用户名: 密码: 验证码:
低浓度吗啡抗帕金森病分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson Disease, PD)是一种常见的神经退行性疾病。它的主要临床表现为肌肉强直、运动减少、震颤,病理特征为纹状体黑质多巴胺能神经元的死亡,导致多巴胺分泌的减少,从而引起PD患者出现一系列的运动功能障碍。目前治疗帕金森病的药物只是以替代现象为主,并不能停止或缓解多巴胺能神经元减少。因此,对多巴胺能神经元的保护成为治疗帕金森病的主要环节,开发保护神经元的新药物将可以作为帕金森病治疗策略。
     PD的发病机制,不仅受遗传因素决定,还受到环境因素影响。所以,家族遗传史、生活方式、食物摄入量等与帕金森病的发生有关。帕金森病的分子机制有自由基学说、神经元凋亡、内质网应激等。
     吗啡于十九世纪初分离纯化得到,是一种具有强烈镇痛作用的化合物。吗啡对人体的作用与阿片受体有关。在动物和人体组织或体液中吗啡是来源于饮食,还存在有内源性吗啡,而人类的额叶皮质就会合成鸦片活性肽,人的其他细胞也产生并释放内源性吗啡生物碱。
     最近,有研究表明,吗啡不仅具有镇痛作用,还具有保护神经元作用。吗啡是d-鸦片受体的激活剂,产生一系列应激反应。当高浓度的吗啡作用神经元时,可以诱导神经元凋亡。相反,低浓度的吗啡却可以保护神经元。目前,阿朴吗啡是临床上用于治疗帕金森病的一种常见药物。这证明吗啡和帕金森病有关。然而吗啡神经保护作用的分子机制还不是很明确。
     1-甲基-4苯基吡啶离子(1-Methyl-4-phenylpyridinium ion, MPP+),是1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP)的代谢产物,可以用来构建PD的细胞模型。有研究表明MPP+可以诱导细胞凋亡,并减少Trx/CyclinDl/Cdk5的表达。
     我们使用MPP+处理PC12细胞构建帕金森病细胞模型来研究吗啡对细胞的保护机制。实验证明,低浓度的吗啡可以促进细胞增殖,吗啡也可以保护PC12细胞免受MPP+引起的细胞凋亡。吗啡诱导Trx/CyclinDl/Cdk5的表达,减少了MPP+导致神经元凋亡。吗啡的作用还可以激活Akt活性,抑制GSK38活性,从而保护细胞免于凋亡。Akt的抑制剂LY294002可以阻断吗啡的这种保护作用。这些结果表明,吗啡可以保护细胞免受MPP+引起的细胞凋亡,而这种保护作用是通过PI3K/Akt/GSK36信号通路实现的。
Parkinson's disease (PD) is a common neurodegenerative disease. Its clinical manifestations are muscle rigidity, tremor, and hypokinesia. The pathogenesis of PD is the apotosis of opaminergic neurons in striatum and substantia nigra, resulting in the decrease of dopamine secretion, which leds to a series of movement dysfunction. The current treatment on Parkinson's disease is replacement therapy, however, this could not stop or relieve the reduction of dopaminergic neurons. Therefore, the protection of dopaminergic neurons becomes the key treatment for Parkinson's disease. Development of new drugs to protect neurons will be a potential therapeutic strategy for Parkinson's disease.
     The pathogenesis of PD is caused by genetic factors as well as by environmental factors. The development of PD is associated with family history, life style, food intaking, beverages, and so on. The molecular mechanisms on Parkinson's disease include free radical theory, neuronal apoptosis, endoplasmic reticulum stress and so on.
     Morphine was isolated at the beginning of the 19th century, and is the strongest analgesic compounds. Its functions are related with opioid receptors. Morphine in animal and human tissue or fluids was believed to come from dietary origin. However, endogenous morphine also exsits, it is synthesized by frontal cortex, while other human cells produce and release the endogenous alkaloid morphine.
     Recently, it has been showed that morphine has the analgesic effect, also has a role in protecting neurons. Morphine is the d-opiate receptor activator and induces a series of stress response. Treatment of high concentration of morphine induces neurons apoptosis. In contrast, low concentration of morphine can protect the neurons. At present, apomorphine is a clinic durg for the treatment of Parkinson's disease. This indicated that morphine is related to Parkinson's disease. However, the the molecular mechanism on morphine neuroprotective effect is not clear.
