescu D, et al. Local gene knockdown in the brain using viral-mediated RNA interference [J]. Nat Med, 2003, 9:1539-1544.
    [66] Van den Haute C, Eggermont K, Nuttin B, et al. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain [J]. Hum Gene Ther, 2003, 14(18): 1799-1807.
    [67] Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs [J]. Gene Ther, 2006, 13(6): 541-52.
    [68] Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice [J]. J Mol Biol, 2003, 327(4): 761-766.
    [69]Zhang Y,Zhang YF,Bryant J,et al.Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer[J].Clin Cancer Res,2004,10(11):3667-3677.
    [70]Akaneya Y,Jiang B,and Tsumoto T.RNAi-induced gene silencing by local electroporation in targeting brain region[J].J Neurophysiol,2005,93(1):594-602.
    [71]Kishida T,Asada H,Gojo S,et al.Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA[J].J Gene Med,2004,6(1):105-110.
    [72]Matsuda T,Cepko CL.Electroporation and RNA interference in the rodent retina in vivo and in vitro[J].Proc Natl Acad Sci USA,2004,101(1):16-22.
    [73]Katahira T and Nakamura H.Gene silencing in chick embryos with a vector-based small interfering RNA system[J].Dev Growth Differ,2003,45(4):361-367.
    [74]Blaese RM,Culver KW,Anderson WF,et al.T lymphocyte-directed gene therapy for ADA-SCID:initial trial results after 4 years[J].Science,1995,270(5235):475-480
    [75]世界首个基因治疗药物获准上市.生物学通报,2004,(04):125.
    [76]Czauderna F,Santel A,Hinz M,et al.Inducible shRNA expression for application in a prostate cancer mouse model[J].Nucleic Acids Res,2003,31(21):e127.
    [77]Ohkawa J and Taira K.Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 shRNA promoter[J].Hum Gene Ther,2000,11(4):577-585.
    [78]Ventura A,Meissner A,Dillon C P,et al.Cre-lox-regulated conditional RNA interference from transgenes[J].Proc Natl Acad Sci USA,2004,101(28):10380-10385.
    [79]孙建涛.PSMA增强子/启动子驱动shRNA靶向干扰核干因子治疗前列腺癌的研究[D].天津:天津医科大学博士论文,2008.
    [1]Mochizuki T,Kitanaka C,Noguchi K,et al.Pim-1 kinase stimulates c-Myc-mediated death signaling upstream of caspase-3(CPP32)-like protease activation[J].Oncogene,1997,15:1471-1480.
    [2]Mikkers H,Nawijn M,Allen J,et al.Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth faciors[J].Mol Cell Biol,2004,24:6104-6115.
    [3]Palaty CK,Clark-Lewis I,Leung D,et al.Phosphorylation site substrate specificity determinants for the Pim-1 pmtooncogene-encoded protein kinase[J].Biohem Cell Biol,1997,75:153-162.
    [4]Saris CJ,Domen J,Berns A.The Pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG.[J].EMBO J,1991,10(3):655-664.
    [5]Buckley AR,Buckley D J,Leff MA,et al.Rapid induction of Pim-1 expression by prolactin and interleukin-2 in rat Nb2 lymphoma cells[J].Endocrinology,1995,136(12):5252-5259.
    [6]Buckley AR,Leff MA,Buckley DJ,et al.Alterations in Pim-1 and c-myc expression associated with sodium butyrate-induced growth factor dependency in autonomous rat Nb2 lymphoma cells[J].Cell Growth Differ,1996,7(12):1713-21.
    [7]Demoulin JB,Van Roost E,Stevens M,et al.Distinct roles for STAT1,STAT3,and STAT5 in differentiation gene induction and apoptosis inhibition by interleukin-9[J].J Biol Chem,1999,274(36):25855-25861.
