用户名: 密码: 验证码:
焉耆中生代原型盆地沉积特征与盆地边界的确定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焉耆盆地在中生界地层发现油气以来,目前已进入开发阶段。焉耆中生代古盆地沉积特征与古盆地边界的确定对于该区油气勘探与开发是一项非常重要的科研任务。本文通过大量的野外调查、钻井岩心观察分析并通过分析已有的钻井地质、测井地质和地震剖面资料,详细研究了焉耆中生代古盆地的沉积特征,首次探索性地采用了一系列新方法恢复了焉耆中生代古盆地边界。
     焉耆盆地的中生代地层比较发育且主要分布于博湖坳陷。中生代地层自下而上包括中上三叠统小泉沟群,下侏罗统八道湾组和三工河组,中侏罗统西山窑组和头屯河组。
     碎屑岩是焉耆盆地的主要沉积岩石类型之一,碎屑岩的碎屑重矿物组合、粗碎屑组分和矿物成熟度随着搬运距离的不同而变化,它们是本区沉积相分析和确定原型盆地沉积边界的重要依据。为此我们采用了碎屑重矿物稳定系数、含砾碎屑隔岩百分比与矿物成熟度指数三个参数:
     碎屑重矿物稳定系数=稳定碎屑重矿物的相对含量(%)/不稳定碎屑重矿物的相对含量(%)=(锆石+电气石+石榴石+磁铁矿+榍石+金红石+锡石+板钛矿+刚玉+萤石+锐钛矿)/(云母+绿帘石+绿泥石+黝帘石+角闪石+透闪石+钠闪石)
     含砾碎屑岩百分比=(砾岩厚度+砂砾岩厚度+砾状砂岩厚度+含砾砂岩厚度)/地层厚度×100%
     碎屑岩矿物成熟度指数=石英含量/(长石含量+岩屑含量)
     通过对三个参数在盆地内的变化特征以及碎屑重矿物组合、粗碎屑组合和矿物成熟度分析,可以得到以下几方面信息:
     (1)重矿物和岩屑分区反映原型盆地至少存在两大物源区及相应的两大古水流体系:①存在北部和西北部物源区,古水流方向以东南流向为主,兼有由北向南的古水流方向;②存在南部和西南部物源区,古水流方向以东北流向为主,兼有由南向北的古水流方向。
     (2)在盆地北沉积区,侏罗纪由八道湾期至三工河期,重矿物稳定系数由小逐渐变大,含砾碎屑岩百分比由大逐渐变小,说明其古沉积边界随时代变新由近变远,沉积范围在南北方向上扩展而不是萎缩,暗示当时原型盆地主体处于(近)南北向伸展扩张为主的背景之中。在侏罗纪西山窑期,盆地南沉积区碎屑重矿物稳定系数由大变小,显示南部物源区在西山窑期出现北移的趋势。
     (3)主体方向南东东的古流向与近乎南北方向的伸展说明古水流主体沿拉张断陷的轴向(或夹角很小)流动为主,且盆地中东部有可能构成当时的稳定沉积区。盆地西-西北部物源提供碎屑物质的幅度和水动力强度逐渐增大的特征与盆地北部不同,这更进一步表明了这一点。
     (4)碎屑重矿物稳定系数、含砾碎屑岩石百分比和碎屑岩矿物成熟度指数三个定量参数的计算结果和变化规律非常一致,这进一步说明了上述分析的可靠性。
     依据岩石组合、地层颜色、粒度特征、定量参数和沉积构造等沉积相标志,通过编制单井相剖面图、连井相剖面和沉积相平面图,对焉耆盆地中生界沉积相综合分析说明:
     (1)焉耆中生代盆地发育陆相冲积扇、河流(潮湿扇)、河流、湖泊和三角洲沉积体系,不同沉积体系与含砾碎屑岩百分比、碎屑重矿物稳定系数和矿物成熟度指数之间存在规律性的对应关系,即盆地边缘相带沉积物具有高的含砾碎屑百分比和低的碎屑重矿物稳定系数、矿物成熟度指数:盆
    
    地中心相带沉积物具有低的含砾碎屑岩百分比和高的碎屑重矿物稳定系数、矿物成熟度指数。
     (2)小泉沟群以辫御可滨浅湖沉积为主体,/曝聘组以河流(潮湿扇卜河流撰豁狮角J曲澎可)
    沉积为主体,三1芳可组以河流(辫状河和曲流娜一滨浅湖沉积为主体,西山窑组以河流(辫书如沐!曲
    澎动沉积为主体,头屯河组以辫御可冗积为主体。冲积扇沉积仅分布于翻创匕豆栩七部及西部和南
    区的南部。
     (3)由盆心怨籽U盗也中心形成冲积扇或河流(潮湿扇)-辫状洞一曲流可滨钱糊阮积的相模式。
     ④在焉省中生代翻独瞬靡洲创程中,侏罗系地层自下而上形成两个沉积旋何,在夕键踏早
    期和三口玲可与溯由河流(潮湿扇)或冲积扇一河流(潮湿扇)沉积刀渗台;之后翻救族脑撰腼开始逐渐升
    高,在产键聘晚期和三工河中晚期出现滨浅湖沉积;从西山窑期开始湖盆萎缩,形成河流沉积。显
    示焉省盆地在侏罗乡改圣历了断陷一拗陷一断陷-拗阵犷衰退的演化过程。
     (5)中侏罗旬咙黔蚜口西山窑期是焉者盆地沼泽环境的主要成煤期,由盆心撰籍嵘她中心形
    成扇沼一河沼一湖沼的沉积模式。
     (6)在焉省中生f锐挑以’J、泉沟至头心可期的茹例刻石断呈中,盔沙也北区七里铺凹陷和南区的
    沉降中,臼存在着由西向东迁移的铡幸,显示焉誉中生代盆地具有剑刊肠功性质抓孟拙助课又中心存在
    着由北向南迁移、南部断露斑娇有在着由北向南扩展的规律,显示焉省中生代盆她良于拉张构造环
    境。由此可以看出,焉奢中封锰脚注体上属于具有右行扭动性质的弓侧性断陷盆地。
     (7)焉誉中生于锰她在向新封弋卜香盆地演化过程中,衫翻识中心由南部发生大恻剿七移,说明
    盆地的构造性质发生明显的变化。
     本文根据碎屑重矿物稳定系数、含砾碎屑岩百分比与矿物成熟渡荞幽与搬运距离之间的关系式
