用户名: 密码: 验证码:
介孔氧化物的合成及其对水中氟离子的高效吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全世界大约有20多个国家和地区都不同程度的存在因地下水中含氟浓度较高而导致的饮用水氟离子超标问题。饮用含氟水很容易引起氟中毒,世界卫生组织将饮用水中的氟离子浓度限定为1.0mg/l。在我国除上海、海南、台湾外,其他各个省市自治区都有不同程度的存在地方性氟中毒现象,有近7000万人的长期饮用含氟超标的饮用水。同时,沿用百年的常规净水工艺,即“絮凝—沉淀—过滤—消毒”,难以有效去除饮用水中氟离子(≤10ppm)。含氟水的有效去除关系到部分中西部和边远地区饮用水安全。因此,发展高效、低成本且无次生污染的实用净水脱氟技术,是保障饮用水安全亟需解决的关键问题。
     本论文针对我国含氟水的特点和深度净化处理的需求,设计合成介孔氧化硅、介孔氧化铝以及氧化硅-氧化镧介孔复合材料和多孔层状水滑石等特定结构与形貌的纳米吸附材料。探索其孔径大小及分布方式的调制规律:研究其在水中与氟离子的相互作用;探讨其吸附热动力学过程。揭示纳米吸附材料对氟离子的高效吸/脱附机理;阐明组分、介孔结构几何特性的变化对氟离子吸附特性的影响机制。其主要研究内容如下:
     1.利用介孔氧化硅MCM-41为模板成功制备出规则的六边柱状及圆柱状镧-硅复合介孔材料,其孔道直径约为4nm,比表面积约为800.40m2/g。在镧含量小于10%的范围内,随着材料中镧含量的增加,可实现有序介孔结构向蠕虫介孔结构的演化,显著调控材料的表面Zeta电位,从而提高其对水中氟离子的吸附。突破了具有表面负电荷特性的硅基介孔材料未能有效应用于无机阴离子吸附的难题。吸附试验研究表明:在微污染低浓度条件下(氟离子≤10ppm),镧-硅复合介孔材料表现出良好的快速去除水中氟离子的能力。氟离子初始浓度为5.72mg/时,60min内氟离子吸附量高达25.36mg/g。动力学研究表明
     吸附过程符合准二级动力学模型。
     2.介孔氧化铝的可控合成:采用P123聚醚为模板剂,以异丙醇铝为铝源,溶胶-凝胶合成出了高度有序介孔氧化铝,其比表面积为338m2/g,孔径约9nm,孔体积为0.88cm3/g。通过提高合成过程的煅烧温度可使介孔材料孔壁晶化,当温度达到850-C时,成功制备出晶态有序介孔γ-Al2O3,其比表面积为224.40m2/g,孔体积为0.664cm3/g。以硝酸铝和氯化铝为铝源,溶胶-凝胶合成出了球形蠕虫状介孔氧化铝,其比表面积分别为127.1m2/g和85.68m2/g,孔径约10nm和14nm,孔体积为0.33cm3/g和0.35.cm3/g。研究了不同铝源、煅烧温度等对介孔氧化铝的形貌、孔径大小、分布、孔道结构和晶体结构的演化规律。
     3.介孔氧化铝吸附氟离子性能研究:制备出的介孔氧化铝材料具有十分优异的氟离子快速吸附性能,吸附速率快(10min达到吸附平衡),吸附容量高。有序介孔氧化铝吸附容量高达115.41mg/g,蠕虫状介孔氧化铝吸附容量也高达96.18mg/g,为同等条件下传统的Y-Al2O3的几十倍,该数值远高于文献报道的铝系氟离子吸附材料。共存离子研究表明,晶化介孔氧化铝因其晶态结构的稳定性表现出良好的离子选择性和可重复利用性。在高氟离子浓度条件下,两种吸附剂的吸附热力学均符合弗里德里希模型。但在低浓度(氟离子≤10ppm)溶液中,吸附热力学符合朗格缪尔吸附模型。
     4.利用水热法合成均一、规整的六方片状镁铝层状水滑石(LDHs),其直径约为200~300nm,厚度为20nm。通过焙烧复原法验证了镁铝水滑石具有优异的“结构记忆”效应。重点研究了低浓度条件下(氟离子≤10mg/l)镁铝水滑石及焙烧水滑石的吸附性能,探讨了吸附时间、吸附剂的用量及溶液的pH值等对氟离子吸附量及去除率的影响;揭示了镁铝水滑石及其焙烧产物对氟离子吸附的热力学及动力学特性。再生实验表明纳米水滑石材料具有良好的重复使用性能
     5.纳米吸附材料吸附氟离子的机理研究:经综合分析,我们认为纳米材料吸附氟离子经历三个过程:溶液中氟离子的扩散、氟离子在吸附剂表面吸附和氟离子与吸附剂活性基团的离子交换。并分别采用离子传输模型,吸附热动力学模型以及吸附剂表面的离子交换机理对其进行描述。同时,结合材料分析手段对镧-硅复合介孔材料、介孔氧化铝和镁铝水滑石吸附氟离子的机理进行了讨论。
Today drinking water in more than20countries and regions worldwide has excessive fluoride concentration. The problem can easily cause fluoride toxicity in human, thus World Health Organization (WHO) sets the maximum concentration limit of fluoride ions in drinking water to1.0mg/l. In China, more than70million people are using drinking water with excessive fluoride concentration. Regional endemic fluoride toxicity has been reported in almost every province except Shanghai, Hainan and Taiwan. Therefore, removal of excessive fluoride ion in drinking water is critical to people's health. However, conventional water purification technology, that is,"Flocculation—Precipitation—Filter—Disinfection", does not effectively remove fluoride ion in drinking water. So there is immediate need to develop new fluoride removal technology that is highly efficient, low-cost and pollution-free.
