用户名: 密码: 验证码:
月球着陆器软着陆动力学与半主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来月球探测需要到月面任何地方观察需要知道的任何信息,这要求月球着陆器在复杂多变的月球环境和突发条件下能安全、可靠的着陆及返回。作为着陆器的重要部分,着陆缓冲系统目前仍是被动控制技术,其系统结构及参数固定,一旦制成装机后,无法改变自身特性以适时响应外界激励的变化,难以完全满足未来着陆器的要求。在继续改进被动控制技术的同时,采用半主动控制技术也成为研究方向之一。本文的主要研究内容如下:
     选取四腿铰接悬臂式着陆器为研究对象,建立单套着陆腿软着陆动力学模型,同时考虑铝蜂窝缓冲材料和一般的缓冲材料。建立单套着陆腿软着陆动力学仿真模型,并以相应的落震试验结果验证,证明了所建模型精确、有效。分析研究了着陆器初始速度、月面摩擦、月面斜角、主支柱轴承摩擦以及反推火箭等对着陆器软着陆的影响。研究表明,应尽量降低初始速度;当摩擦系数确定时,着陆腿的张开角不宜设计过小;下坡着陆比上坡着陆的影响大;轴承摩擦对主、辅助缓冲器有一定的保护作用;反推火箭开机着陆对降低机体过载有明显的作用,推重比的选择以0.6为宜。
     选取着陆器2-2着陆模式,建立9自由度软着陆动力学模型及其仿真模型,并通过相应的落震试验结果验证,证明所建模型精确、有效。分析研究了着陆器初始速度、月面斜角、着陆初始姿态角、反推火箭推力对软着陆性能的影响,并提出安全角面的概念以分析机体初始姿态角与月面斜角对着陆器的耦合影响。研究表明,水平速度会降低机体的最大过载,降低着陆稳定性;下坡着陆时,月面斜角降低着陆稳定性;初始姿态角在0到0.16rad范围内减小机体最大过载;开机着陆稳定性较高,上坡开机着陆稳定性最好;月面斜角与着陆器初始姿态角的夹角越大,机体的最大过载越大,着陆稳定性越差;对最大过载要求严格,会导致着陆器安全角面变小;月面水平,机体姿态角水平时机体最大过载较大。
     提出一种适合于着陆器的旁通式磁流变阻尼器构型,并建立其动力学模型,模型考虑了紊流状态的影响和阻尼通道的局部阻力。进行旁通式阻尼器结构参数的初步设计,建立了阻尼器的跌落实验仿真模型,分析了流体行为指数、修正模型的影响,并设计一种以缓冲行程限值来开启不同电流的二级缓冲的模型。研究表明,磁流变阻尼器在缓冲行程、最大过载与缓冲效率方面均能满足着陆器的着陆要求,最大行程、最大过载随电流强度变化,这说明了阻尼力可控和可行;剪切稀化会降低阻尼器的出力和缓冲效率;修正模型的磁流变阻尼器缓冲性能差、缓冲效率低、最大过载大;二级缓冲的磁流变阻尼器,通过适当的设计,能够同时拥有低电流强度与高电流强度的优点。
     提出月球着陆器软着陆缓冲控制方法,建立了四分之一机体软着陆数学模型。首先设计电压状态反馈最优控制和力最优控制,之后设计状态跳跃、多态控制以及模糊逻辑控制等,及其控制器。仿真分析着陆器软着陆缓冲控制,分析其控制效果以及对初始条件的敏感性。研究表明,电压最优控制虽然缓冲性能最好,很好的减缓着陆后期机体的振动,但在线计算量大;力最优控制降低机体的最大过载最明显,但是完全拟合出这种最优控制力比较困难;状态跳跃控制的结构响应限值选取很重要;多态控制策略的调节参数的大小以0.5到0.8范围内较好;模糊控制的效果非常好,应尽量降低运算时间,可以采用离线计算。
     提出着陆器软着陆稳定控制方法,建立了固接1-1着陆数学模型,将软着陆过程为两阶段,并进行稳定性分析。设计了状态跳跃控制、多态控制以及模糊控制策略,及其控制器。仿真分析软着陆稳定控制,分析其控制效果,以及对初始条件敏感性。研究表明,状态跳跃、多态控制和模糊控制能很好的降低着陆器的着陆过载,减小着陆最大姿态角变化,提高着陆稳定性,对初始速度以及安全角敏感性较好。综合控制效果最好的为模糊控制,多态控制、状态跳跃控制次之。三种控制器对着陆初始条件和着环境适应性强,满足了未来着陆器在复杂环境和突发条件下安全着陆的要求。
Lunar exploration in future requires to land anywhere to be landed and to observe anything tobe observed. That means lunar lander should be able to land and return safely and reliably even intough lunar environments and emergency landing conditions. However, as an important part oflander, the buffer system still uses passive control technologies and cannot meet the requirementsof the lander of next generation. The main reason is that the buffer system does not changeits characteristics to respond timely to external excitation after it is located andparameters are fixed. Passive control technologies should continue to be improved. At the sametime, semi-active control technologies have also become research direction. The main researchcontents are as follows:
     A type of lunar lander with four cantilever hinged legs is selected for research and a softlanding dynamic model is developed for a single set of landing leg, the aluminumhoneycomb cushioning materials and the general buffering materials are also put intoconsideration. The soft landing dynamic model for a single set of landing leg is simulated andvalidated by the corresponding drop test. As a result, the model is proved accurate and effective. Inthe research process, the author also analyzed the impacts on soft landing of lunar lander from theaspects of initial velocity of lunar lander, the friction on the surface, the slope of lunar surface, thebearing friction of the primary strut, and the thrust of the retro-rocket. It is proved that the initialvelocity should be reduced as much as possible. When the friction coefficient is determined, therange of the opening angle should not be designed too small. The impact of downhill landing ismuch more than uphill landing. The bearings friction can protect the primary and secondarybuffering systems. The retro-rocket with engine power is significant to reduce overload duringlanding, and it is appropriate to choose0.6as the thrust-weight ratio.