    对盗出引七部中生代古边界州了
The Yanqi basin has been developed since oil and gas was found in the stratum of Mesozoic erathem.The determination of semidentary characteristics of theYanqi basin in Mesozoic Era and the boundaries of paleobasin is a very important scientific research task for the exploration and development of oil and gas in this region.This article gives a detailed research of the sedimentary characteristics of the Yanqi PaleoBasin in Mesozoic Era through large amount of field study ,observation and analysis of boring well' s drilling core and an analysis of the given material which includes geology of boring well ,of logging ,and earthquake section .For the first time,mis article heuristic accept a series of new methods reconstruct the boundaries of paleobasin.
    Mesozoic Era strata of the Yanqi Basin 's comparative development is mainly located at the Bo Lake depression , which is consisted of Xiaoquangou Group of upper and middle Triassic Series, Badaowan formation of lower Jurassic Series,Sangonghe formation and Xishanyao Group middle Jurassic period and Toutunhe Group from bottom to top.
    Detrital rock is a major type of the sedimentary rock of the Yanqi Basin.The asseblage of the fragment heavy mineral of detrital rock ,of coarse fragment ,minerak>gic maturity is changed according to different transport distance,so they are essential foundations for analysis of sedimentary fades in this region and determination of deposit boundary of paleobasin. For this,we adopt three parameters,that is, stability coefficient of fragmental heavy mineral,percentage of pebble-bearing rudite fragmental rockrnineralogic maturity index.
    The stability coefficient of fragmental heavy mineraHhe relative content of stable fragmental heavy mineral(%ythe relative content of instable fragmental heavy mineral(%) = (zirconite+ tourmaline+ gamet+ magnetite+sphene+rutile+cassiterite+brockite+corundum+fluorite+anatase)/(mica+epidoze+zoisite+hornble nde+tremolite+riebeckite)
    The percentage of rudite fragmental rock=The thickness of conglomerate +mickness of grit rock +of psephitic sandstone +of pebbly sandstone/thickness of stratum 100%
    The fragmental mineralogic maturity index=content of quartz/content of (feldspar +debris).