     This paper is specifically designed to meet the demand of deep purification treatment on drinking water with excessive fluoride concentration. A few nano-sized adsorption materials were synthesized to specific structure and surface topography, including mesoporous silica, mesoporous alumina Lanthanum oxide mesoporous compound and Porous layered double hydroxides. Different approaches to regulate micro-pore structure of those materials, such as pore size, pore distribution and surface site density, were explored. Interaction between mesoporous material and fluoride in aqueous solution was studied. Adsorption thermodynamics and kinetics process were analyzed. The mechanism of high efficient fluoride adsorption was discussed, and the relationship between micro-structure and fluoride adsorption property was investigated. The main contents of this paper are as follows:1. Regular six-edge columnar and cylindrical La-silicon composite mesoporous materials were synthesized using MCM-41as hard template. Pore size of the La-silicon composite was4nm and surface area was800.40m2/g. With the increase of lanthanum amount in the material, though always kept below10%, ordered mesoporous structure gradually evolved into worm-like mesoporous structure. Thus it was possible to adjust Zeta potential on the surface of the material significantly, which then improved fluoride adsorption capability of the material. So this work resolved the issue that silica mesoporous materials could not be effectively applied in inorganic anions adsorption. Sorption experiments indicated that La-silicon composite mesoporous materials had excellent adsorption property at low fluoride concentration (≤10mg/l). When initial fluoride concentration was5.72mg/l, fluoride adsorption capacity went up to25.36mg/g within60minutes. Kinetic data were well described by pseudo second-order model.
     2. Regulated synthesis of mesoporous alumina:Highly ordered mesoporous alumina was prepared using Aluminium isopropoxide as precursor and P123as template agent. Its surface area, pore size, and pore volume were338m/g,9nm and0.88cm3/g respectively. Mesoporous wall was crystallized in high temperature. When the temperature was raised to850℃, highly ordered crystalline mesoporous alumina was synthesized successfully, its surface area and pore volume were224.4m2/g and0.664cm3/g respectively. Two kinds of worm-like spherical mesoporous alumina were prepared by sol-gel method, using aluminum nitrate and aluminum chloride as precursor separately. The resulting surface area was127.1m/g and85.68m/g, pore size was10nm and14nm, pore volume was0.33cm/g and0.35cm/g respectively. In addition, study was done regarding the impact of synthesis conditions, such as precursor and temperature, on the morphology, pore size, pore distribution, and pore structure of mesoporous alumina.
     3. Adsorption properties of mesoporous alumina:The synthesized mesoporous alumina demonstrated excellent adsorption capacity. The adsorption capacity of highly-ordered mesoporous alumina and worm-like mesoporous alumina was115.4mg/g and96.18mg/g respectively, about tens of times of traditional γ-Alumina adsorbent under the same condition. In addition, both types of mesoporous alumina had high adsorption rate (10min to reach equilibrium). Apparently highly-ordered mesoporous alumina had better adsorption capacity and adsorption rate than worm-like mesoporous alumina. Crystalline mesoporous alumina showed better co-existing anions resistance and regeneration property because of the stability of its crystal structure. The experimental data in high fluoride concentration were better described by Freundlich model, but Langmuir model fit better in low fluoride concentration (≤10ppm)
     4. Nano-sized Mg/Al-C03hydrotalcite-like compound (LDHs) was synthesized by hydrothermal synthesis method. The sample had uniform and thin hexagonal platelets with a mean lateral size as large as200~300nm and a thickness of about20nm. The XRD analysis indicated that LDHs had the so-called "memory effect" The adsorption experiments were performed with low initial fluoride ion concentration (≤10mg/L), The effect of adsorption time, adsorbent amount, solution's pH value on adsorption capacity and fluoride ion removal rate were studied. Adsorption thermodynamics and kinetics property were also discussed. The regeneration results indicate that nano hydrotalcite-like compounds have good reusable nature.
     5. Analysis on fluoride adsorption mechanism of mesoporous material:After comprehensive analysis, three processes could used to describe the fluoride adsorption on nano materials:diffusion process, adsorption process, and ion exchange process. These processes can be explained by ion transport model, adsorption thermodynamic model and ion exchange mechanism respectively. According to the three models, the fluoride adsorption mechanism of La-silicon composite mesoporous material, mesoporous alumina, and Mg/Al hydrotalcite-like compound were discussed using material analysis method.
引文
[1]M. Amini, K. Mueller, K.C. Abbaspour, T. Rosenberg, M. Afyuni, K.N. Moller, M. Sarr, C.A. Johnson, Statistical modeling of global geogenic fluoride contamination in groundwaters, Environ. Sci. Technol.42 (2008) 3662-3668.
    [2]Guidelines for Drinking-Water Quality [Electronic Resource]:Incorporating First Addendum, in:W.H.O. (Ed.),2006, pp.375-377.
    [3]I. Abe, S. Iwasaki, T. Tokimoto, N. Kawasaki, T. Nakamura, S. Tanada, Adsorption of fluoride ions onto carbonaceous materials, J. Colloid Interface Sci.275 (2004) 35-39.