     The2-2landing mode of lunar lander is selected and a soft landing dynamic model with9DOF is established. Through the corresponding drop test, the mode is proved accurate andeffective. The soft landing performance impacts of the initial velocity of lander, the angle of lunarslope, the angle of initial landing attitude and the thrust of the rocket are analyzed. By doing so,the concept of safe angle scope is proposed to analyze the coupling effects of the slope of lunarsurface and the attitude of lunar lander. The results show that the horizontal speed will reducethe body's maximum overload and landing stability. When downhill landing, the lunar anglereduces the stability. In the range of0to0.16rad, the initial attitude angle will reducethe maximum overload. The stability of landing with engine power is higher; the stability of uphillwith engine power is the best. The larger the angle between the initial attitude of lunar lander and the slope of lunar surface, the greater the overload of lunar lander, and the worse thelanding stability. If the maximum overload is critical, the safe angle scope is small. When the lunarsurface and the body attitude are both level, the maximum overload is much larger.
     A configuration of bypass-type MR damper is designed for lunar lander and the dynamicmodel of the bypass damper is established, the impacts of turbulent state and the local resistanceof damping channel are also put into consideration. A sketch of the bypass-type damper is givenwith structural parameters, and a drop test simulation of the damper is built. The impact of thefluid behavior index and corrected model are analyzed in simulation. A model with two differentcurrent buffers operated by the limits of buffer stroke is designed. Study showsthat MR dampers can meet the requirements of lunar soft landing in the buffer stroke, maximumoverload and buffer efficiency. The maximum buffer stroke can be adjusted and the maximumoverload can be changed by current intensity, which provides the controllability and feasibility ofdamping of lunar lander. Shear-thinning will reduce the output force and buffer efficiency of thedamper. The corrected model of MR damper has worse buffer performance, lowerbuffer efficiency and larger maximum overload. When designed legitimately, A MR damper withtwo buffers can also have the advantages of both low current intensity and high current intensity.
     The buffer control method of soft landing is proposed and the mathematical model of aquarter of lunar lander is established. The first step is to design the state feedback optimal controlsof voltage and force, and the second step is to design the three semi-active control strategies,including jump-state, multistate and fuzzy logic control, and their controllers. The soft landingbuffer controls of lunar lander are simulated and their control effects and the sensitivities to initialcondition are analyzed. The results show that the optimal control of voltage can provide the bestcushioning performance, and reduce vibration during post-landing, but its online computation timeis too long. The optimal control of force is best for the reduction of the maximum overload, but itis difficult to completely fit the optimal force. It is very important to choose the structuralresponse limits for jump state control. It is better to adjust parameter of multistate control strategyfrom0.5to0.8. The fuzzy control is very effective. Off-line calculation can be used to reduce thecomputation time.
     The stability control method of soft landing is proposed and the mathematical model of a1-1landing mode with fixed legs is established. The process of soft landing is refined as twophases and the landing stability is analyzed. Three strategies, such as Jump-state control strategy,multi-state control strategy and fuzzy logic control strategy, are established, and their controllersare designed. The stability controls for soft landing are simulated and their control effects and thesensitivities to initial conditions are analyzed. Research shows that jump-state control, multi-statecontrol and fuzzy logic control can largely reduce the maximum overload and the maximum attitude angle, improve the stability of soft landing, the sensitivities to initial velocity and safetyangle scope. Fuzzy logic control is the best in integrated control effects, and then the multi-statecontrol and jump-state control. These three control methods have strong adaptability to landingconditions and lunar environments, so that they can meet the requirements of lunar lander even inextreme landing conditions and tough lunar environments.