    Based on the analysis of the changing of above three parameters in the basin,asseblage of fragmental heavy mineral ,of coarse fragment and mineralogic maturity,we can obtain the following information about The Yanqi Basin in Mesozoic Era;
    1) The partitioning of heavy mineral and debris reflect that ancestral basin has at least two big sources zones and two big corresponding ancient stream current systems.
    (1) There exists northern and northwestern source zones .The majority of the ancient water flows southeastward ,and the minority of the ancient water flows southward.
    (2) There exists southern and southwestern source zones,with the majority of the ancient water flowing northeastwanLand the minority of the ancient water flowing northward.
    2) In the northern sedimentary zone of the basin,from Badaowan period to Sangonghe period in
    
    
    Jurassic period,Stability coefficient of the heavy mineral increases, while the percentage of pebble-bearingt clastic rock decreases. This shows its ancient sedimentary boundary becomes farther and farther with the development of times, the sedimentary area extends instead of shrinking from south to north, which implies that the main part of the ancestral basin expands from south to north at that time. In the Xishanyao period of Jurassic period, the stability coefficient of the fragmental heavy mineral in the southern sedimentary area of the basin decreases, which demonstrates the southern source zone had the tendency of moving northward in the Xishanyao period.
    3)The ancient water flowing mainly in the direction of east by south and the near extension of the basin from south to north shows that the main part of the ancient streams flew along the axis of the pulling-apart fault depression, moreover, the central and eastern part of the basin had the possibilit
引文
1.Galloway,W.E和Hobday,D.K著,顾晓忠等译,1989,陆源碎屑沉积体系,北京:石油工业出版社。
    2.中国石油学会石油地质委员会编,1988.7,碎屑岩沉积相研究,北京:石油工业出版社。
    3.周书欣等编著,1991.5,湖泊沉积体系与油气,北京:科学出版社。
    4.吴崇筠,薛叔浩等著,1993.5,中国含油气盆地沉积学,北京:石油工业出版社。
    5.肖序常等,1992,新疆北部及邻区大地构造,北京:地质出版社
    6.赵重远等编,1993.7,含油气盆地地质学研究进展,西安:西北大学出版社。
    7.梅志超,1994.11,沉积相与古地理重建,西安:西北大学出版社。
    8.车自成等,1994,中天山造山带的形成与演化,北京:地质出版社。
    9.康玉柱,1996.7,中国塔里木盆地石油地质特征及资源评价,北京:地质出版社。
    10.符俊辉等,1996,西北地区陆相侏罗纪地层划分与对比,西安:西北大学出版社。
    11.童晓光,1996,塔里木盆地石油地质研究新进展,北京:科学出版社。
    12.刘德权等,1996,中国新疆矿床成矿系列,北京:地质出版社。
    13.汤良杰,1996,塔里木盆地演化和构造样式,北京:地质出版社。
    14.刘洪福等,1996,新疆侏罗纪生物地层及古地理与含油气盆地成因,西安:西北大学出版社。
    15.D.W.刘易斯著,1989,实用沉积学(中译本)北京:地质出版社。
    16.郝杰等,1993.1,南天山蛇绿混杂岩形成时代及大地构造意义,地质科学,第28卷第1期。
    17.夏邦栋等,1989.12,磨拉石与全球构造,石油实验地质,第11卷第4期.