    [4]D. Banks, C. Reimann, O. R(?)yset, H. Skarphagen, O.M. Saether, Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters, Appl. Geochem.10 (1995) 1-16.
    [5]M. Edmunds, P. Smedley, Fluoride in natural waters. In Essentials of Medical Geology, Impacts of Natural Environment on Public Health, Elsevier Academic Press,2005.
    [6]W.B. Apambire, D.R. Boyle, F.A. Michel, Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana, Environ. Geochem.33 (1997) 13-24.
    [7]N.B. Reddy, K.S.S. Prasad, Pyroclastic fluoride in ground waters in some parts of Tadpatri Taluk, Anantapur district, Andhra Pradesh, Indian J. Environ. Health 45 (2003) 285-288.
    [8]E.J. Reardon, Y. Wang, A Limestone Reactor for fluoride removal from wastewaters, Environ. Sci. Technol.34 (2000) 3247-3253.
    [9]F. Shen, X. Chen, P. Gao, G. Chen, Electrochemical removal of fluoride ions from industrial wastewater, Chem. Eng. Sci.58 (2003) 987-993.
    [10]G. de la Puente, J.J. Pis, J.A. Menendez, P. Grange, Thermal stability of oxy-genated functions in activated carbons, J. Anal. Appl. Pyrolysis 43 (1997) 125-138.
    [11]M. Mahramanlioglu, I. Kizilcikli, I.O. Bicer, Adsorption of fluoride from aque-ous solution by acid treated spent bleaching earth, J. Fluorine Chem.115 (2002) 41-47.
    [12]NJ. Chinoy, Effects of fluoride on physiology of animals and human beings, Indian J. Environ. Toxicol.1 (1991) 17-32.
    [13]P.T.C. Harrison, Fluoride in water:a UK perspective, J. Fluorine Chem.126 (2005) 1448-1456.
    [14]M. Islam, R.K. Patel, Thermal activation of basic oxygen furnace slag and eval-uation of its fluoride removal efficiency, Chem. Eng. J.169 (2011) 68-77.
    [15]Y. Zhou, C. Yu, Y. Shan, Adsorption of fluoride from aqueous solution on La3+ impregnated crosslinked gelatin, Sep. Purif. Technol.36 (2004) 89-94.
    [16]WHO,1985. Guidelines for Drinking Water Quality, vol.3. World Health Organization, Geneva, pp.1-2.
    [17]Smet, J.,1990. Fluoride in drinking water. In:Frencken, LE (Ed.), Endemic Fluorosis in Developing Countries-Causes, Effects and Possible Solution:Report of a Symposium Held in Delft, The Netherlands. Netherlands Organisation for Applied Scientific Research.
    [18]NHMRC,2004. Australian Drinking Water Guidelines. National Health and Medical Research Council.
    [19]Czarnowski, W., Wrzesniowska, K., Krechniak, J.,1996. Fluoride in drinking water and human urine in Northern and Central Poland. Sci. of the Total Environ.191,177-184.
    [20]Azbar, N., Turkman, A.,2000. Defluoridation in drinking waters. Water Sci. and Technol. 42,403-407.
    [21]Wang, W.Y., Li, R.B., Tan, J.A., Luo, K.L., Yang, L.S., Li, H.R., Li, Y.H.,2002. Adsorption and leaching of fluoride in soils of China. Fluoride 35,122-129.
    [22]Agarwal, M., Rai, K., Shrivastav, R., Dass, S.,2003. Defluoridation of water using amended clay. J. Cleaner Produc.11,439-444.
    [23]Chernet, T., Trafi, Y., Valles, V.,2002. Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian rift valley. Water Res.35,2819-2832.
    [24]Mjengera, H., Mkongo, G,2002. Appropriate defluoridation technology for use in fluorotic areas in Tanzania.3rd WaterNet Symposium Water Demand Management for Sustainable Development.
    [25]Moturi, W.K.N., Tole, M.P., Davies, T.C.,2002. The contribution of drinking water towards dental fluorosis:a case study of Njoro division, Nakuru district, Kenya. Environ. Geochem. and Health 24,123-130.
    [26]Diaz-Nava, C., Solache-Rios, M., Olguin, M.T.,2003. Sorption of fluoride ions from aqueous solutions and well drinking water by thermally treated hydrotalcite. Sep. Sci. Technol.38, 131-147.
    [27]Reardon, E.J., Wang, Y.,2000. A limestone reactor for fluoride removal from wastewaters. Environ. Sci. Technol.34,3247-3253.
    [28]Toyoda, A., Taira, T.,2000. A new method for treating fluorine wastewater to reduce sludge and running costs. IEEE Trans. Semiconduct. Mater.13,305-309.
    [29]Amor, Z., Bariou, B., Mameri, N., Taky, M., Nicolas, S., Elmidaoui, A.,2001. Fluoride removal from brackish water by electrodialysis. Desalination 133,215-223.
    [30]Castel, C, Schweizer, M., Simonnot, M.O., Sardin, M.,2000. Selective removal of fluoride ions by a two-way ion-exchange cyclic process. Chem. Eng. Sci.55,3341-3352.
    [31]Shen, F., Chen, X.M., Gao, P., Chen, G.H.,2003. Electrochemical removal of fluoride ions from industrial wastewater. Chem. Eng. Sci.58,987-993.
