用户名: 密码: 验证码:
氮沉降对马尾松适应低磷胁迫机制和磷效率影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松(Pinus massoniana)是我国南方重要的用材树种之一,其天然林和人工林分布面积居南方造林树种前列,支撑着我国造纸、木材加工、林产化工等产业。然而,我国南方森林土壤有效P严重匮乏且呈高度异质性分布,限制了马尾松的生长和生产力。当前研究已揭示了马尾松适应低P胁迫的生物学机制。近年来我国南方地区大气N沉降日趋严重,导致土壤有效N含量增加、N/P发生改变,这将会对低P下马尾松生长和P效率产生影响,然而相关研究较少有报道。本论文以马尾松优良家系作为试验材料,设置了模拟N沉降与同质低P、异质低P耦合的模拟盆栽试验,系统研究了模拟N沉降对不同类型低P胁迫下马尾松家系根系形态、根系分泌、光合作用、菌根共生以及P效率的影响,阐明马尾松、杉木和木荷幼苗对低P下土壤N素增加感知、响应的种间差异,为在大气N沉降背景下开展林木P效率的遗传改良提供更全面的理论基础和科学指导。主要研究结果如下:
     1.模拟N沉降对低P下马尾松根系形态参数、根系分泌以及P效率的影响
     同质低P下,模拟N沉降对马尾松生长、生物量和P效率的影响较小,但存在显著的N×家系互作效应。异质低P下,模拟N沉降显著促进了马尾松生长和生物量积累,其原因是促进了根系的生长和表层土壤中根系分布比例的增加,从而增加了马尾松对土壤P的吸收。不同P环境下模拟N沉降对马尾松生长性状的影响,与植株N/P有关。同质低P环境下,马尾松植株N/P为13.8,植株生长受P素限制,模拟N沉降处理未改善马尾松生长状况。在异质低P环境中,植株N/P为9.7,马尾松对N素增加敏感,模拟N沉降显著增加了苗木生物量和P吸收效率。
     同质低P和异质低P下,模拟N沉降均提高了植株N/P化学计量比、增加了P素的相对匮乏程度,从而诱导根系增加了APase和有机酸的分泌,同质低P较异质低P下增加幅度更大,其中有机酸分泌与马尾松生长呈正相关关系,而APase活性与磷效率相关性较小。同质低P下,N沉降虽然增加了根系分泌,但未提高马尾松P吸收效率和生长量,其原因在于,同质低P下植株N/P过高,马尾松生长受P的限制,虽然N素的增加促进了根系分泌,可以活化一定量的固定态P,但不足以满足植物生长对P的需要。另外,马尾松根系分泌对模拟N沉降的响应存在较大的家系差异。
     同质低P下,模拟N沉降显著增加了马尾松针叶N含量和N/P,叶净光合速率随着叶N含量和N/P的增加而增加。模拟N沉降虽然增加了针叶净光合速率,但并没有明显改善植株生物量。咎其原因,模拟N沉降虽然增加了土壤N的含量,但却造成土壤和植株体内P更加的相对匮缺,马尾松P吸收效率降低。另外,模拟N沉降抑制了根系的生长,减少了养分的吸收,而光合作用的增加,又进一步加重了植株养分的亏缺。异质低P下,马尾松针叶P含量显著增加,N/P降低,净光合速率增加幅度较同质低磷下模拟N沉降小。马尾松根冠比增大,植株N、P吸收和生物量增加,为光合作用提供了所需的营养元素。
     2.模拟N沉降对低P下马尾松菌根共生和P效率的影响
     不同P素环境下,模拟N沉降对马尾松菌根土养分含量的影响不同。同质低P下,模拟N沉降增加了菌根土水解N,有效P和速效K的含量,降低了有效Al含量,未引起马尾松菌根土明显的酸化,改善了土壤理化性质。异质低P下,模拟N沉降增加了菌根土水解N和有效P含量,但N/P和pH值降低,土壤速效K和有效Al含量增加。
     同质低P下,模拟N沉降增加了土壤N的有效性,然而降低了1年和2年生苗木菌根侵染率和侵染程度,形成的菌根根毛数量减少,但菌丝厚且紧密。异质低P较同质低P菌根侵染率和侵染程度小,但模拟N沉降分别增加了1年生和2年生苗木菌根侵染率,菌根根毛数量多,表面菌丝厚密。
     同质低P下,模拟N沉降显著降低了马尾松1年生菌根苗根系的生长,但增加了根系分泌,尤其是有机酸分泌量增加了近3倍。相关性分析表明,有机酸分泌对菌根化苗生长的贡献显著高于APase。异质低P下,模拟N沉降显著降低了马尾松1年生菌根化苗表层根系的生长,增加了深层根的生长,根系干物质积累量和有机酸分泌量增加。
     同质低P下,接种菌根菌显著改善了马尾松苗木的生长状况,促进了生物量的积累。模拟N沉降促进了1年生菌根化苗的生长和生物量积累,增加了P和N的吸收,植株N/P比增加为11.70。但减少了2年生菌根化苗生物量的增加,N的吸收增加,P的吸收减少,植株N/P比显著增加为14.99。异质低P下,模拟N沉降促进了马尾松1年生和2年生菌根化苗的生长和生物量积累,增加了N和P的吸收。
     3.低P胁迫下马尾松、杉木和木荷响应模拟N沉降的种间差异及机制
     同质低磷下,模拟N沉降增加了3种树苗土壤水解N含量,增加幅度大小顺序为马尾松>杉木>木荷。马尾松、木荷表层土壤酸化程度较杉木大。另外,马尾松、木荷土壤有效P和速效K含量降低幅度较杉木大,3种树苗土壤有效铝含量均增加。异质低磷处理下,杉木和木荷土壤酸化程度较马尾松大。木荷土壤有效P和水解N含量降低,马尾松和杉木土壤有效P和水解N含量增加。3种树苗有效铝含量均增加。
     同质低磷下,模拟N沉降增加了3种树苗根系分泌物总量,增加幅度大小顺序为木荷>马尾松>杉木,这可能是木荷和马尾松较杉木生物量高的原因之一。异质低P处理下,3种树苗根系酸性磷酸酶活性和有机酸总量均减少。同质低磷下,3种树苗叶N/P比均增加,杉木对N沉降较敏感,叶N/P较马尾松和木荷增加幅度大,但其叶净光合速率却降低。马尾松较木荷净光合速率增加幅度大,马尾松对氮素增加的调节和适应能力较强。异质低P下,马尾松和木荷叶N/P均降低,杉木N/P比增加。3种树苗净光合速率增加幅度大小顺序为马尾松>杉木>木荷。
     模拟N沉降对马尾松苗木根系生长的影响较杉木和木荷相比较小。木荷地上部分生长增加,但根系生长受到抑制,整株生物量降低。N素的增加严重抑制了杉木幼苗根系生长和生物量积累。模拟N沉降抑制了马尾松和杉木P的吸收,促进了木荷P的吸收,同时促进了马尾松和木荷N的吸收,抑制了杉木N的吸收。异质低P处理增加了3种树苗的生物量和根冠比,生物量增加幅度大小顺序为木荷>杉木>马尾松。
Pinus massoniana is one of the important timber species in southern China. Thedistribution areas of its natural forests and plantations are forefront of the southern plantationspecies, and it widely used in the pulp and paper, construction, rosin ect. However, forest soilin southern China are acidic red soil, mostly severe scarcity of phosphorus(P) and phosphorushighly heterogeneous distribution. The limited availability of P in forest soils is thus one of themost important factors causing a decline in growth and productivity of Pinus massonianaplantations. The current study had revealed Pinus massoniana biological mechanisms ofadapting to different types of low P stress. Atmospheric nitrogen(N) deposition dramaticallyraised in recent decades, resulting in increases of soil N availability and N/P ratio, whichwould impact Pinus massoniana P efficiencyand biological mechanisms of adapting to low Pstress. Taking different excellent families of Pinus massoniana as test materials, a potexperiment was conducted to simulate two