    18.郭召杰等,1993.5,新疆东部三条蛇绿混杂岩带的比较研究,地质论评,第39卷第3期。
    19.何治亮等,1992.3,塔里木板块石炭-二叠纪原型盆地与沉积模式,石油与天然气地质,第13卷第1期。
    20.李明,1992.3,塔里木盆地东北地区区域构造演化与油气,石油与天然气地质,第13卷第1期。
    21.郭召杰等,1993,中天山早古生代离散地体构造的讨论,北京大学学报(自然科学版),第29卷第3期。
    22.高俊等,1993,南天山库米什蓝片岩的发现及其大地构造意义,中国区域地质,第4期。
    23.A.马特,M.E.塔克著,1984,现代和古代湖泊沉积,北京:地质出版社。
    24.许靖华著,何起祥等译,1985,大地构造与沉积作用,北京:地质出版社。
    25.陈建平等,1998.6,中国西北地区侏罗纪煤系油气形成,石油勘探与开发,Vol.25,No.3。
    26.赵庆波等,1998.4,鄂尔多斯盆地东部大型煤层气气田形成条件及勘探目标,石油勘探与开发,Vol.25,No.2。
    
    
    27.高俊等,1997.2,西天山造山带的构造变形特征研究,地球物理学报,第18卷第1期。
    28.邵学钟等,1996.5,天山造山带地壳结构与构造,地球物理学报,第39卷第3期。
    29.赵文智等,1996.4,西北地区侏罗系油气田的形成条件与分布规律,石油学报,第17卷第2期。
    30.曾允孪,夏文杰,1985,沉积岩石学;北京:地质出版社。
    31.冯增昭,1993,沉积岩石学,北京:石油工业出版社。
    32.方邱森,任磊夫,1987,沉积岩石学教程,北京:地质出版社。
    33.余素玉,何镜宇,1989,沉积岩石学,湖北:中国地质大学出版社。
    34.F;J;佩帝庄,沉积岩,李汉瑜等译,1981;北京:石油工业出版社。
    35.F,J.佩蒂庄,P,E,波特,R,西弗,1977,砂和砂岩,李汉瑜译,北京:科学出版社。
    36.H.布拉特等,1978,沉积岩成因,《沉积岩成因》翻译组译校,北京:科学出版社。
    37.G,M,弗里德曼,J.E,桑德斯,1987,沉积学原理,徐怀大等译,北京:科学出版社。
    38.Reading,H,6,主编,周明鉴等译,1987,沉积环境和相,北京:科学出版社。
    39.Petter,P,E,,Pettion,F,J.著,陈发景等译,1984,古流与盆地分析,北京:科学出版社。
    40.Miall,D,著,孙枢等译,1991,沉积盆地分析原理,北京:石油工业出版社。
    41.刘宝君,曾允罕主编,1985,岩相古地理基础和工作方法,北京:地质出版社。
    42.何镜宇等,1987,沉积岩和沉积相模式及建造,北京:地质出版社。
    43.Blatt,H.等著,《沉积岩成因》翻译组译,1978,沉积岩成因,北京:科学出版社。
    44.Reineck,H,E.,andSingh,I,B.著,陈昌明、李继亮译,1979,陆源碎屑沉积环境,北京:石油工业出版社。
    45.Walker,R.G.等著,地质部情报研究所 译,1979,沉积相模式。
    46.Dickinsion,W.R.等著,罗正华、刘铭铨译,1982,板块构造与沉积作用,北京:地质出版社。
    47.李彦芳、王文广主编,1998,沉积岩和沉积相,北京:石油工业出版社。
    48.王良忱、张金亮编,1996,沉积环境和沉积相,北京:石油工业出版社。
    49.赵澄林、季汉成编著,1997,现代沉积,北京:石油工业出版社。
    50.刘林玉等,1997,吐鲁番坳陷中侏罗统沉积与储层孔隙发育特征,石油与天然气地质,Vol.18(3)。
    51.刘林玉,1997,吐鲁番坳陷中上侏罗统储集层成岩作用研究,石油实验地质,Vol.19(2)。
    52.刘林玉等,1998,吐鲁番坳陷北部七克台组的中沉积与成岩作用,石油与天然气地质,Vol.19(3)。
    53.顾家裕等,1994,塔里木盆地轮南地区三叠系扇三角洲沉积与储集层储集层成岩作用研究,沉积学报,Vol.12(2)。
    54.张代生等,2000,吐哈盆地台北凹陷沉积体系变迁对油气分布的控制,石油与天然气地质,
    
    Vol.21(1)。
    55.张春生等,1997,现代河湖沉积与模拟实验,北京:地质出版社。
    56.赵澄林编著,2001,沉积学原理,北京:石油工业出版社。
    57.王衡鉴等,1983,松辽盆地白垩系沉积相模式,石油与天然气地质,Vol.2(3)。
    58.吴崇筠,1983,构造湖盆三角洲与油气分布,地质学报,Vol.1(1)。
    59.朱永安等,1983,泌阳凹陷双河水下冲积扇的沉积特征,石油学报,Vol.4(1)。
    60.蒲海等,1999,阿克库勒凸起南部辫状问三角洲砂体尖灭圈闭预测,石油与天然气地质,Vol.20(3)。
    61.傅强等,1999,塔北草湖凹陷的油气勘探方向,石油与天然气地质,Vol.20(3)。
    62.赵澄林等,1995,沉积学和古地理学的进展与展望,北京:地质出版社。
    63.赵澄林等,1988,湖相沉积岩中的同生变形构造及其地质意义,岩石学报,No4。
    64.冯增昭主编,1995,中国沉积学,北京:石油工业出版社。
    65.忘英华等,1995,沉积学及岩相古地理学新近展,北京:石油工业出版社。