    [32]Buffle, J., Parthasarathy, N., Haerdi, W.,1985. Importance of speciation methods in analytical control of water treatment processes with application to fluoride removal from wastewaters. Water Res.19,7-23.
    [33]Suzuki, T.M., Chida, C., Kanesato, M., Yokoyama, T.,1989. Removal of fluoride ion by a porous spherical resin loaded with hydrous zirconium oxide. Chem. Lett.7,1155-1158.
    [34]Chaturvedi, A.K., Yadava, K.P., Pathak, K.C., Singh, V.N.,1990. Defluoridation of water by adsorption on fly ash.Water Air Soil Poll.49,41-69.
    [35]Ghorai, S., Pant, K.K.,2005. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol.42,265-271.
    [36]Oguz, E.,2005. Adsorption of fluoride on gas concrete materials. J. Hazard. Mater.117, 227-233.
    [37]Tripathy, S.S., Bersillon, J.-L., Gopal, K.,2006. Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Sep. Purif. Technol.50,310-317.
    [38]A.M. Raichur, M.J. Basu, Adsorption of fluoride onto mixed rare earth oxides, Sep. Purif. Technol.24(2001) 121-127.
    [39]G. Singh, B. Kumar, P.K. Sen, J. Majumdar, Removal of fluoride from spent pot liner leachate using ion exchange,Water Environ. Res.71 (1999) 36-42.
    [40]S. Saha, Treatment of aqueous effluent for fluoride removal,Water Res.27 (1993) 1347-1350.
    [41]E.J. Reardon, Y. Wang, A limestone reactor for fluoride removal from wastewaters, Environ. Sci. Technol.34 (2000) 3247-3253.
    [42]Z.Amer,B. Bariou, N. Mameri,M.Taky, S. Nicolas, A. Elmidaoui, Fluoride removal from brackish water by electrodialysis, Desalination 133 (2001) 215-223.
    [43]A. Dieye, C. Larchet, B. Auclair, C. Mar-Diop, Elimination des fluorures par la dialyse ionique croisee, Eur. Polym. J.34 (1998) 67-75.
    [44]N. Mameri, H. Lounici, D. Belhocine, H. Grib, D.L. Piron, Y. Yahiat, Defluoridation of Sahara Water by small electrocoagulation using bipolar aluminium electrodes, Sep. Purif. Technol. 24(2001)113-119.
    [45]Alain Tressaud (Ed.), Advances in Fluorine Science, Fluorine and the Environment, Agrochemicals, Archaeology, Green Chemistry & Water, vol.2, Elsevier,2006.
    [46]S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol.42 (2005) 265-271.
    [47]M.G. Sujana, R.S. Thakur, S.B. Rao, Removal of fluoride from aqueous solution by using alum sludge, J. Colloid Interface Sci.206 (1998) 94-101.
    [48]C.J. Huang, J.C. Liu, Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer, Water Res.33 (1999) 3403-3412.
    [49]J.H. Potgeiter, An experimental assessment of the efficiency of different defluoridation methods, Chem. SA (1990) 317-318.
    [50]S. Ayoob, A.K. Gupta, V.T. Bhat, A conceptual overview on sustainable technologies for defluoridation of drinking water and removal mechanisms, Crit. Rev. Environ. Sci. Technol.38 (2008) 401-470.
    [51]S.S. Tripathy, J.-L. Bersillon, K. Gopal, Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina, Sep. Purif. Technol.50 (2006) 310-317.
    [52]S.M. Maliyekkal, A.K. Sharma, L. Philip, Manganese-oxide-coated alumina:A promising sorbent for defluoridation of water, Water Res.40 (2006) 3497-3506.
    [53]Schneiter, R.W., Middlebrooks, E.J.,1983. Arsenic and fluoride removal from groundwater by reverse osmosis. Environ. Int.9,289-291.
    [54]Fu, P., Ruiz, H., Lozier, J., Thompson, K., Spangenberg, C.,1995. A pilot study on groundwater natural organics removal by low-pressure membranes. Desalination 102,47-56.
    [55]Arora, M., Maheshwari, R.C., Jain, S.K., Gupta, A.,2004. Use of membrane technology for potable water production. Desalination 170,105-112.
    [56]Ndiaye, P.I., Moulin, P., Dominguez, L., Millet, J.C., Charbit, F.,2005. Removal of fluoride from electronic industrial effluent by RO membrane separation. Desalination 173,25-32.
    [57]Diawara, C.K.,2008. Nanofiltration process efficiency in water desalination. Sep. Purif. Rev.37,303-325.
    [58]Hu, K., Dickson, J.M.,2006. Nanofiltration membrane performance on fluoride removal from water. J. Membr. Sci.279,529-538.
    [59]Bason, S., Ben-David, A., Oren, Y., Freger, V.,2006. Characterization of ion transport in the active layer of RO and NF polyamide membranes. Desalination 199,31-33.
    [60]Szymczyk, A., Fievet, P.,2005. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J. Membr. Sci.252, 77-88.
    [61]Lefebvre, X., Palmeri, J., David, P.,2004. Nanofiltration theory:an analytic approach for single salts. J. Phys. Chem. B 108,16811-16824.
    [62]Paugam, L., Diawara, C.K., Schlumpf, J.P., Jaouen, P., Que'me'neur, F.,2004. Transfer of monovalent anions and nitrates especially through nanofiltration membranes in brackish water conditions. Sep. Purif. Technol.40,237-242.