    [8]Matikainen S,Sareneva T,Ronni T,et al.Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL-2Ralpha, c-myc, and Pim-1 genes in human T cells[J]. Blood, 1999,93(6):1980-1991.
    [9] Wingett D, Stone D, Davis WC,et al. Expression of the Pim-1 protooncogene: differential inducibility between alpha/beta- and gamma/delta-T cells and B cells[J]. Cell Immunol,1995,162(l):123-130.
    [10] Yip-Schneider MT, Horie M, Broxmeyer HE. Transcriptional induction of Pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor[J]. Blood,1995,85(12):3494-3502.
    [11] Lilly M, Le T, Holland P,et al. Sustained expression of the Pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related[J]. Oncogene,1992,7(4):727-732.
    [12] Rohwer F, Todd S, McGuire KL. The effect of IL-2 treatment on transcriptional attenuation in proto-oncogenes Pim-1 and c-myb in human thymic blast cells[J]. J Immunol, 1996,157(2):643-649.
    [13] Wingett D, Long A, Kelleher D,et al. Pim-1 proto-oncogene expression in anti-CD3-mediated T cell activation is associated with protein kinase C activation and is independent of Raf-l[J]. J Immunol,1996,156(2):549-557.
    [14] Wingett D, Stone D, Davis WC,et al. Expression of the Pim-1 protooncogene: differential inducibility between alpha/beta- and gamma/delta-T cells and B cells[J]. Cell Immunol,1995,162(l):123-130.
    [15] Nagarajan L, Narayana L. Transcriptional attenuation of PIM-1 gene[J]. Biochem Biophys Res Commun,1993,190(2):435-439.
    [16] Rohwer F, Todd S, McGuire KL. The effect of IL-2 treatment on transcriptional attenuation in proto-oncogenes Pim-1 and c-myb in human thymic blast cells[J]. J Immunol,1996,157(2):643-649.
    [17] Heinrich PC, Behrm arm I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signaling and its regulation[J]. J Biol Chem,2003,374:l-20.
    [18] Kim KT, Baird K, Ahn JY, et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival[J].Blood,2005,105:1759-1767.
    [19] Peltola KJ, Paukku K, Aho TL, et al. Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3[J]. Blood,2004, 103:3744-3750.
    [20]Ross J. mRNA stability in mammalian cells[J]. Microbiol Rev,1995,59(3):423-50.
    [21] Wingett D, Reeves R, Magnuson NS. Characterization of the testes-specific Pim-1 transcript in rat[J]. Nucleic Acids Res,1992,20(12):3183-3189.
    [22] Wingett D, Stone D, Davis WC,et al. Expression of the Pim-1 protooncogene: differential inducibility between alpha/beta- and gamma/delta-T cells and B cells[J]. Cell ImmunoU995,162(l):123-130.
    [23] Wingett D, Long A, Kelleher D,et al. Pim-1 proto-oncogene expression in anti-CD3-mediated T cell activation is associated with protein kinase C activation and is independent of Raf-l[J]. J Immunol, 1996,156(2):549-557.
    [24] Buckley AR, Buckley DJ, Leff MA,et al. Rapid induction of Pim-1 expression by prolactin and interleukin-2 in rat Nb2 lymphoma cells[J]. Endocrinology, 1995,136(12):5252-5259.
    [25] Yip-Schneider MT, Horie M, Broxmeyer HE. Transcriptional induction of Pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor[J]. Blood,1995,85(12):3494-3502.
    [26] Kozak M. Initiation of translation in prokaryotes and eukaryotes[J]. Gene, 1999,234(2): 187-208.
    [27] Kozak M. Do the 5'untranslated domains of human cDNAs challenge the rules for initiation of translation (or is it vice versa) [J]? Genomics,2000,70(3):396-406
    [28] Morris DR, Geballe AP. Upstream open reading frames as regulators of mRNA translation[J]. Mol Cell Biol,2000,20(23):8635-42.