引文
[1] Bruns J O, Mendell W W. Future astronomical observatories on the moon[R], NASA-CP-2489.Langley Research Center,1989.
    [2] Foing B H. The moon as a platform for astronomy and space science [J]. Adv. Space Res,1996,18(11):17-23.
    [3]张熇,褚桂柏.月球探测器技术[M].北京:中国科学技术出版社,2007.
    [4] Ruff T, Vas I. A system overview of the first lunar outpost[R], AIAA-93-4134, Space Programsand Technologies Conference and Exhibit, Huntsville,1993.
    [5] Toshih I, Tatsuakha S. Optical guidance for Autonomous landing of spacecraft [J]. IEEETransaction on Aerospace and Electronic systems,1999:459-473.
    [6] Parkinson R C. The use of system models in the EuroMoon spacecraft design [J]. ActaAstronautica,1999,44(7-12):437-443.
    [7] Wubbo J O. EuroMoon2000a plan for a European lunar South Pole expedition [J]. ActaAstronautica,1997,41(4-10):579-583.
    [8] Vergnolle, Jean F. Soft landing impact attenuation technologies review[C]. A95-3050107-03,Washington, DC,1995,32-42.
    [9] Jet Propulsion Laboratory. Design study requirements for a lunar soft landing spacecraftscientific mission-surveyor[R], Jet Propulsion Laboratory,1960.
    [10] Gerard, G, Milligan R, Weight and performance design indices for idealized spacecraftlanding systems[R], NASA-CR-5332064N17764,1964.
    [11] Marble, D R, Warner R W. Possible materials needs for energy absorption in space-vehiclelandings[R], NASA-TM-X-5407064N27246,1964.
    [12] Black R J. Quadrupedal landing gear systems for spacecraft [J]. J. Spacecraft,1964,(1):2196-203.
    [13] Herr R W. Experimental investigation of the use of soft side legs to improve touchdownstability of legged landing vehicles[R]. NASA-TN-D-468068N29962, Langley ResearchCenter, Aug1,1968.
    [14] Pohlen J C. Planetary lander concepts dictated by touchdown parameters[C]. AIAA68-306,Palm Springs California,1968.
    [15] Hinchey J D. Some basic guidelines for establishing structural design parameters for thelanding gear of stable, soft landing spacecraft[C]. Palm springs California, Apr1-3,1968.
    [16] Boynton J H, Kleinkecht K S. Systems design experience from three manned space programs[J]. Journal of spacecraft and rockets,1970(7):770-784.
    [17] Rogers W F. Apollo experience report-lunar module landing gear subsystem[R]. NASA TND-6850. Houston, Texas: Manned Spacecraft, Center,1972.
    [18] Pohlen J C. The Evolution of the Viking Landing Gear[R]. Langley Research Center Jul1,1976.
    [19] Lee, J A, Carina J. Lunar lander conceptual design[R]. NASA1.26186233,NASA-CR-18623390N26856, May17,1989.NASA (non Center Specific).
    [20] Donahue, B B. Lunar lander configuration study and parametric performance analysis[R].7514Ground Support Systems&Facilities--Space (1975-).
    [21] Chris H, Ted T. Load-limiting landing gear footpad energy absorption system[R]. JohnsonSpace Center, N94-33323, May1,1994.
    [22] Frapard B. Lunar lander systems study. N5101/060.512/95N101997.
    [23] Wallace J. Probabilistic examination of lunar landers[R]. AIAA-2005-6734,30Aug.-1Sept.2005.
    [24] Eller H. A Concept for a Highly Extensible Lunar Lander: A 'Lunar Pickup' Lander [J]. AIAA2006-7446, Space2006Proceedings.2006.
    [25] Wu K C, Antol J, Watson J J. Lunar Lander Structural Design Studies at NASA Langley[C].AIAA SPACE2007Conference&Exposition,2007.
    [26] Lawrence C. Deployable Landing Leg Concept for Crew Exploration Vehicle[R]. E-15930;NASA/TM-2007-214705,2007.
    [27] Mazanek D D和Goodliff K E. Descent Assisted Split Habitat Lunar Lander Concept[R].Langley Research Center, February21,2008.
    [28] Houdou B. The MoonNEXT Mission[R]. LEAG-ILEWG-SRR, October30th2008.
    [29] Benton W G. Crew Exploration Lander for Ganymede, Calisto, and Earth’s Moon: VehicleSystem Design [J]. AIAA-2009-5179.
    [30] Kinnersley M. A Lunar Logistic Lander for Europe [J]. AIAA-2009-6742,2009.
    [31] Rippere T B. An Approach to Designing Passive Self-Leveling Landing Gear withApplication to the Lunar Lander [J].NF1676L-10191,2010002113.