    [63]Lhassani, A., Rumeau, M., Benjelloun, D., Pontie, M.,2001. Selective demineralization of water by nanofiltration:application to the defluorination of brackish water. Water Res.35, 3260-3264.
    [64]Drioli, E., Lagana, F., Crlscuoh, A., Barbieri, G,1999. Integrated membrane operations in desalination processes. Desalination 122,141-145.
    [65]Donnan, F.G.,1911. Z. Elektrochem.,572-581, cited by Loeb J 1921, Donnan equilibrium and the physical properties of proteins. J. Gen. Physiol.,667-690.
    [66]Hichour, M., Persin, F., Molenat, J., Sandeaux, J., Gavach, C.,1999. Fluoride removal from diluted solutions by Donnan dialysis with anion-exchange membranes. Desalination 122, 53-62.
    [67]Hichour, M., Persin, F., Sandeaux, J., Gavach, C.,2000. Fluoride removal from waters by Donnan dialysis. Sep. Purif. Technol.18,1-11.
    [68]Garmes, H., Persin, F., Sandeaux, J., Pourcelly, G., Mountadara, M.,2002. Defluoridation of groundwater by a hybrid process combining adsorption and Donnan dialysis. Desalination 145,287-291.
    [69]Annouar, S., Mountadar, M., Soufiane, A., Elmidaoui, A., Sahli, M.A., Menkouchi, A., 2004. Defluoridation of underground water by adsorption on the chitosan and by electrodialysis. Desalination 165,437-438.
    [70]Kabay, N, Ara, O", Samatya, S, Yu" kselU", Yu" ksela, M,2008. Separation of fluoride from aqueous solution by electrodialysis:effect of process parameters and other ionic species. J. Hazard. Mater.153,107-113.
    [71]Lahnid, S., Tahaikt, M., Elaroui, K., Idrissi, I, Hafsi, M., Laaziz, I., Amor, Z., Tiyal, F., Elmidaoui, A.,2008. Economic evaluation of fluoride removal by electrodialysis. Desalination 230, 213-219.
    [72]Meenakshi, R.C. Maheshwari, S.K. Jain, A. Gupta, Use of membrane technique for potable water production, Desalination 170 (2) (2004) 105-112.
    [73]M. Mohapatra, S. Anand, B.K. Mishra, D.E. Giles, P. Singh, Review of fluoride removal from drinking water, J. Environ. Manage.91 (2009) 67-77.
    [74]P. Miretzky, A.F. Cirelli, Fluoride removal from water by chitosan derivatives and composites:A review, J. Fluorine Chem.132 (2011) 231-240.
    [75]Biswas, K., Saha, S.K., Ghosh, U.C.,2007. Adsorption of fluoride from aqueous solution by a synthetic iron(Ⅲ)-aluminum(Ⅲ) mixed oxide. Ind. Eng. Chem. Res.46,5346-5356.
    [76]Jamode, A.V., Spakal, V.S., Jamode, V.S.,2004. Defluoridation of water using inexpensive adsorbents. J. Chem. Eng. Sci.33,1097.
    [77]Puka, L.R.,2004. Fluoride Adsorption Modelling and the Characterization of Clays for Defluoridation of Natural Waters. MSc dissertation, Faculty of Science, Rand Afrikaans University.
    [78]Fan, X., Parker, D.J., Smith, M.D.,2003. Adsorption kinetics of fluoride on low cost materials. Water Res.37,4929-4937.
    [79]Das, N., Pattanaik, P., Das, R.,2005. Defluoridation of drinking water using activated titanium rich bauxite. J. Colloid Interface Sci.292,1-10.
    [80]Mohapatra, D., Mishra, D., Mishra, S.P., Chaudhury, G.R., Das, R.P.,2004. Use of oxide minerals to abate fluoride from water. J. Colloid Interface Sci.275,355-359.
    [81]Raichur, A.M., Basu, J.M.,2001. Adsorption of fluoride onto mixed rare earth oxides. Sep. Purif. Technol.24,121-127.
    [82]Agarwal, M., Rai, K., Shrivastav, R., Dass, S.,2003. Defluoridation of water using amended clay. J. Cleaner Produc.11,439-444.
    [83]Wasay, S.A., Haron, M.J., Tokunaga, S.,1996b. Adsorption of fluoride, phosphate and arsenate ions on lanthanum impregnated silicagel.WaterEnviron.Res.68,295-300.
    [84]Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T., Tanada, S.,2004. Adsorption of fluoride ions onto carbonaceous materials. J. Colloid Interface Sci.275,35-39.
    [85]Li, Y.H., Wang, S.G., Zhang, X.F., Wei, J.Q., Xu, C.L, Luan, Z.K., Wu, D.H.,2003. Adsorption of fluoride from water by aligned carbon nanotubes. Mater. Res. Bull.38,469-476.
    [86]Cengeloglu, Y., Kir, E., Ersoz, M.,2002. Removal of fluoride from aqueous solution by using red mud. Sep. Purif. Technol.28,81-86.
    [87]Rao, N.V.R.M., Bhaskaran, C.S.,1988. Studies on defluoridation of water. J. Fluorine Chem.41,17-24.
    [88]Mohan, D., Pittman Jr., C.U.,2007. Arsenic removal from water/waste water using adsorbents-a critical review. J. Hazard. Mater.142,1-53.