    66.赵澄林编著,1997,储层沉积学,北京:石油工业出版社。
    67.裘怿楠,1992,中国陆相碎屑岩储层沉积学的进展,沉积学报,Vol.10,No3。
    68.刘宝君,1992,关于沉积学发展的思考,沉积学报,Vol.10,No3。
    69.《沉积构造与环境解释》编著组,1987,沉积构造与环境解释,北京:科学出版社。
    70.赵霞飞著,1992,动力沉积学与陆相沉积,北京:科学出版社。
    71.林任子等,1996,陆相储层沉积学进展,北京:石油工业出版社。
    72. Allen, P.A, Allen, J.R., 1990, Basin analysis principles and applications。
    73. Aigner, T., 1982, Event-stratification in mummulites accumulation and shell beds from the Eocene of Egypt. in einsele, G., et al., Cyclic and event stratification, Springerverlag
    74. Aller, J. R. L., 1982, Sendimentary structures:their character and physical basis (volume 1) Elservier Publishing Company
    75. Aller, H. R. L., 1965, A review of oringin and characteristics of recent alluvial sediments. Sendimentology, 5, P59-81
    76. Ballard, R. D. and Moore, J. G., 1977, Photographic Atlas of the Midatantic Ridge Rift Vally.
    77. Bouma, k H., 1962, Sendimentology of couue flysch deposits. Amsterdam, Elseevirr, P168
    78. Bourgeois, J., 1980, A transgressive shelf sequesnce exhibitihg hummocky cross stratification, J. Sedim. petrol. 50, P681-720
    79. Coleman, J. M., 1969, Brahmaputra River:channel processes and seimention. Sedim. Geaf. 3, P129-239
    80. Coleman, J. M., 1996, Brahmaputra River:Channel processes and seimentation.
    
    Sedimentary Geology:vol. 3, P122-129
    81. Cook, D. 0. , 1970, The occurrence and geologic work of rip currents of southern California, Marine Geology:vol. 9. P173-186
    82. Duke, W. L, 1985, Hunmocky cross-strtif ication, Iropical hurricanes and intense winter storms. Sendimentology, 32, P167-194
    83. Einsele, G., 1992, Sedimentary Basins-Evolution, Facies, and Sediment Budget
    84. einsele G. and Seilacher A., 1982, Cycle and Event Stratification, Springer-Verlag, New york
    85. Gilbert, G.K., 1899, Ripple-marks and cross-bedding. Bull. Gelo. Soc. Am. 10, P135-140
    86. Gole, C. V., et al, 1966, Inland dalta building activity of Kois river. Proc. Am. Soc. eir Engs, 92. P111-126
    87. Holmes, A., 1965, Principles of Physical Geology. 2nded. The Roland Press Co. New York
    88. Hooke, R. E., 1967, Processes on arid-orgion alluvial fans. J. Geol. 75, P438-460
    89. Kelts, K., et al., 1978, Freshwater carbonate sedimentation in: lake, chemistry, geology, physics. Springer-verlag. Berlin, P295-323