P conditions, i.e., homogeneous low P vs.heterogeneous low P among soil layers, in combination with two N deposition levels on rootmorphology, root exudates, photosynthetic, mycorrhizal symbiosis and P efficiency. The studyillustrated the differentes perception and response of Pinus massoniana、Cunninghamialanceolata and Schima superba to soil N content increased. The objectives of this study wereto provide theoretical foundation and scientific guidance for genetic improvement of treesphosphorus efficiency in the context of atmospheric N deposition. The main results obtainedfrom experiments are as follows:
     1. Effects of simulated N deposition on root and phosphorus efficiency of Pinusmassoniana under low P condition
     Under the homogeneous low phosphorus condition, growth traits of seedling height,diameter, biomass etc and P efficiency of Pinus massoniana were not significantly improvedby simulated N deposition, but significant N×family interaction effect was detected. Under the heterogeneous low P condition, significant N effects on the seedling height, biomass and Pabsorption efficiency were observed, due to promoted root length and root distribution ratio oftopsoil. In addition, the effects of simulated N deposition on growth and P efficiency of Pinusmassoniana were relevant to the N/P ratio. Under the homogeneous low P condition, the N/Pratio of Pinus massoniana plant was13.8, plants exhibited a low sensitivity to simulated Ndeposition, root secreted APase activity was increased but the plant growth was not promoted.In comparison, the plant N/P ratio was9.7under the heterogeneous low P condition, and theplant growth and P efficiency were significantly promoted, while no obvious change occurredin root secreted APase activity.
     Under both the homogeneous and heterogeneous low P conditions, N/P stoichiometricratio in Pinus massoniana seedlings was significantly increased by simulated N deposition,which stimulated the amount of root acid phosphatase and organic acid secretion. The amountof root exudates was higher under the homogeneous low P condition than under theheterogeneous low P condition. The level of root secreted organic acids was significantlycorrelated with the growth in Pinus massoniana seedlings. Under the homogeneous low Pcondition, P acquisition efficiency and biomass in Pinus massoniana seedlings were notaffected by simulated N deposition, mainly due to the high N/P ratios and low sensitivity to Naddition. Significant variations among families in root exudates to the simulated N depositionwere observed.
     Simulated N deposition significantly increased the N content and N/P ratio of Pinusmassoniana needles under the homogeneous low P condition, meanwhile net photosyntheticrate improveded. Under the heterogeneous low P treatment, P content of Pinus massoniananeedles increased but N/P decreased. The increasing degree of net photosynthetic rate wassmaller than simulated N deposition. Under homogeneous low P, simulated N depositiondespite increased in the plant net photosynthetic rate, but did not significantly improve plantbiomass.The reasons was that simulated N deposition increased the N content of soil, yetCausing the P content of soil and plant was relative scarcity, and reduced the P absorption efficiency ofPinus massonianaplant. In addition, the simulated N deposition inhibited rootgrowth, reducing the absorption of nutrients, and photosynthesis increases, further aggravatingthe plant nutrient deficiency. Under heterogeneous low P conditions, the root-shoot ratioofPinus massoniana was increased, meanwhile N, P uptake and biomass were increased, whichprovided necessary nutrients for the photosynthesis.