     1-methyl-4-phenylpyridinium ion (MPP+), an active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), can be used to make the cell model of PD. Previous reports suggested that MPP+ can induce the apoptotic cell death and decrease the expression of Trx/CyclinD1/Cdk5.
     We investigated mechanism on the cytoprotection of morphine by using PC12 cells treated by MPP+. Morphine proteced PC 12 cells from the apoptois induced by MPP+in PC12 cells. Morphine increased expression of Trx/CyclinDl/Cdk5, and also decreased the number of apoptotic cells. Morphine activates activity of Akt and inhibited GSK3βand ptotected cells from apoptosis. PI3K inhibitor, LY294002 blocked this cytoprotective effect of morphine. These results suggested that cytoprotective effect of morphine is through the PI3K/Akt/GSK3βpathway in the PC12 cells.
引文
[1]Polymeropoulos M H, Lavedan C, Leroy E, et al, Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science,1997,276(5321): 2045-7.
    [2]Leroy E, Boyer R, Auburger G, et al., The ubiquitin pathway in Parkinson's disease. Nature,1998,395(6701):451-2.
    [3]Valente E M, Bentivoglio A R, Dixon P H, et al., Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet,2001,68(4):895-900.
    [4]Tanner C M, Ottman R, Goldman S M, et al., Parkinson disease in twins:an etiologic study. JAMA,1999,281(4):341-6.
    [5]Baldereschi M, Di Carlo A, Rocca W A, et al., Parkinson's disease and parkinsonism in a longitudinal study:two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology,2000,55(9): 1358-63.
    [6]Currie L J, Harrison M B, Trugman JM, et al., Postmenopausal estrogen use affects risk for Parkinson disease. Arch Neurol,2004,61(6):886-8.
    [7]Taylor C A, Saint-Hilaire M H, Cupples L A, et al., Environmental, medical, and family history risk factors for Parkinson's disease:a New England-based case control study. Am J Med Genet,1999,88(6):742-9.
    [8]Fong C S, Cheng C W and Wu R M, Pesticides exposure and genetic polymorphism of paraoxonase in the susceptibility of Parkinson's disease. Acta Neurol Taiwan, 2005,14(2):55-60.
    [9]Goldman S M, Tanner C M, Olanow C W, et al., Occupation and parkinsonism in three movement disorders clinics. Neurology,2005,65(9):1430-5.
    [10]Gorell J M, Rybicki B A, Cole Johnson Q et al., Occupational metal exposures and the risk of Parkinson's disease. Neuroepidemiology,1999,18(6):303-8.
    [11]Powers K M, Smith-Weller T, Franklin G M, et al., Parkinson's disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology, 2003,60(11):1761-6.
    [12]Galanaud J P, Elbaz A, Clavel J, et al., Cigarette smoking and Parkinson's disease:a case-control study in a population characterized by a high prevalence of pesticide exposure. Mov Disord,2005,20(2):181-9.
    [13]Preux P M, Condet A, Anglade C, et al., Parkinson's disease and environmental factors. Matched case-control study in the Limousin region, France. Neuroepidemiology,2000,19(6):333-7.
    [14]Pan T, Jankovic J and Le W, Potential therapeutic properties of green tea polyphenols in Parkinson's disease. Drugs Aging,2003,20(10):711-21.
    [15]Schwarzschild M A, Chen J F and Ascherio A, Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology,2002,58(8):1154-60.
    [16]Ross G W and Petrovitch H, Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson's disease. Drugs Aging,2001,18(11): 797-806.
    [17]Thomas B and Beal M F, Parkinson's disease. Hum Mol Genet,2007,16 Spec No.2: R183-94.
    [18]Hardy J, Cookson M R and Singleton A, Genes and parkinsonism. Lancet Neurol, 2003,2(4):221-8.
    [19]Huang Y, Cheung L, Rowe D, et al., Genetic contributions to Parkinson's disease. Brain Res Brain Res Rev,2004,46(1):44-70.