    90 Klein, G. V., 1978, Tidal circulation patterns in seas. Bull. Geol. Soc. Am. ,89, P1050-1058
    91. Lewis, K.B., 1971, Slumping on continental slope inclined at 1-4. Sendimentolog-y, vol. 16. P. 67-100
    92. Matthews, R. K., 1984, Dynamic Stratigraphy. Prentice Hall, Englewood Cliffs, N. J
    93. Miall A. D., 1984, Principles of Sedimentary Basins analysis. Spring-Verlag, New york, Berlin, Tokyo
    94. Miall A. P., 1977, A revew on the braided-river depositional environment. Earth-Sci Rev. 13, P. 1-62
    95. Middleton, G. V., 1978. Facies, in:The Encyclopedia of Sendimentology. Dowden, Hutchison and Ross, Inc.
    96. Middleton, G. V., et al, 1973, Sediment gravity flows;Mechanics of flow and deposition. SEPM Pac. Sec., Short Cous, May, 1973
    97. Mutti, E., 1985, Turbidite systems and their relations to depositional sequence. In:G.G. Zuffaed, Holland, reidel, P65-93
    98. Pettijohn, F. J., et al, 1973, Sand and sandstone Springer-verlag, Berlin, P617
    99. Pettijohn, F. J., 1975, Sedimentary rocks, New York, P628
    100. Potter, P. E., et al, 1963, Paleocurrents and basin analysis. Springer-verlag, Berli-n,P296
    
    
    101. Ramos, A. et al, 1983, Gravl bars in low-sinuosity stream IAS special Publ. ,6
    102. Reading, H. G., 1986, Sedimentary Envirronments and fancies 2nded. Blackwell. Oxford
    103. Reineck, R E., et al, 1980, Depositional Sedimentary Envirronments-with to Terrigenous clastic. Second Edition, Spring-Verlag, New york
    104. RIBY, K. J., et al, 1972, Recognition of ancient sedimentary envirronments. SEPM. 16, Tulsa
    105. Runt, B. R., et al, 1984, Coarse alluvial deposits in facies models, 2nded. Geoscience Canada, Reprint Series 1
    106. Scholle, R. C., et al, 1983, Carbonate Depositional Environments. Mem. Am. Petrol. Geol .Print 31
    107. Selley, R. C., 1968, A classification of paleocurrent models. Jour. Geology:vol. 76.
    108. Selley, R. C., 1976, An introduction to sendimentology, Academic Press. London, P408
    109. Shepard, F. P., 1973, Submarine Geology. 3rded., Harper and Row. New York
    110. Skinaer, B. J., 1977, Physical Geology. 2nded
    111. Skinaer , B. J., 1992, The Dynamic Earth, an introduction to physical geology. 2nded
    112. Sparles, R. S., et al., 1973, Products of ignimbrite eruptions. Geology ,vol 1. P115-112
    113. Strahler, A. N., 1977, Physical geology 4nded: New York, John wiley and Sons, 733P
    114. Strahler, A. N., et al, 1973, Envirronmental geoscience:Santa Barbaara, calif, Hamilton Pub. co., 509P
    115. Stow, D. A. V., et al., 1984, Deep-water fine-grained sediments facies models. Spec, publ. geol. Soc, Londl5, P611-645
    116. Thomas, R. L., et al., 1972, Distribution composition and characteristics of the surfacial sediments of lak Ontario. J. Sedim. Petrol., 42, P66-84
    117. Nilsen,T. H., 1969. Old red sedimentation in the Benland-Verlandet Devonian district, Western Norway. Sedim. Geol. 3, P55-57
    118. Vail, P. R , et al., 1977, Seismic stratigraphy and global changes in sea level. Part 1, AAPG Memoir, 26, P212
    119. Walker, R. G., 1986, Facies Models. Geoscience, Canada Reprint Series
    120. Walker, G. D. L, 1971, Grain-size characteristics of pyroclastic deposits. Journal of Geology, VOL. 79, P696-714
    121. Walker, R. G., 1986, Sandy fluvial systems. Geoscience, Canada Reprint Series
    122. Wasson, R. J., 1974, Intersection point deposition on alluvial fans:anAustralian example. Geogr Anncr , 56A, P83-92
    123. Weimer, P., 1989, Sequence stratigraphy of the Mississippi fan, Gulf of Mexico, Geo
    
    -Marine letters, vol. 9, P185-272
    124. Weimer, P. J., 1994, Sequence stratigraphy concepts applied to intergrated oil and gas field development, with case histories. AAPG Distingguished lecture
    125. Wescott, W. A., et al., 1990,Fan delta-alluvial fans in coastal settings. In:Alluvial fans:A Field Approach
    126. Wilkinson , et al., 1980, Nearshore coid formation in a modern temperate region marl lake. J. Geol. 88, P697-704
    127. Reinson, G. E., et al., 1983, Comparison of Viking sandstone sequences, Jottre and Caroline fields, Canadian society of petroleum geologist