     2. Effects of simulated N deposition on mycorrhizal symbiosis and P efficiency underlow P stress
     Under different P contitions, the effects of simulated N deposition on nutrient content inmycorrhizal soil of Pinus massoniana is different. Simulated N deposition increased thecontent of available N, available phosphorus and potassium in mycorrhizal soil underhomogeneous low P treatment, and reduced the effective aluminum content, but soilacidification did not cause obvious. The results showed that inoculation mycorrhiza fungicould improve the effects of simulated N deposition on nutrient content in mycorrhizal soil ofPinus massoniana and adjust N/P ratio and soil physicochemical properties. Underheterogeneous low P treatment, Simulated N deposition increased the content of available N,available phosphorus, K and effective aluminum, but N/P ratio and pH significantly decreased.
     Under different P conditions, the effects of simulated N deposition on mycorrhizalinfection of Pinus massoniana was different.The colonization ratio and infection degree ofmycorrhizal fungi under homogeneous low P was larger than under heterogeneous low P.Under homogeneous low P condition, simulated N deposition increased the effectiveness ofsoil N, but reduced the1-year and2-year-old seedlings mycorrhizal infection rate andinfection degree. The number of mycorrhizal hairs was decreased, but hyphae of mycorrhizaewere thick and dense. Under heterogeneous low P treatment,simulated N deposition increasedthe1-year and2-year-old seedlings mycorrhizal infection rate. The number of mycorrhizalhairs were increased, and surface hyphae of mycorrhizae was dense.
     Under homogeneous low P condition, simulated N deposition treatment significantlyreduced the mycorrhizal growth of1-year-old Pinus massoniana seedlings, but increased the root APase activity and the secretion of organic acids, organic acid secretion particularlyincreased by nearly three times. Correlation analysis showed that root biomass and APaseactivity was significantly negatively under homogeneous low P, but it was significantlypositive with organic acid secretion. The contribution of organic acids secreted to the growthof mycorrhizal seedlings was significantly higher than APase. Under heterogeneous low Ptreatment, simulated N deposition treatment significantly reduced the surface root growth of1-year-old Pinus massoniana mycorrhizal seedlings, but increased the growth of deep roots.Meanwhile, root dry matter accumulation and organic acid secretion increased, while APaseactivity decreased.
     Under homogeneous low P condition, inoculation mycorrhiza fungi significantlyimproved the growth status and promoted the biomass accumulation of Pinus massonianaseedlings. Simulated N deposition treatment improved the growth and biomass accumulationof1-year-old Pinus massoniana mycorrhizal seedlings. Although increased the height growthof2-year-old Pinus massoniana mycorrhizal seedlings, but reduced its biomass accumulation.Under heterogeneous low P treatment, simulated N deposition improved the growth andbiomass accumulation of Pinus massoniana1-year and2-year-old mycorrhizal seedlings.Under different soil P condition, the simulated N deposition level of this study had allpromoted the growth of Pinus massoniana mycorrhizal seedlings, but the dry matteraccumulation of heterogeneous low P was larger than that of homogeneous low P.
     Correlation analysis showed that the absorption efficiency of N and P were significantlypositive correlation with the growth and biomass accumulation of Pinus massonianamycorrhizal seedlings. Under homogeneous low P condition, simulated N deposition increasedthe absorption efficiency of N and P of Pinus massoniana1-year-old mycorrhizal seedlings,and plant N/P increased to11.70. The N absorption of Pinus massoniana2-year-oldmycorrhizal seedlings was increased, but the P absorption was decreased. Plant N/Psignificantly increased to14.99. Under heterogeneous low P treatment, simulated N depositionincreased the absorption efficiency of N and P of Pinus massoniana1-year and2-year-old mycorrhizal seedlings. Plant N/P of1-year-old mycorrhizal seedlings increased to10.96, andthat of2-year-old mycorrhizal seedlings decreased to5.56.
     3. The differences of growth and P efficency responses ofPinus massoniana,Cunninghamia lanceolata and Schima superba to simulated N deposition under low P stress
     Because of three species have different biological characteristics, significant differencesin nutrient content of potting soil to the simulated N deposition were observed. The order ofincreasing extent of potting soil hydrolysis N content was Pinus massoniana, Cunninghamialanceolata and Schima superba. The degree of surface soil acidification of Pinus massonianaand Schima superba was large than Cunninghamia lanceolata, due to Schima superba strongerabsorption and eluviation of surface soil N, and N eluviation of surface soil of Pinusmassoniana was larger than Cunninghamia lanceolata. In addition, the decreasing degree ofpotting soil P and K content of Pinus massoniana and Schima superba were larger thanCunninghamia lanceolata. The increasing of soil Al content of three species may be related tothe reducing of soil P content.
     The order of increasing degree of leaf N/P ratio was Cunninghamia lanceolata,Schimasuperba.and Pinus massoniana. Cunninghamia lanceolata was sensitive to N deposition, itsleaf N/P ratio largely increased. Pinus massoniana had stronge ability of regulation andadaptability to increased N. The study on photosynthesis of three species showed that theincreasing degree of net photosynthetic rate of Pinus massoniana was large than Schimasuperba,.leaf net photosynthetic rate of Cunninghamia lanceolata decreased. Leaf endogenousacid phosphatase activity of three species were decreased, and the order of reducing extentwas Cunninghamia lanceolata,Schima superba.and Pinus massoniana. The result may beassociated with changes of leaf enzymes metabolism.due to increased leaf N content. Underthe heterogeneous low P conditions, leaf N/P ratio of Pinus massoniana.and Schima superbawere lower, but that of Cunninghamia lanceolata was increased. The heterogeneous low Ptreatment can promoted the photosynthesis of three species, and the order of increasing extentof leaf N/P ratio was Cunninghamia lanceolata,Schima superba.and Pinus massoniana.. The increased activity of leaf endogenous acid phosphatase of Cunninghamia lanceolata, andPinus massonian promoted the recycling of phosphorus in leaves.