    [20]Kruger R, Kuhn W, Muller T, et al., Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet,1998,18(2):106-8.
    [21]Zarranz J J, Alegre J, Gomez-Esteban J C, et al., The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol,2004, 55(2):164-73.
    [22]Vila M and Przedborski S, Genetic clues to the pathogenesis of Parkinson's disease. Nat Med,2004,10 Suppl:S58-62.
    [23]Pardo L M and van Duijn C M, In search of genes involved in neurodegenerative disorders. Mutat Res,2005,592(1-2):89-101.
    [24]Pankratz N and Foroud T, Genetics of Parkinson disease. NeuroRx,2004,1(2): 235-42.
    [25]von Coelln R, Dawson V L and Dawson T M, Parkin-associated Parkinson's disease. Cell Tissue Res,2004,318(1):175-84.
    [26]Gasser T, Genetics of Parkinson's disease. Curr Opin Neurol,2005,18(4):363-9.
    [27]Brice A, How much does dardarin contribute to Parkinson's disease? Lancet,2005, 365(9457):363-4.
    [28]Kachergus J, Mata I F, Hulihan M, et al., Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism:evidence of a common founder across European populations. Am J Hum Genet,2005,76(4):672-80.
    [29]Blum D, Torch S, Lambeng N, et al., Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP:contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol,2001,65(2):135-72.
    [30]Lee S S, Kim Y M, Junn E, et al., Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging, 2003,24(5):687-96.
    [31]Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, et al., Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants:potential implication in relation to the pathogenesis of Parkinson's disease.J Neurochem, 2000,74(4):1605-12.
    [32]Blum D, Torch S, Nissou M F, et al., Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett,2000,283(3):193-6.
    [33]Puttonen K A, Manakova S, Raasmaja A, et al., Increased p53 levels without caspase-3 activity and change of cell viability in 6-hydroxydopamine-treated CV1-P cells. Cell Biol Toxicol,2003,19(3):177-87.
    [34]Nakamura K, Wang W and Kang U J, The role of glutathione in dopaminergic neuronal survival. J Neurochem,1997,69(5):1850-8.
    [35]Dexter D T, Holley A E, Flitter W D, et al., Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra:an HPLC and ESR study. Mov Disord,1994, 9(1):92-7.
    [36]Iannolo G, Conticello C, Memeo L, et al., Apoptosis in normal and cancer.stem cells. Crit Rev Oncol Hematol,2008,66(1):42-51.
    [37]Radad K, Gille G and Rausch W D, Dopaminergic neurons are preferentially sensitive to long-term rotenone toxicity in primary cell culture. Toxicol In Vitro, 2008,22(1):68-74.
    [38]Mather A A, Cox B J, Enns M W, et al., Associations between body weight and personality disorders in a nationally representative sample. Psychosom Med,2008, 70(9):1012-9.
    [39]Wang Z B, Liu Y Q and Cui Y F, Pathways to caspase activation. Cell Biol Int,2005, 29(7):489-96.
    [40]Nijhawan D, Honarpour N and Wang X, Apoptosis in neural development and disease. Annu Rev Neurosci,2000,23:73-87.
    [41]Hartmann A, Hunot S, Michel P P, et al., Caspase-3:A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA,2000,97(6):2875-80.
    [42]Nutt J G, Motor fluctuations and dyskinesia in Parkinson's disease. Parkinsonism Relat Disord,2001,8(2):101-8.
    [43]Katzenschlager R and Lees A J, Treatment of Parkinson's disease:levodopa as the first choice. J Neurol,2002,249 Suppl 2:1119-24.
    [44]Olanow C W and Obeso J A, Pulsatile stimulation of dopamine receptors and Levodopa-induced motor complications in Parkinson's disease:implications for the early use of COMT inhibitors. Neurology,2000,55(11 Suppl 4):S72-7; discussion S78-81.
    [45]Rohrer D C, Nilaver G, Nipper V, et al., Genetically modified PC12 brain grafts: survivability and inducible nerve growth factor expression. Cell Transplant,1996, 5(1):57-68.
    [46]Yamada M, Oligino T, Mata M, et al., Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc Natl Acad Sci USA,1999,96(7):4078-83.