    [89]Pin-o'n-Miramontes, M., Bautista-Margulis, R.G., Pe'rez-Herna ndeza, A.,2003. Removal of arsenic and fluoride from drinking water with cake alum and a polymeric anionic flocculent. Fluoride 36,122-128
    [90]Sujana, M.G., Takhur, R.S., Rao, S.B.,1998. Removal of fluoride using aqueous solutions using alum sludge. J. Colloid Interface Sci.206,94-101.
    [91]Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N., Rayalu, S.,2009. New modified chitosan-based adsorbent for defluoridation of water. J. Colloid Interface Sci.332, 280-290.
    [92]B.D. Turner, P. Binning, S.L.S. Stipp, Fluoride removal by calcite:evidence for fluorite precipitation and surface adsorption, Environ. Sci. Technol.39 (2005) 9561-9568.
    [93]M. Islam, R.K. Patel, Evaluation of removal efficiency of fluoride from aqueous solution using quick lime, J. Hazard. Mater.143 (2007) 303-310.
    [94]S. Jain, R.V. Jayaram, Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste, Sep. Sci. Technol.44 (2009) 1436-1451.
    [95]A. Eskandarpour, M.S. Onyango, A. Ochieng, S. Asai, Removal of fluoride ions from aqueous solution at low pH using schwertmannite, J. Hazard. Mater.152 (2008) 571-579.
    [96]M. Streat, K. Hellgardt, N.L.R. Newton, Hydrous ferric oxide as an adsorbent in water treatment:Part 3:Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions, Process Safety Environ. Protect.86 (2008) 21-30.
    [97]E. Kumar, A. Bhatnagar, M. Ji, W. Jung, S.-H. Lee, S.-J. Kim, G. Lee, H. Song, J.-Y. Choi, J.-S. Yang, B.-H. Jeon, Defluoridation from aqueous solutions by granular ferric hydroxide (GFH), Water Res.43 (2009) 490-498. [98] M. Mohapatra, K. Rout, S. Gupta, P. Singh, S. Anand, B. Mishra, Facile synthesis of additive-assisted nano goethite powder and its application for fluoride remediation, J. Nanopart. Res.12(2010)681-686.
    [99]Farrah, H., Slavek, J., Pickering, W.F.,1987. Fluoride interactions with hydrous aluminium oxides and alumina. Aust. J. Soil Res.25,55-69.
    [100]Rozic, L., Novakovic, T., Jovanovic, N., Terlecki-Baricevic, A., Grbavcic, Z.,2001. The kinetics of the partial dehydration of gibbsite to activated alumina in a reactor for pneumatic transport. J. Serb. Chem. Soc.66,273-280.
    [101]Rozic, L., Novakovic, T., Petrovic, S., Cupic, Z., Grbavcic, Z., Rosic, A.,2006. The sorption and crystallographic characteristics of alumina activated in a reactor for pneumatic transport. J. Serb. Chem. Soc.71,1237-1246.
    [102]Shimelis, B., Zewge, F., Chandravanshi, B.S.,2006. Removal of excess fluoride from water by aluminum hydroxide. Bull. Chem. Soc. Ethiopia 20,17-34.
    [103]Schoeman, J.J., MacLeod, H.,1987. The effect of particle size and interfering ions on fluoride removal by activated alumina. Water SA.13,229-234.
    [104]Turner, B.D., Binning, P., Stipp, S.L.S.,2005. Fluoride removal by calcite:evidence for fluoride precipitation and surface adsorption. Environ. Sci. Technol.39,9561-9568.
    [105]Bower, C.A., Hatcher, J.T.,1967. Adsorption of fluoride by soils and minerals. J. Soil Sci.3,151-154.
    [106]D.P. Das, J. Das, K. Parida, Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution, J. Colloid Interface Sci.261 (2003) 213-220.
    [107]M.L. Jimenez-Nu~nez, M.T. Olguin, M. Solache-Rios, Fluoride removal from aqueous solutions by magnesium, nickel, and cobalt calcined hydrotalcitelike compounds, Sep. Sci. Technol.42 (2007) 3623-3639.
    [108]I.B. Singh, M. Prasad, Study on the fluoride removal characteristics of mineral (fluorapatite), Indian J. Chem. Technol.11 (2004) 185-189.
    [109]L. Lv, J. He, M. Wei, X. Duan, Kinetic Studies on fluoride removal by calcined layered double hydroxides, Ind. Eng. Chem. Res.45 (2006) 8623-8628.
    [110]L. Lv, J. He, M. Wei, D.G. Evans, Z. Zhou, Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides:Kinetic and equilibrium studies, Water Res.41 (2007)1534-1542.
    [111]Tripathy, S.S., Bersillon, J.-L., Gopal, K.,2006. Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Sep. Purif. Technol.50,310-317.
    [112]EPA,1999. Environmental Guidelines:Assessment, Classification & Management of Liquid & Non-Liquid Wastes. Environmental Protection Authority, Chatswood, NSW, Australia, 118 pp.
    [113]Y.-H. Li, S. Wang, A. Cao, D. Zhao, X. Zhang, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu, B. Wei, Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett.350 (2001) 412-416.
    [114]Y.-H. Li, S. Wang, X. Zhang, J. Wei, C. Xu, Z. Luan, D. Wu, Adsorption of fluoride from water by aligned carbon nanotubes, Mater. Res. Bull.38 (2003) 469-476.
    [115]Y.H. Li, S. Wang, X. Zhang, J. Wei, C. Xu, Z. Luan, D. Wu, B. Wei, Removal of fluoride from water by carbon nanotube supported alumina, Environ. Technol.24 (2003) 391-398.