     Under the simulated N deposition treatment, the order of increasing extent of rootexudates was Schima superba, Pinus massoniana and Cunninghamia lanceolata. This may beone of reasons for the high biomass of Schima superba, Pinus massoniana compared toCunninghamia lanceolata. Under the heterogeneous low P condition, acid phosphataseactivity and total organic acids of three species were significantly reduced. The influences ofsimulated N deposition on root growth of Pinus massoniana was less than Schima superba,and Cunninghamia lanceolata. Aboveground growth of Schima superba increased, but rootgrowth was inhibited, while the biomass of whole plant decreased. Increased N depositionseverely inhibited root growth and biomass accumulation of Cunninghamia lanceolata.Correlation analysis showed that growth index of height, ground stems and biomass of threespecies had significant correlation with plant N, phosphorus efficiency. Simulated Ndeposition inhibited the P absorption of Pinus massoniana and Cunninghamia lanceolata, butpromoted the P absorption of Schima superba. Simultaneously, the N absorption of Pinusmassoniana and Schima superba were increased by simulated N deposition, but that ofCunninghamia lanceolata was reduced. The biomass and root-shoot ratio were increased ofthree species under the heterogeneous low P condition. The order of increasing extent ofbiomass was Schima superba, Cunninghamia lanceolata and Pinus massoniana.
引文
Aerts R., Chapin FS III. The mineral nutrition of wildplants revisited: A re-evaluation of processes andpatterns Advances in Ecological Research,2000,30:1-67.
    Agren GI, Wetterstedt JA, Billberger MFK. Nutrient limitation on terrestrial plant growth modeling theinteraction between nitrogen and phosphorus. New Phytologist,2012,194:953-960
    Ba AM, Sanon KB, Duponnois R. Influence of ectomycorrhizal inoculation on Afzelia quanzensis Welw.seedlings in a nutrient-deficient soil. For Ecol Man,2002,161:215-219.
    Bauer GA, Bazzaz FA, Minocha R, et al.. Effects of chronic N additions on tissue chemistry, photosyntheticcapacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE UnitedStates. Forest Ecology and Management,2004,196(1):173-186.
    Bauma C, Weihb M, Verwijstb T, et al.. The effects of nitrogen fertilization and soil properties onmycorrhizal formation of Salix viminalis. For. Ecol. Man.,2002,160:35-43.
    Bazzaz F A,Grace J.Plant resource allocation.New York: Academic Press,1997.
    Bobbink R, Hornung M, Roelofs JGM. The effects of air-borne nitrogen pollutants on species diversity innatural and semi-natural European vegetation. Journal of Ecology,1998,86(5):717-738.
    Bruce A, Smith SE, Tester M. The development of mycorrhizal infection in cucumber: effects of P supplyon root growth, formation of entry points and growth of infection units. New Phytologist,1994,127:507
    Chapin FS III, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology. New York, USA:Springer-Verlag,2002,198-200
    Chen B D, Roos P, Borggaard O K, et al. Mycorrhiza and root hairs in barley enhance acquisition ofphosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer.New Phytologist,2005,165:591-598.
    Crafts BSJ. Phosphorus nutrition influence on leaf senescence in Soybean. Plant Physiology,1992,98:1128-1132
    Dau fresne T, Hedin LO. Plant coexistence depends on ecosystem nutrient cycles: Extension of the resourceratio theory. Proceedings of the National Academy of Sciences of the United States of America,2005,102:9212-9217
    Dinkelaker B, Romheld V, Marschner H. Citric acid excretion and precipitation of calcium citrateinrhizosphere of white lupin (Lup inusalbus L.). Plant Celland Environ.,1989,12:285-292
    Eissenstat DM, Yanai RD. The ecology of root lifespan.Advances in Ecological Research,1997,27,1–60.
    Edfast A, Nasholm T, Ericsson A. Free amino acid concent rat ions in needles of Norway spruce and Scotspine trees on different sites in areas w ith two levels of nitrogen deposition. Canadian Journal of ForestResearch,1990,20:1132-1136.
    Erik A.L., Timothy J.F.,Thomas R.H., et al.. Belowground ectomycorrhizal fungal community change overa nitrogen deposition gradient in Alaska. Ecology,2002,83(1):104-115
    Evans JR. Developmental constraints on photosynthesis: effects of light and nutrition. Photosynthesis andthe Environment,1996,5:281-304.
    Evans JR. Photo synthesisand nitrogen relationship in leaves of C3plants. Oecologia,1989,78:9-19.
    Fang Y T, Mo J M, Gundersen P, et al. Nit rogen transformations in forest soils and their responses toatmospheric nitrogen deposition:a review. Acta Ecologica Sinica,2004,24(7):1523-1531
    Fenn ME, Baron JS, Allen EB, et al.. Ecological effects of nitrogen deposition in the western United States.Bioscience,2003,53(4):404-420.
    Fenn ME, Jovan S, Yuan F, et al..Empirical and simulated critical loads for nitrogen deposition in Californiamixed conifer forests. Environmental Pollution,2008,3(155):492–511
    Fenn M A, Poth M A, Aber JD, et al. Nitrogen excess in North American ecosystems: Predisposing factors,ecosystem responses, and managements trategies. Ecological Applications,1998,8:706-733
    FoyerC, Spencer C. The relationship between phosphate status and photosynthesis in leaves. Planta,1986,167:369-375
    Fredeen A L,Rao I M,Terry N. Influence of phosphorus nutrition on growth and carbon partitioning inGlycine max.Plant Physiol,1989,89:225-230.