    [47]Montgomery E B, Jr. and Baker K B, Mechanisms of deep brain stimulation and future technical developments. Neurol Res,2000,22(3):259-66.
    [48]Moosmann B, Skutella T, Beyer K, et al., Protective activity of aromatic amines and imines against oxidative nerve cell death. Biol Chem,2001,382(11):1601-12.
    [49]Lim Y J, Zheng S and Zuo Z, Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology, 2004,100(3):562-8.
    [50]Barry U and Zuo Z, Opioids:old drugs for potential new applications. Curr Pharm Des,2005,11(10):1343-50.
    [51]Oak J N, Oldenhof J and Van Tol H H, The dopamine D(4) receptor:one decade of research. EurJ Pharmacol,2000,405(1-3):303-27.
    [52]Zhang L S, Chen Z, Huang Y W, et al., Effects of endogenous histamine on seizure development of pentylenetetrazole-induced kindling in rats. Pharmacology,2003, 69(1):27-32.
    [53]Iglesias M, Segura M F, Comella J X, et al., Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology,2003,44(4): 482-92.
    [54]Hu S, Sheng W S, Lokensgard J R, et al., Morphine induces apoptosis of human microglia and neurons. Neuropharmacology,2002,42(6):829-36.
    [55]Beedle A M, McRory J E, Poirot O, et al., Agonist-independent modulation of N-type calcium channels by ORL1 receptors.Nat Neurosci,2004,7(2):118-25.
    [56]Bibb J A, Chen J, Taylor J R, et al., Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature,2001,410(6826):376-80.
    [57]Lu L, Grimm J W, Shaham Y, et al., Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats.J Neurochem,2003,85(6):1604-13.
    [58]Nakamura H, Nakamura K and Yodoi J, Redox regulation of cellular activation. Annu Rev Immunol,1997,15:351-69.
    [59]Saitoh M, Nishitoh H, Fujii M, et al., Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBOJ,1998,17(9):2596-606.
    [60]Ueda S, Nakamura H, Masutani H, et al., Redox regulation of caspase-3(-like) protease activity:regulatory roles of thioredoxin and cytochrome c. J Immunol, 1998,161(12):6689-95.
    [61]Bunik V, Raddatz G, Lemaire S, et al., Interaction of thioredoxins with target proteins:role of particular structural elements and electrostatic properties of thioredoxins in their interplay with 2-oxoacid dehydrogenase complexes. Protein Sci,1999,8(1):65-74.
    [62]Tamura T and Stadtman T C, A new selenoprotein from human lung adenocarcinoma cells:purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA,1996,93(3):1006-11.
    [63]Lee S R, Kim J R, Kwon K S, et al., Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver.J Biol Chem,1999,274(8):4722-34.
    [64]Zhong L, Arner E S and Holmgren A, Structure and mechanism of mammalian thioredoxin reductase:the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci U SA,2000,97(11):5854-9.
    [65]Lovell M A, Xie C, Gabbita S P, et al., Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic Biol Med, 2000,28(3):418-27.
    [66]Takagi Y, Hattori I, Nozaki K, et al., Excitotoxic hippocampal injury is attenuated in thioredoxin transgenic mice. J Cereb Blood Flow Metab,2000,20(5):829-33.
    [67]Ishikawa A, Kubota Y, Murayama T, et al., Cell death by 1-chloro-2,4-dinitrobenzene, an inhibitor of thioredoxin reductase and its dual regulation by nitric oxide in rats. Neurosci Lett,1999,277(2):99-102.
    [68]Yarimizu J, Nakamura H, Yodoi J, et al., Efficiency of selenocysteine incorporation in human thioredoxin reductase. Antioxid Redox Signal,2000,2(4):643-51.
    [69]Hirota K, Matsui M, Iwata S, et al., AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA,1997, 94(8):3633-8.
    [70]Powis G and Montfort W R, Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct,2001,30:421-55.
    [71]Sinha S, Panneerselvam N and Shanmugam G, Fluchloralin is cytotoxic and genotoxic and induces apoptosis in mammalian cells. Environ Mol Mutagen,1998, 31(3):257-62.