    [29] Kozak M. New ways of initiating translation in eukaryotes[J]? Mol Cell Biol, 2001,21(6):1899-1907.
    [30] Hoover DS, Wingett DG, Zhang J,et al. Pim-1 protein expression is regulated by its 5'-untranslated region and translation initiation factor elF-4E[J]. Cell Growth Differ,1997,8(12):1371-1380.
    [31] Wang Z, Weaver M, Magnuson NS. Cryptic promoter activity in the DNA sequence corresponding to the Pim-1 5'-UTR[J]. Nucleic Acids Res,2005,33:2248-2258.
    [32] Holcik M, Sonenberg N, Komeluk RG. Internal ribosome initiation of translation and the control of cell death[J]. Trends Genet,2000,16(10):469-473.
    [33] Sachs AB. Cell cycle-dependent translation initiation: IRES elements prevail[J]. Cell,2000,101(3):243-245.
    [34] Saris CJ, Domen J, Berns A. The Pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG[J]. EMBO J,1991,10(3):655-664.
    [35] Liang H, Hittelman W, Nagarajan L. Ubiquitous expression and cell cycle regulation of the protein kinase PIM-1[J]. Arch Biochem Biophys,1996,330(2):259-265.
    [36] Mizuno K, Shirogane T, Shinohara A,et al. Regulation of Pim-1 by Hsp90[J]. Biochem Biophys Res Commun,2001,281(3):663-669.
    [37] Shay KP, Wang Z, Xing PX,et al. Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway[J]. Mol Cancer Res,2005,3(3):170-181.
    [38] Freeman RS, Meyer AN, Li J,et al. Phosphorylation of conserved serine residues does not regulate the ability of mosxe protein kinase to induce oocyte maturation or function as cytostatic factor[J]. J Cell Biol,1992,116(3):725-735.
    [39] Losman JA, Chen XP, Vuong BQ, et al. Protein phosphatase 2A regulates the stability of Pirn protein kinases[J]. J Biol Chem,2003,278: 4800-4805.
    [40] Wingett D, Long A, Kelleher D,et al. Pim-1 proto-oncogene expression in anti-CD3-mediated T cell activation is associated with protein kinase C activation and is independent of Raf-l[J]. J Immunol,1996,156(2):549-557.
    [41] Krumenacker JS, Narang VS, Buckley DJ,et al. Prolactin signaling to Pim-1 expression: a role for phosphatidylinositol 3-kinase[J]. J Neuroimmunol,2001,113(2):249-259.
    [42] Mui AL, Wakao H, Kinoshita T, Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation[J]. EMBO J,1996,15(10):2425-2433.
    [43] Demoulin JB, Van Roost E, Stevens M,et al. Distinct roles for STAT1, STAT3, and STAT5 in differentiation gene induction and apoptosis inhibition by interleukin-9[J]. J Biol Chem,1999,274(36):25855-61.
    [44] Jaster R, Tschirch E, Bittorf T,et al. Interferon-alpha inhibits proliferation of Ba/F3 cells by interfering with interleukin-3 action[J]. Cell Signal,1999,11(10):769-75.
    [45] Jaster R, Tschirch E, Bittorf T,et al. Role of STAT5 in interferon-alpha signal transduction in Ba/F3 cells[J]. Cell Signal,1999,ll(5):331-335.
    [46] Nosaka T, Kawashima T, Misawa K,et al. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells[J]. EMBO J, 1999,18(17):4754-65.
    [47] O'Farrell AM, Ichihara M, Mui AL,et al. Signaling pathways activated in a unique mast cell line where interleukin-3 supports survival and stem cell factor is required for a proliferative response[J]. Blood,1996,87(9):3655-68.
    [48] Matikainen S, Sareneva T, Ronni T,et al. Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL-2Ralpha, c-myc, and Pim-1 genes in human T cells[J]. Blood,1999,93(6):1980-91.