    Fujita Y, Robroek BJM, Ruiter PC, et al.. Increased N affects P uptake of eight grassland species, the role ofroot surface phosphatase activity. Oikos,2010,119,1665-1673.
    Furbank R T,Foyer C H,Walker D A.Regulation of photosynthesis in isolated spinach chloroplasts duringorthophosphate limitation.Biochem Biophys Acta,1987,894(3):552-561.
    Galloway JN, Cowling EB. Reactive nitrogen and the world:200years of change. Ambio,2002,31:64-71.
    Gregory K Eaton, Matthew P Ayres. Plasticity and constraint in growth and protein mineralization ofectomycorrhizal fungi under simulated nitrogen deposition. Mycologia,2002,94(6):921-932.
    Guo XM, Niu DK, Liu YQ, et al.. The vegetation restoration and reconstruction of different types ofdegraded barren ecosystems in Jiangxi. Acta Ecologica Sinica,2002,22:879-884
    Gusewell. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist,2004,164(2),243–266
    Hao JM, Xie SD, Duan L, et al. Critical load of acid deposition and applications. Beijing: TsinghuaUniversit y Press,2001,6.
    Harley JL, Smith SE. Mycorrhizal Symbiosis. London: Academic Press,1983,1-483.
    He JS, Wang L, Flynn DFB, et al.. Leaf nitrogen: phosphorus stoichiometry across Chinese grasslandbiomes. Oecologia,2008,155,301-310.
    He Y, Liao H, Yan XL. Localized supply of phosphorus induces root morphological and architecturalchanges of rice in split and stratified soil cultures. Plant Soil,2003,248:247-256
    Hodge A (2004). The plastic plant, root responses to heterogeneous supplies of nutrients[J]. New Phytologist,162,9–24
    Holland EA, Dentene FJR, Braswell BH, et al.. Contemporary and Pre-Indust rial Global React iveNitrogen Budgets. Biogeochemistry,1999,46:7-43.
    Horswill P, OSullivan O, Phoenix GK, et al.Base cation depletion, eutrophication and acidification ofspecies-rich grasslands in response to long-term simulated nitrogen deposition. EnvironmentalPollution,2008,155(2):336-349.
    Hutchinson TC, Watmough SA, Sager EPS, et al..The impact of simulated acid rain and fert ilizerapplication on a mature sugar maple(Acers accharum Marsh.) forest in central On tario, Canada. WaterAir Soil Pollut.,1999,109:17-39.
    Huttl RF. Nutrient supply and fertilizer experiments in view of N saturation. Plant Soil,1990,128(1):45-58.
    Kalt TW, Kerr PS, Usuda H, et al.. Diurnal changes in maize leaf Photosynthesis.I.Carbon exchange rate,assimilate export rate,and emzyme activities. Plant Physiology,1987,83:283-288.
    Kathleen K, Treseder.A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmosphericCO2in field studies. New Phytologist,2004,2(164):347–355.
    Lilleskov EA.,Fahey TJ., Horton TR, et al.. Belowground ectomycorrhizalfungal community change over anitrogen deposition gradient in Alaska. Ecology,2002,83:104–115.
    Lu XK,Mo JM,Gilliam FS,et al.. Nitrogen addition shapes soil phosphorus availability in two reforestedtropical forests in southern China. Biotropica,2012,44(3):302-311.
    Lynch JP. Roots of the second green revolution. Australian Journal of Botany,2007,55:493-512
    Matson PA, McDowell WH, Townsen AR, et al.. The globalization of N deposition: ecosystemconsequences intropical environments. Biogeochemistry,1999,46:67-83.
    Mclachlan KD. Acid phosphatase activity of intact roots and phosphorus nutrition in plants.Ⅱ. Variationsamong wheat roots. Australian Journal of Agricultural Research,1980,31:441-448
    Mendoza RE, Pagani EA. Influence of phosphorus nutrition on mycorrhizal growth response andmonphology of mycorrhizae in Lontus tenui. Journal of Plant Nutrit ion,1997,20(6):625-6391
    Meziane D,.ShipleyB. Interacting determinants of specific leaf area in22herbaceous species: effects ofirradiance and nutrient availability. Plant, Cell&Environment,1999,5(22):447–459
    Miller OKJ. Taxonomy of Ecto-and Ectendomycorrhizal fungi. Methods and Principle of MycorrhizalResearch,1982,91-101.
    Miller TE, Burns JH, Munguia P, et al. A critical re-view of twenty years: Use of the resource ratio theory.The American Naturalist,2005,165:439-448
    Mohren GMJ, Vanden BJ, Bruger FW. Phosphorus deficiency induced by nitrogen input in Douglas fir inthe Netherlands. Plant Soil,1986,95:191-200.
    Nakaji T, Fukami M, Dokiya Y, et al.Effects of high nitrogen load on growth, photosynthesis and nutrientstatus of Cryptomeria japonica and Pinus densiflora seedlings. Trees,2001,15:453-461
    Nakaji T, Takenaga S, Kuroha M, et al.. Photosynthetic response of Pinus densiflora seedlings to highnitrogen load. Environmental Sciences,2002,9(4):269-282.
    Neumann G, Rimhei DV. Root excretion of carboxylic acids and protons in phosphorus-deficient plants.Plant and Soil,1999,211,121-130.
    Pampolina NM, Dell B, Malajczuk. Dynamics of ectomycorrhizal fungi in anEucalyptus globulusplantation:effect of phosphorus fertilization. Forest Ecology and Management,2002,1(158):291–304
    Nye PH, Tinker PB. Solute movement in the Soil root system. Oxford: Black Well Scientific Publications,1977
    Pamela M, Kathleen AL, Sharon JH. The Globalization of Nitrogen Deposition: Consequences forTerrestrial Ecosystems. AMBIO: A Journal of the Human Environment,2002,31(2):113-119.