    128. Wright, L. D., 1977, Sediment transport and deposition at river mouths: a synthesis. Geol. Soc. Amer. Bull
    129. Axelsson, V., 1967, The laitaure delta A study of deltaic morphology and processes. Geogr. Annir, 49. , 4PA. P 1-27
    130. Dott, R E , et al., 1982, Hummocky stratificance of its varial bedding sequence :Geol. Soc. Amer. Bull, Vol. 93, P 663-680
    131. Eugster, E P., et al., 1973, Depositional environment of the Green River Formation of Wyoming a preliminaryreport. Bull Geol. Soc. Amer. 84,1115-1120
    132. Bluck, B. J., 1967, Deposition of some upper old red sandstone conglomerates in the clyde area, Scott, J, Geol. 3, P139-167
    133. Bradley,, W. E, 1929, Algae reefs Olites of the Green River Formation. Prof. pap. U. S. Geol. surv., 154-G, P 203-223
    134. Galloway, W. E, et al, 1983, Terrignous Clastic Depositional Systems-Applications to Petroleum, Coal, and Uranium Exploration. Springer-Verlag. New York
    135. Bull, W.B., 1972, Recognition of alluvial-fan deposits in the stratigraphic record Publ. SEPM. 16, P 68-83
    136. Coakley, J. P., et al., 1968, Sedimentation in an Arictic lake;Jour. Sedimentary Petrology. Vol. 38. , P. 1290-1300
    137. Davis, R A. J., 1983, Depositional System-a genetic approach to sedimentary geology. P RENTICE Hall INC, Englewood Cliffs, New Jersey
    138. Eittreim, S., et al., 1976,, Turbidity distribution in the Atlantc ocean. Deep-sea Res. 23. P1115-1128
    139. Flugel, E., 1982,Microfacies Analysis of limestone. Springer-verlag, Berlin.
    140. Friedman, G. M. and Sanders, J. E., 1978, Principles of sedimentology. John Wiley and Sons, New York, P 292
    141. Gilbert, G. K., 1885, The topographic features of lakeshore. Ana Rep. U. S. Geol. Surv.,
    
    5, P 75-123
    142. Kust, B. R., 1972, Structure and process in a braided river. Sedivaexatelogy, 18 P 221-245
    143. Leedr, M. R. 1973, Fluviatile fining upward cycle and the magnitude of palaeochannels Geol. May, 110,256-276
    144. Somgree, J. B., et al. ,1990, A summary of exploration applications of sequence stratigraphy, SEPM foundation eleventh annual research, conference program and abstracts. P 321-327
    145. Spearing, 0. R., 1975, Depositional environments interpreted from primary sedimentary structures and stratification sequence, SEPM coures 2, P 103-132
    146. Spencer, R. C., et al., 1981, Lake Pleistocene and Holocene sedimentary history of Great Salt Lake.Utah.Abs. Am. Ass. Petrol. Geol. meeting, San Fransisco, 42
    147. Stow, D. A. V., 1984, Turbiditefacies associations and sequence in the southeastern Angola Basin. Initial reports of the deep sea drilling project, 75, Washington
    148. Zhao, C. L., et al., 1991, Sedimentology of low-permeability clastic gas reservoirs:a case from the loewr Tertiary, Dongpu Depressioa Energy source, Vol. 13, P 137-158
    149. Ahlbrandt, T. S., et al., 1982, Introduction to aeolian deposits. AAPG Mem. 31,11-47
    150. Yuretich, R., 1987, Paleocence lakes of the Central Rocky Mountains, Western USA In:IGCP 210 Workshop, Kehrsiten Switzerland, Abstracts.
    151. Picard, D. M., et al, 1981, Physical stratigraphy of ancient lacustrine deposits. SEPM Spec.Publ. 31,233-259
    152. Picard, D. M., et al., 1972, Criteria for recoginsing lacustrine rocks. Spec. Publ. Soc . Econ. Paleontol. Mineral., 16 ,108-145
    153. Plint, A. G., 1982, Eocene sedimentation and trctonics in the Haepshire Basin. J. Geol. Soc. London, 139, 249-254
    154. Tucker, M. E., 1976, Replaced evaporites from the Lake Precambrian of Finmark, Arctic Norway. Sediment. Geol., 16,193-204
    155. Tucker, M.E, 1977,The marginal Triassic deposits of South Wales:continental facies and palaeogeography. Geol. J., 12,169-188
    156. West, I. M., 1964, Evaporite diagenesis in the Lower Purbeck bed of Dorset. Proc. Yorks. Geol. Soc., 34,315-330
    157. Yuretich, R. F., 1982, Possibe influences upon lake development in the Est African rift Valleys. J. Geol., 90, 329-337
    158. Ryder, R. T., et al., 1976, Early Tertiayy sedimentation in the western Unita Basin, Utah. Bull. Geol.Soc.Am., 87,496-512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700