    [49] Kim KT, Baird K, Arm JY,et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell surviyal[J]. Blood,2005,105(4):1759-67.
    [50] Mochizuki T, Kitanaka C, Noguchi K, et al. Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway[J]. J Biol Chem, 1999,274:18659—18666
    [51] Wang Z, Bhattacharya N, Mixter PF, et al. Phosphorylation of the cell cycle inhibitor p21Cipl/WAFl by Pim-1 kinase[J]. Biohim Biophys Acta,2002,1593:45-55
    [52] Dai JM, Zhang SQ, ZhangW, et al. Antisense oligodeoxynucleotides targeting the serine/threonine kinase Pim-2 inhibited proliferation of DU-145 cells[J]. Acta Pharmacol Sin, 2005, 26: 364-368
    [53] Baehmann M, Hennemann H, Xing PX, et al. The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase l(C-TAKl): a novel role for Pim-1 at the G2 / M cell cycle checkpoint[J]. J Biol Chem,2004,279: 48319-48328
    [54] Bhattacharya N, Wang Z, Davitt C, et al. Pim-1 associates with protein complexes necessary for mitosis[J].Chromosoma,2002,l 11:80-95.
    [55] Fox CJ, Hammerman PS, Cinalli RM, et al. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor[J]. Genes Dev, 2003, 17: 1841-1854
    [56] Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch[J]. Nat Rev Cancer,2002,2: 647-656.
    [57] Datta SR, Ranger AM, Lin MZ, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis[J]. Dev Cell, 2002,3: 631-643.
    [58] Aho TL, Sandholm J, Pehola KJ, et al. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Serl12 gatekeeper site[J]. FEBS Lett, 2004,571: 43-49.
    [59] Hammerman PS, Fox CJ, Birnbaum MJ, et al. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival[J]. Blood,2005,105: 4477-4483.
    [60] Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-Myc[J]. Nature, 1996, 382: 511-517.
    [61] Leverson JD, Koskinen PJ, Orrico FC, et al. Pim-1 kinase and p100 cooperate to enhance c-Myb activity[J]. Mol Cell, 1998, 2: 417-425.
    [62] Winn LM, Lei W, Ness SA. Pim-1 phosphorylates the DNA binding domain of c-Myb[J]. Cell Cycle, 2003, 2: 258-262.
    [63] Rainio EM, Ahlfors H, Carter KL,et al. Pim kinases are upregulated during Epstein-Barr virus infection and enhance EBNA2 activity[J]. Virology, 2005,333(2):201-6.
    [64] Hammerm an PS, Fox CJ, Cinalli RM, et al. Lymphocyte transformation by Pim-2 is dependent on nuclear factor-kappaB activation[J]. Cancer Res, 2004,64: 8341-8348.
    [65] Zhu N, Ramirez LM, Lee RL, et al. CD40 signaling in B cells regulates the expression of the Pim-1 kinase via the NF-kappa B pathway[J]. J Immunol, 2002,168: 744-754.
    [66] Malta H, Harada Y, Nagakubo D, et al. PAP-1, a novel target protein of phosphorylation by Pim-1 kinase[J]. Eur J Biochem, 2000,267: 5168-5178.
    [67] Rainio EM, Sandholm J, Koskinen PJ. Cutting edge: Transcriptional activity of NFATcl is enhanced by the Pim-1 kinase[J]. J Immunol,2002,168: 1524-1527.
    [68] Coffman JA: Runx transcription factors and the developmental balance between cell proliferation and differentiation[J]. Cell Biol Int, 2003, 27:315-224.
    [69] Blyth K, Terry A, Mackay N,et al. Runx2: a novel oncogenic effector revealed by in vivo complementation and retroviral tagging[J]. Oncogene,2001,20:295-302.
    [70] Cameron ER, Blyth K, Hanlon L, et al. The Runx genes as dominant oncogenes[J]. Blood Cells Mol Dis, 2003, 30:194-200.