    Persson H, Ahlstrom K, Clemensson LA.. Nitrogen addition and removal at Garden-effects on fine-rootgrowth and fine-root chemistry. Forest Ecology and Management,1998,101:199-206
    Read DJ.Mycorrhizas in ecosyst ems. Experientia,1991,47:376-391.
    Reich PB, Walters MB, Ellsworth DS, et al.. Photosynthesis-nitrogen relations in A mazonian tree species.Patterns among species and communities. Oecologia,1994,97:73-81.
    Reich PB, Hobbie SE, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response toCO2. Nature,2006,440:922-925.
    Plenchette C. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility IMycorrhizal dependency under field conditions. Plant and Soil,1983,70:199
    Rudiger Hampp, Joachim Wiese, Sabine Mikolajewski, et al. Biochemical and molecular aspect s of C/Ninteraction in ectomycorrhizal plants: an update. Plant and Soil,1999,215:103-113.
    Leyval C, Berthelin J. Rhizodeposition and net release of soluble organic compounds by pine and beechseedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biology and Fertility of Soils,1993,15:259-267.
    Saito MA, Goepfert TJ, Riit JT. Some thoughts on the concept of colimitation: Three definitions and theimportance of bioavailability. Limnology and Oceanography,2008,53:276-290
    Schulze ED. Air pollution and forest decline in a spruce (Picea abies) forest.Science,1989,244:776-783.
    Smith SE, Read DJ. Mycorrhizal symbiosis. London and San Diego, Calif, USA: Academic Press,1996.
    Sun Y, Gu J, Zhuang H., et a1.. Effects of ectomycorrhizal colonization and nitrogen fertilization onmorphology of root tips in a larix gmelinii plantation in northeastern china. Ecological Research.2010,25(2);295-302
    Thomson, BD., Grove, TS., Malajczuk N., et a1.. The effect of soil pH on the ability of ectomycorrhizalfungi to increase the growth of Eucalyptus globulus Labill. Plant and Soil.1996,178(2):209-214
    Throop H L. Nitrogen deposition and herbivery affect biomass production and allocation in an annual plant.Oikos,2005,111(1):91-100.
    Townsend AR, Braswell BH, Holland EA, et al.. Spatial and temporal patterns in terrestrial carbon storagedue to deposition of fossilfuel nitrogen. Ecol. Appl.,1996,6:804-814.
    Treseder KK. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus and atmospheric CO2infield studies. New Phytologist.2004,164(2):347-355
    Van BN, Burrough PA, Velthorst EJ, et al. Soil acidification from atmospheric ammonium sulphate in forestcanopy throuhfall. Nature,1982,299:548-550
    Vander ELJ, Lekkerkerk LJA, Smeulders SM. Effects of atmospheric ammonia and ammonium sulphate onDouglas fir(Pseudotsuga menziesii). Environ pollut,1992,76:1-9.
    Wang Z, Shen J, Zhang F. Cluster-root formation, carboxylate exudation and proton release of Lupinuspilosus Murr. as affected by medium pH and P deficiency. Plant and Soil,2006,287,247-256.
    Weiner J. Allocation,plasticity and allometry in plants. Perspectives in Plant Ecology,Evolution andSystematics,2004,6(4):207-215.
    Wissuwa M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects.Plant Physiology,2003,133,1947-1958.
    Wu T, Dong Y, Yu M, et al. Leaf nitrogen and phosphorus stoichiometry of Quercus species across China.Forest Ecology and Management,2012,284:116-123
    Wu TG, Yu MK, Wang GG, et al. Leaf nitrogen and phosphorus stoichiometry acrossforty-two woody species in Southeast China. Biochemical Systematics and Ecology,2012,44:255-263
    Yamakawa Y, Saigusa M, Okada M, et al. Nutrient uptake by rice and soil solution composition underatmospheric CO2enrichment. Plant and Soil,2004,259(1/2):367-372.
    Zen FD,Zhou DX.Research on the mechanism of mycorrhizal formation induced by cutt ing root on theseedling of Pinus massoniana. Forest Science and Technology,1996,(3):28-30.
    Zhang DY. Plant life-history evolution and reproductive ecology. Beijing: Science Press,2004.
    Zhang SR, Dang Q L, Yu X G. Nutrient and CO2elevation had synergistic effects on biomass productionbut not on biomass allocation of whitebirch seedlings. Forest Ecology and Management,2006,234(1/3):238-244.
    Zhang Y, Zhou ZC, Yang Q. Genetic variations in root morphology and phosphorus efficiency of Pinusmassoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil,2013,364:93-104.
    Zhang Y, Zhou ZC, Yang Q. Nitrogen (N) deposition impacts seedling growth of Pinus massoniana via N, Pratio effects and the modulation of adaptive responses to low P (phosphorus). PLoS ONE,2013b,8,e79229, doi,10.1371/journal.pone.0079229.
    Zhao X, Yan XY, Xiong ZQ. Spatial and temporal variation of inorganic nitrogen wet deposition to theYangtze River Delta Region, China. Water, Air, and Soil Pollution,2009,203:277-289.
    曹靖,张福锁.低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响.植物生态学报,2000,24:731-735.
    曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索.植物生态学报,2005,29(6):1007-1019
    曾琳,王更亮,王广东,等.氮磷钾营养水平对观赏向日葵生长发育及光合特性的影响.西北植物学报,2010,30(6):1180-1185
    陈应龙,弓明钦,王凤珍,等.混合接种Glomus与Pisolithus菌株对尾叶桉矿质营养吸收的影响.林业科学研究,1999,12(3):262-267
    邓胤,罗文倩,朱金山,等.不同氮磷水平条件下接种AMF对玉米生长的影响.中国农学通报,2008,12(24):301-303.