    [72]Greene L A, Biswas S C and Liu D X, Cell cycle molecules and vertebrate neuron death:E2F at the hub. Cell Death Differ,2004,11(1):49-60.
    [73]Rideout H J, Wang Q, Park D S, et al., Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci,2003,23(4):1237-45.
    [74]McNaught K S and Olanow C W, Proteolytic stress:a unifying concept for the etiopathogenesis of Parkinson's disease. Ann Neurol,2003,53 Suppl 3:S73-84; discussion S84-6.
    [75]McNaught K S, Belizaire R, Isacson O, et al., Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol,2003,179(1):38-46.
    [76]Dhavan R and Tsai L H, A decade of CDK5. Nat Rev Mol Cell Biol,2001,2(10): 749-59.
    [77]Borghi R, Giliberto L, Assini A, et al., Increase of cdk5 is related to neurofibrillary pathology in progressive supranuclear palsy. Neurology,2002,58(4):589-92.
    [78]Gong X, Tang X, Wiedmann M, et al., Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron, 2003,38(1):33-46.
    [79]Dexter D T, Sian J, Rose S, et al., Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol,1994,35(1): 38-44.
    [80]Chinta S J and Andersen J K, Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro:implications for Parkinson's disease. Free Radic Biol Med,2006,41(9):1442-8.
    [81]St-Pierre J, Drori S, Uldry M, et al., Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell,2006,127(2): 397-408.
    [82]McGill J K and Beal M F, PGC-lalpha, a new therapeutic target in Huntington's disease? Cell,2006,127(3):465-8.
    [83]Ramsey C P, Glass C A, Montgomery M B, et al., Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol,2007,66(1):75-85.
    [84]Lee J M and Johnson J A, An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol,2004,37(2):139-43.
    [85]Bai J, Nakamura H, Hattori I,et al., Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced neurotoxicity in rat PC12 cells. Neurosci Lett,2002,321(1-2):81-4.
    [86]Bai J, Nakamura H, Ueda S, et al., Proteasome-dependent degradation of cyclin D1 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced cell cycle arrest. J Biol Chem, 2004,279(37):38710-4.
    [87]Smith D S, Greer P L and Tsai L H, Cdk5 on the brain. Cell Growth Differ,2001, 12(6):277-83.
    [88]Oudit G Y, Sun H, Kerfant B G, et al., The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol,2004,37(2): 449-71.
    [89]Luo J, McMullen J R, Sobkiw C L, et al., Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol Cell Biol,2005, 25(21):9491-502.
    [90]Oudit G Y, Crackower M A, Eriksson U, et al, Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation,2003,108(17):2147-52.
    [91]Patrucco E, Notte A, Barberis L, et al., P13Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and-independent effects. Cell,2004,118(3):375-87.
    [92]Koh S H, Lee Y B, Kim Kim,K S, et al., Role of GSK-3beta activity in motor neuronal cell death induced by G93A or A4V mutant hSOD1 gene. Eur J Neurosci,2005, 22(2):301-9.
    [93]Koh S H, Roh H, Lee S M, et al., Phosphatidylinositol 3-kinase activator reduces motor neuronal cell death induced by G93A or A4V mutant SOD1 gene. Toxicology, 2005,213(1-2):45-55.
    [94]Watcharasit P, Bijur G N, Song L, et al., Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53.J Biol Chem,2003,278(49): 48872-9.
    [95]Takadera T and Ohyashiki T, Glycogen synthase kinase-3 inhibitors prevent caspase-dependent apoptosis induced by ethanol in cultured rat cortical neurons. Eur J Pharmacol,2004,499(3):239-45.
    [96]Russo S J, Mazei-Robison M S, AbLes J L, et al., Neurotrophic factors and structural plasticity in addiction. Neuropharmacology,2009,56 Suppl 1:73-82.
    [97]Jossin Y and Goffinet A M, Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol,2007,27(20):7113-24.
    [98]Muller C P, Carey R J and Huston J P, Serotonin as an important mediator of cocaine's behavioral effects. Drugs Today (Barc),2003,39(7):497-511.
    [99]Watanabe T, Taguchi Y, Shiosaka S, et al., Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res,1984,295(1):13-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700