    [71] Aho TL, Sandholm J, Peltola KJ, et al. Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity[J]. BMC Cell Biol,2006,7:21.
    [72] Cibull TL, Jones TD, Li L,et al. Overexpression of Pim-1 during progression of prostatic adenocarcinoma[J]. J Clin Pathol,2006,59(3):285-288.
    [73] Roh M, Gary B, Song C,et al. Overexpression of the oncogenic kinase Pim-1 leads to genomic instability[J]. Cancer Res,2003,63(23):8079-84.
    [74] Chen WW, Chan DC, Donald C,et al. Pirn family kinases enhance tumor growth of prostate cancer cells[J]. Mol Cancer Res,2005,3(8):443-51.
    [75] Sorrentino V, McKinney MD, Giorgi M,et al. Expression of cellular protooncogenes in the mouse male germ line: a distinctive 2.4-kilobase Pim-1 transcript is expressed in haploid postmeiotic cells[J]. Proc Natl Acad Sci USA, 1988,85(7):2191-5.
    [76] Domen J, van der Lugt NM,et al. Pim-1 levels determine the size of early B lymphoid compartments in bone marrow[J]. J Exp Med,1993,178(5): 1665-73.
    [77] Stewart BE, Rice RH. Differentiation-associated expression of the proto-oncogene Pim-1 in cultured human keratinocytes[J]. J Invest Dermatol, 1995,105(5):699-703.
    [78] Schmidt T, Karsunky H, Rodel B,et al. Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with beta-selection[J]. EMBO J, 1998,17(18):5349-59.
    [79] Jacobs H, Krimpenfort P, Haks M,et al. PIM1 reconstitutes thymus cellularity in interleukin 7- and common gamma chain-mutant mice and permits thymocyte maturation in Rag- but not CD3gamma-deficient mice[J]. J Exp Med,1999,190(8):1059-68.
    [80] Wang Z, Bhattacharya N, Meyer MK,et al. Pim-1 negatively regulates the activity of PTP-U2S phosphatase and influences terminal differentiation and apoptosis of monoblastoid leukemia cells[J]. Arch Biochem Biophys,2001,390(l):9-18.
    [81] Lilly M, Le T, Holland P,et al. Sustained expression of the Pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related[J]. Oncogene,1992,7(4):727-32.
    [82] Yip-Schneider MT, Horie M, Broxmeyer HE. Transcriptional induction of Pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor[J]. Blood,1995,85(12):3494-502.
    [83] Miura O, Miura Y, Nakamura N,et al. Induction of tyrosine phosphorylation of Vav and expression of Pim-1 correlates with Jak2-mediated growth signaling from the erythropoietin receptor[J]. Blood,1994,84(12):4135-41.
    [84] O'Farrell AM, Ichihara M, Mui AL,et al. Signaling pathways activated in a unique mast cell line where interleukin-3 supports survival and stem cell factor is required for a proliferative response[J]. Blood,1996,87(9):3655-68.
    [85] M(?)r(?)y T, Grzeschiczek A, Petzold S,et al. Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice[J]. Proc Natl Acad Sci USA,1993,90(22):10734-8.
    [86]Lilly M, Kraft A. Enforced expression of the Mr 33,000 Pim-1 kinase enhances factor-independent survival and inhibits apoptosis in murine myeloid cells[J]. Cancer Res,1997,57(23):5348-55.
    [87] Domen J, van der Lugt NM, Laird PW,et al. Impaired interleukin-3 response in Pim-1-deficient bone marrow-derived mast cells[J]. Blood,1993,82(5):1445-52.
    [88] Nosaka T, Kawashima T, Misawa K,et al. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells[J]. EMBO J, 1999,18(17):4754-65.
    [89] Shirogane T, Fukada T, Muller JM,et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis[J]. Immunity,1999,ll(6):709-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700