    丁洪,李生秀,郭庆元,等.酸性磷酸酶活性与大豆耐低磷能力的相关研究.植物营养与肥料学报,1997,3(2):123-128
    段海燕,徐芳森,王运华.甘蓝型油菜不同磷效率品种苗期根系生长及磷营养的差异.植物营养与肥料学报,2002,8:65-69.
    范志强,王政权,吴楚.不同供氮水平对水曲柳苗木生物量、氮分配及其季节变化的影响.应用生态学报,2004,6(15):935-940
    高悦,吴小芹,孙民琴.马尾松不同菌根苗对氮磷钾的吸收利用.南京林业大学学报(自然科学版),2009,4(33):77-80
    郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响生态学报,2005,25(6):1291-1298
    樊后保,廖迎春,刘文飞,等.模拟氮沉降对杉木幼苗养分平衡的影响.生态学报,2011,31(12):3277-3284
    樊明寿,徐冰,王艳.缺磷条件下玉米根系酸性磷酸酶活性的变化.中国农业科技导报,2001,3(3):33-36
    韩有志,王政权.森林更新与空间异质性.应用生态学报,2002,13(5):615-619
    韩晓日,姜琳琳,王帅,等.不同施肥处理对春玉米穗位叶光合指标的影响.沈阳农业大学学报,2009,40(4):444-448
    郝吉明,谢绍东,段雷,等.酸沉降的临界负荷及其应用.北京,淸华大学出版社,2001.
    花晓梅.林木菌根研究.北京:中国科学技术出版社,1995,1-20
    黄忠良,丁明愁,张祝平,等.鼎湖山季风常绿阔叶林的水文学过程及其氮素动态.植物生态学报,1994,18(2):194-199
    蒋家淡,林延生,詹正宜,等.菌根生物技术应用现状与研究进展.江西农业大学学报(自然科学版),2001,23(2):216-219
    李德军,莫江明,方运霆.模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响.植物生态学报,2005,29(4),543-549.
    李德军,莫江明,方运霆.模拟氮沉降对三种南亚热带树苗生长和光合作用的影响.生态学报,2004,24(5):876-882
    李德军,莫江明,方运霆,等.氮沉降对森林植物的影响.生态学报,2003,23:230-239
    李德军,莫江明,彭少麟,等.南亚热带森林两种优势树种幼苗的元素含量对模拟氮沉降增加的响应.生态学报,2005,25(9):2165-21721
    李明月,王健,王振兴,等.模拟氮沉降条件下木荷幼苗光合特性、生物量与C、N、P分配格局.生态学报,2013,33(5):1569-1572
    李庆逵.中国红壤.北京:科学出版社,1985,145-146
    李晓林.施磷水平与VA菌根效应的关系.北京农业大学学报,1990,16(2):177
    李晓林,姚青.VA菌根与植物的矿质营养,自然科学进展,2000,10(6):524-531
    梁霞,刘爱琴,马祥庆,等.磷胁迫对不同杉木无性系酸性磷酸酶活性的影响.植物生态学报,2005,29(1):54-59.
    廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异.植物学报,2000,42(2),158-163
    刘建玲,张福锁,廖文华.不同品种小麦根际磷转化及VA菌根对小麦根际磷转化的影响.植物营养与肥料学报2001,7(1):23-30
    刘灵,廖红,王秀荣,等.磷有效性对大豆菌根侵染的调控及其与根构型、磷效率的关系.应用生态学报,2008,19(3):564-568
    刘渊,李喜焕,孙星,等.磷胁迫下大豆酸性磷酸酶活性变化及磷效率基因型差异分析.植物遗传资源学报,2012,13(4):521-528
    刘润进,陈应龙.菌根学.北京:科学出版社,2007:1-447
    刘祖鉴.外生菌根菌剂在落叶松红松育苗及造林中应用技术.吉林林业科技,1992,(5):63-64
    鲁如坤,时正元,钱承梁.磷在土壤中有效性的衰减.土壤学报,2000,37(3):323-329
    鲁显楷,莫江明,彭少麟,等.鼎湖山季风常绿阔叶林林下层3种优势树种游离氨基酸和蛋白质对模拟氮沉降的响应.生态学报,2006,26(3):744-753
    栾庆书,李立,李希桥.中国外生菌根研究的20年成就.辽宁林业科技,2000,6:36-39
    马琼,黄建国.菌根及其在植物吸收矿质元素营养中的作用.吉林农业科学,2003,28(2),41-43
    马琼,黄建国,蒋剑波.接种外生菌根真菌对马尾松幼苗生长的影响.福建林业科技,2005,2(32):85-88
    马雪红,周志春,张一,等.异质养分环境下不同树种觅养行为与光照条件的关系.2008a,19(5),961-968
    马雪红,周志春,张一,等.杉木不同家系对异质养分环境的适应性反应差异.植物生态学报,2008b,32(1):189-196.