    [116]A. Pathak, A.B. Panda, A. Tarafdar, P. Pramanik, Synthesis of nano-sized metal oxide powders and their application in separation technology, J. Indian Chem. Soc.80 (2003) 289-296.
    [117]G. Patel, U. Pal, S. Menon, Removal of fluoride from aqueous solution by CaO nanoparticles, Sep. Sci. Technol.44 (2009) 2806-2826.
    [118]S.M. Maliyekkal, K.R. Anshup, T. Antony, Pradeep, High yield combustion synthesis of nanomagnesia and its application for fluoride removal, Sci. Total Environ.408 (2010) 2273-2282.
    [119]S.-G. Wang, Y. Ma, Y.-J. Shi, W.-X. Gong, Defluoridation performance and mechanism of nano-scale aluminum oxide hydroxide in aqueous solution, J. Chem. Technol. Biotechnol.84 (2009)1043-1050.
    [120]X. Zhao, J. Wang, F. Wu, T. Wang, Y. Cai, Y. Shi, G. Jiang, Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles, J. Hazard. Mater.173 (2010) 102-109.
    [121]E. Kumar, A. Bhatnagar, U. Kumar, M. Sillanpaa, Defluoridation from aqueous solutions by nano-alumina:Characterization and sorption studies, J. Hazard. Mater.186 (2011) 1042-1049.
    [122]C.-F. Chang, P.-H. Lin, W. Holl, Aluminum-type superparamagnetic adsorbents: Synthesis and application on fluoride removal, Colloids Surf. A:Physicochem. Eng. Aspects 280 (2006)194-202.
    [123]C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710.
    [124]J.S. Oh, W.G. Shim, J.W. Lee, J.H. Kim, H. Moon, G. Seo, Adsorption Equilibrium of Water Vapor on Mesoporous Materials, J. Chem. Eng. Data 48 (2003) 1458.
    [125]H.-M. Kao, C.-C. Cheng, C.-C. Ting, L.-Y. Hwang, Phase control of cubic SBA-1 mesostructures via alcohol-assisted synthesis, J. Mater. Chem.15 (2005) 2989.
    [126]H. Naono, M. Hakuman, T. Tanaka, N. Tamura, K. Nakai, Porous Texture and Surface Character of Dehydroxylated and Rehydroxylated MCM-41 Mesoporous Silicas—Analysis of Adsorption Isotherms of Nitrogen Gas and Water Vapor, J. Colloid Interf. Sci.225 (2000) 411.
    [127]C. Nguyen, C.G. Sonwane, S.K. Bhatia, D.D. Do, Adsorption of benzene and ethanol on MCM-41 material, Langmuir 14 (1998) 4950.
    [128]Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L. Shipley, H. J.; Kan, A.; Tomson, M.; Natelson, D.; Colvin, V. L. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles, Science 314(2006), 964.
    [129]Oliveira, L. C. A.; Petkowicz, D. I.; Smaniotto, A.; Pergher, S. B. C. Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water, Water Res.38(2004),3699.
    [130]Yantasee, W.; Warner, C. L.; Sangvanich, T.; Addleman, R. S.; Carter, T. G.; Wiacek, R. J.; Fryxell, G. E.; Timchalk, C.; Warner, M. G. EnViron. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles, Sci. Technol.41(2007),5114.
    [131]Orbell, J. D.; Godhino, L.; Bigger, S. W.; Nguyen, T. M.; Ngeh, L. N. Oil spill remediation using magnetic particles, J. Chem. Educ.74(1997),1446.
    [132]Safarik, I.; Safarikova, M.; Buricova, V. Collect. Czech. Sorption of water soluble organic dyes on magnetic poly (oxy-2,6-dimethyl-1,4-phenylene), Chem. Commun.60(1995), 1448.
    [133]Oliveira, L. C. A.; Rios, R. V. R. A.; Fabris, J. D.; Garg, V.; Sapag, K.; Lago, R. M. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water, Carbon,40(2002),2177.
    [134]Choon-Ki Na, Hyun-Ju Park. Defluoridation from aqueous solution by lanthanum hydroxide, J. Hazard. Mater.183 (2010) 512-520
    [135]S. Largergren, Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar 24 (1898) 1-39.
    [136]Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J.70 (1998) 115-124.
    [137]W.J.Weber, J.C.Morris, J. Sanitary Eng. Div.89 (SA2) (1963) 31-59.
    [138]S.M. Maliyekkal, A.K. Sharma, L. Philip, Manganese-oxide-coated alumina:a promising sorbent for defluoridation of water, Water Res.40 (2006) 3497-3506.
    [139]S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol.42 (2005) 265-271.
    [140]I. Langmuir, The constitution and fundamental pro-perties of solids and liquids, J. Am. Chem. Soc.38 (1916)2221-2295.
    [141]H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem.57 (1905) 385-470.
    [142]Yuming Zhou, Chunxiang Yu, Yun Shan. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin, Separation and Purification Technology 36 (2004) 89-94
    [143]Hao, O.J., Asce, A.M., Huang, C.P., Asce, M., The removal of metals and ammonium by natural glauconite, J. Environ. Eng.112(1986),1054-1069.
    [144]Farrah, H., Slavek, J., Pickering, W.F., Aust. Fluoride interactions with hydrous aluminum oxides and alumina, J. Soil Res.25(1987),55-69.