    毛齐正,杨喜田,苗蕾.植物根系构型的生态功能及其影响因素.河南科学,2008,26(2):172-176
    明凤,米国华,张福锁,等.水稻对低磷反应的基因型差异及其生理适应机制的初步研究.应用与环境生物学报,2000,6(2):138-141
    庞丽,张一,周志春,等.模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响.植物生态学报,2014,38(1):27-35
    沈宏,施卫明,王校常,等.不同作物对低磷胁迫的适应机理研究.植物营养与肥料学报,2001,7(2):172-177
    沈有信,周文君,刘文耀,等.云南松根际与非根际磷酸酶活性与磷的有效性.生态环境,2005,14(1):91-94
    宋勇春,冯固,李晚林.接种不同VA菌根真菌对红叶草利用不同磷源的影响.生态学报,2001,21(9):1506-1511
    孙本华,胡正义,吕家珑,等.模拟氮沉降下南方针叶林红壤的养分淋溶和酸化.应用生态学报,2006,17(10):1820-1826
    孙本华,胡正义,吕家珑,等.模拟氮沉降对红壤离子淋溶的影响研究.水土保持学报,2007,21(1):18-21
    孙崇基.酸雨.北京:中国环境科学出版社,2001
    孙海国,张福锁.缺磷条件下的小麦根系酸性磷酸酶活性研究.应用生态学报,2002,13(3),379-381
    孙海国,张福锁.缺磷胁迫下的小麦根系形态特征研究.应用生态学报,2002,13(3):295-299
    孙民琴,吴小芹,叶建仁.外生菌根真菌对不同松树出苗和生长的影响.南京林业大学学报(自然科学版),2007,5(31):39-43
    孙玥,全先奎,贾淑霞,等.施用氮肥对落叶松人工林一级根外生菌根侵染及形态的影响.应用生态学报,2007,18(8),1727-1732
    遆超普,颜晓元.基于氮排放数据的中国大陆大气氮素湿沉降量估算.农业环境科学学报,2010,29(8):1606-1611
    王洪中,张忠武,贾秋鸿,等.玉米育苗接种VA菌根真菌的田间侵染力和接种效应.西南学业学报,2001,14(3):25-28
    武高林,杜国祯.青藏高原退化高寒草地生态系统恢复和可持续发展探讨.自然杂志,2007,3(29):159-164
    谢钰容,周志春,金国庆,等.低P胁迫对马尾松不同种源根系形态和干物质分配的影响.林业科学研究,2004,17(3):272-278
    谢钰容,周志春,廖国华,等.低磷胁迫下马尾松种源酸性磷酸酶活性差异.林业科学,2005,41(3),58-62
    徐冰,李白,秦岭.不同外生菌根真菌难溶性磷的活化.吉林农业大学学报,2000,22(4):76-80.
    薛花,莫江明,李炯,等.氮沉降对外生菌根真菌的影响.生态学报,2004,24(8):1789-1796
    薛小平,张深,李海涛,等.磷对外生菌根真菌松乳菇和双色蜡蘑草酸、氢离子和磷酸酶分泌的影响.菌物学报,2008,27(2):193-200
    严小龙,廖红.植物根构型特性与磷吸收效率.植物学通报,2000,17(6):511-519
    严小龙,廖红.根系生物学:原理与应用.北京:科学出版社,2007,128
    阎秀峰,王琴.两种外生菌根真菌在辽东栎幼苗上的混合接种效应.植物生态学报,2004,28(1):17-23
    杨青,张一,周志春,等.磷高效马尾松种源磷效率的家系变异及苗期-大田回溯相关分析.植物营养与肥料学报,2012,18(2):338-348
    杨剑宇,王艳红,温国胜,等.AMF和模拟氮沉降对加拿大一枝黄花(Solidago canadensis)幼苗生长和生物量积累的影响.生态学杂志,2013,32(11):2953-2958
    杨青,张一,周志春,等.低磷胁迫下不同种源马尾松的根构型与磷效率.应用生态学报,2012,23(9):2339-2345
    杨青,张一,周志春,等.异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异.植物生态学报2011,35(12):1226-1235
    易时来,温明霞,李学平,等.VA菌根改善植物磷素营养的研究进展.土壤肥料科学,2004,20(5),164-166
    于富强,刘培贵.外生菌根研究及应用的回顾与展望.生态学报,2002,22(12):2217-2226
    俞乐,彭新湘,杨崇,等.反相高效液相色谱法测定植物组织及根分泌物中草酸.分析化学研究简报,2002,30(9),1119-1122
    袁颖红,樊后保,王强,等.模拟氮沉降对杉木人工林土壤有效养分的影响.浙江林学院学报,2007,24(4):437-444.
    张鼎华.人工林地力的衰退与维护.北京:中国林业出版社,2001
    张蕊,王艺,金国庆,等.施氮对木荷3个种源幼苗根系发育和氮磷效率的影响.生态学报,2013,33(12):3611-3621.
    张玉凤,冯固,李晓林.丛枝茵根真菌对三叶草根系分泌的有机酸组分和含量的影响.生态学报,2003,23(1),30-37.
    赵明,沈宏,严小龙.不同菜豆基因型根系对难溶性磷的活化吸收.植物营养与肥料学报,2002,8(4):435-440
    职桂叶,陈欣,唐建军.丛枝菌根真菌(AMF)对植物群落调节的研究进展.菌根系统,2003,22(4):678-682
    周崇莲,齐玉臣.外生菌根与植物营养.生态学杂志,1993,12(1):37-44
    周国逸,闰俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报,2001,21(12):2002-2012
    周志春,谢钰容,金国庆,等.马尾松种源对磷肥的遗传反应及根际土壤营养差异.林业科学,2003,39(6),62-67
    周志春,谢钰容,金国庆,等.马尾松种源磷效率研究.林业科学,2005,41(4):25-30
    周志春,陈连庆,黄秀凤.马褂木菌根真菌筛选和菌根化育苗效果研究.林业科学研究,2009,22(2):196-199
    朱教君,徐慧,许美玲,等.外生菌根与森林树木的相互关系.生态学杂志,2003,22(6):70-76
    朱同林,方素琴,李志垣,等.基于图像重建的根系三维构型定量分析及其在大豆磷吸收研究中的应用.科学通报,2006,51(16):1885-1893

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700