    [145]Karthikeyan. M, Elango. K P, Removal of fluoride from water using aluminium containing compounds, Journal of Environmental Sciences,2009,21 (11):1513-1518.
    [146]Lee G, Chen C, Yang S T, et al. Enhanced adsorptive removal of fluoride using mesoporous alumina, Journal of Microporous and mesoporous materials,2010,127 (1-2): 152-156.
    [147]Bansiwal A, Pillewan P, Biniwale R B, et al. Copper oxide incorporated mesoporous alumina for defluoridation of drinking water Journal of Microporous and mesoporous materials,, 2010,129(1-2):54-61.
    [148]Chen, L., et al. Granulation of fe-al-ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed, Powder technology,2009.193(1): 59-64.
    [149]Maliyekkal, S.M., et al. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules, Chemical Engineering,2008.140(1-3):183-192.
    [150]Ghorai, S. and K.K. Pant, Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed, Chemical Engineering,2004.98(1-2):165-173.
    [151]Biswas K, Saha S K, Ghosh U C. Adsorption of fluoride from aqueous solution by a synthetic iron (Ⅲ)-aluminum (Ⅲ) mixed oxide, Industrial & engineering chemistry research, 2007,46(16):5346-5356.
    [152]Das D P, Das J, Panda K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution, Journal of colloid and interface science,2003,261(2):213-220.
    [153]Li, Y.H., et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanatubes, Chemical Physics Letters,2001.350(5-6):412-416.
    [154]Cavani, F., Trifiro, F., Vaccari, A., Hydrotalcite-type anionic clays:preparation, properties and applications, Catal. Today 11(1991).,173-301.
    [155]Trifiro, F., Vaccari, A., A. Hydrotalcite-like anionic clays (layer double hydroxides) 1996. Comprehensive Supramolecular Chemistry, vol.7. Pergamon, Oxford, pp.251-291.
    [156]. Carlino, S., The intercalation of carboxylic acids into layered double hydroxides:a critical evaluation and review of the different methods, Solid State Ionics 98(1997).,73-84.
    [157]. Sato, T., Okuwaki, A., Intercalation of benzenecarboxylate ions into the interlayer of hydrotalcite, Solid State Ionics 45(1991).,43-48.
    [158]Hermosin, M.C., Pavlovic, I., Ulibarri, M.A., Cornejo, J., Trichlorophenol adsorption on layered double hydroxide:a potential sorbent, J. Environ. Sci. Health, Part A 28(1993)., 1875-1888.
    [159]Ulibarri, M.A., Pavlovic, I., Hermosin, M.C., Cornejo, Hydrotalcite-like compounds as potential sorbents of phenols from water, J., Appl. Clay Sci.10(1995).,131-145.
    [160]Ulibarri, M.A., Pavlovic, I., Barriga, C., Hermosin, M.C., Cornejo, Adsorption of anionic species on hydrotalcite-like compounds:effect of interlayer anion and crystallinity, J., Appl. Clay Sci.18(2001).,17-27.
    [161]Pavlovic, I., Ulibarri, M.A., Hermosin, M.C., Cornejo, Sorption of an anionic surfactant from water by a calcined hydrotalcite-like sorbent, J., Fresenius Environ. Bull.6 (1997).,266-271.
    [162]Lakraimi, M., Legrouri, A., Barroug, A., de Roy, A., Besse, Removal of Pesticides from Water by Anionic Clays, J.P., J. Chim. Phys.96(1999),470-478.
    [163]Fan, J., Xu, Z., Zheng, S.,2007.comment on "Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides ", J. Hazard. Mater.139,175-177.
    [164]Davis, J. A., and Leckie, J. O., Surface ionization and complexation at the oxide/water interface.3. Adsorption of anions, J. Colloid Interface Sci.74(1), (1980),32-43.
    [165]Davis, J. A., James, R. O., and Leckie, J. O., Surface ionization and complexation at the oxide/water interface::I. Computation of electrical double layer properties in simple electrolytes J. Colloid Interface Sci.63(3), (1978),480-499.
    [166]James, R. O., and Healy, T. W., Adsorption of hydrolyzable metal ions at the oxide--water interface. I. Co (II) adsorption on SiO2 and TiO2 as model systems, J. Colloid Interface Sci.40,65(1972).
    [167]Manceau, A., and Charlet, L., The mechanism of selenate adsorption on goethite and hydrous ferric oxide, J. Colloid Interface Sci.168,87-93(1994).
    [168]Fitzgerald, N. M., Richardson, J. H., Weaver, M. L., Chemical Systems Division, ALCOA Center, PA,1992.
    [169]L. C. Dufour and J. Nowotny, Surface and Morphology of Oxide Materials for Advanced Industrial Water Electrolysis, Eds. Vol.29, Trans. Tech. Publications LTD, Switzerland,1988.
    [170]Moya, A. A., Castilla, J., and Homo, J., Ionic transport in electrochemical cells including electrical double-layer effects. A network thermodynamics approach, J. Phys. Chem.99,1292 (1995).
    [171]D. R. Lide, Ed.,71st ed. CRC Press:Boca Raton, FL,1990-1991.
    [172]Suja George, Prabhat Pandit, A.B. Gupta. Residual aluminium in water defluoridated using activated alumina adsorption-Modeling and simulation studies, Water research 44(2010) 3055-3064
    [173]T. Hiemstra, W.H. van Riemsdijk, Fluoride adsorption on goethite in relation to different types of surface sites, J. Colloid Interface Sci.225 (2000) 94-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700