    [32] Curtis S A. Space-Frame Lunar Lander[R]. Goddard Space Flight Center, January2010.
    [33]童旭东.着陆缓冲装置特性分析及控制方法研究.中国空间科学技术.1993,8:64-69
    [34]林宝华.着陆缓冲技术综述[J].航天返回与遥感,1996,17(3):1-16.
    [35]赵秋艳,马宏林.硬式着陆器和半硬式着陆器[J].航天返回与遥感,1998,19(4):6-13.
    [36]谭惠丰,杜星文.非翻滚式空间着陆缓冲系统研究.第一届全国深空探测技术研究与发展研讨会.2001:264-270.
    [37]童轶男,涂建玲,尹学孟.软着陆月球探测舱结构方案研究[C].第一届全国深空探测技术研究与发展研讨会.2001:271-275.
    [38]邓宗全,王少纯.微小型航天着陆器技术初探.导弹与航天运载技术,2003,2:1-6.
    [39]王少纯,邓宗全,高海波.微小型月球着陆器冲击隔离着陆腿研究.哈尔滨工业大学学报,2004,36(2):180-182.
    [40]王少纯.三支撑月球着陆器的关键技术研究[D].哈尔滨:哈尔滨工业大学,2004.
    [41]沈祖炜.气动肌肉软着陆收缩器[C].中国空间科学学会空间探测专业委员会第十八次学术会议.中国重庆、中国湖北宜昌,2005.
    [42]沈祖炜.返回舱和着陆系统设计的新理念[J].航天返回与遥感,2005,26(3):5-9.
    [43]刘志全,黄传平.月球探测器软着陆机构发展综述[J].中国空间科学技术,2006,1:33-38.
    [44]邓宗全,王闯,刘荣强等.空间桁架式着陆装置的动力学分析.振动与冲击,2007,26(10):169-173.
    [45]王闯.四腿桁架式月球着陆装置设计及其着陆缓冲技术研究[D].哈尔滨:哈尔滨工业大学,2008.
    [46]丁立超.月球探测器软着陆缓冲机构方案设计及关键技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [47]彭兢.Conceptual Design of a Lunar Lander [J].航天器工程,2008,17(1):18-23.
    [48]陈金宝,聂宏,赵金才.月球探测器软着陆缓冲机构关键技术研究进展[J].宇航学报,2008,29(3):731-735.
    [49]罗昌杰.腿式着陆缓冲器的理论模型及优化设计研究[D].哈尔滨,哈尔滨工业大学,2009.
    [50]刘荣强.腿式着陆器缓冲材料缓冲特性及其表征方法研究[J].宇航学报.2009,30(3):1179-1188.
    [51]王金昌.基于虚拟样机技术的小天体着陆器缓冲器的研究[J].机械与电子,2009,11.
    [52]胡亚冰,孙毅.月球探测器软着陆机构[J].上海航天,2010,1:43-50.
    [53]曾福明.月球着陆器着陆缓冲机构设计方法研究[J].航天器工程.2011,2.
    [54] Launius RD.APOLLO: A Retrcs pective analysis [M]. NASA History Office,2004.
    [55] Cortright E M. Apollo Expeditions[R]. NASA SP-350,1976.
    [56] Woodcock G. Lunar and planetary landers for human exploration missions[R]. AIAA92-1482,1992.
    [57] Johnson Space Center. Artemis: Results of the engineering feasibility study[R].NASA-TM-105440,1991.
    [58] Mike A. LOLA the lunar operations landing assembly [J]. NASA-CR-192043.1993.
    [59] Dan D. The design of a common lunar lander [J]. NASA-CR-192026,1993.
    [60] Johnson Space Center. Proceedings of the Workshop on the Concept of a Common LunarLander[R]. NASA-TM-109865,1994.
    [61] Simpson R A. Reanalysis of Clementine Bistatic Radar Data from the Lunar South Pole [J].Mar.12,1998.NASA (non Center Specific).
    [62] Nikola B. Extended duration lunar lander [J]. NASA-CR-195527,1994.
    [63] Cohen B A. Robotic Lunar Landers for Science and Exploration[R]. Marshall Space FlightCenter, July18,2010.
    [64] Angell David. Lunar polar coring lander [J]. NASA-CR-186684,1990.
    [65] Gibons E K. Volatile Analyzer for Lunar Polar Missions[R]. Johnson Space Center, June13,2011.
    [66] Marien G J. Engineering Design Challenges of the Lunar Lander [J]. AIAA2004-5889.
    [67] Houdou B. NEXT Lunar Lander with in-situ science and mobility: Phase A mission Study[R].ESA NEXT Lunar Lander Team10October2008.
    [68] Lavender R E. Equations for two-dimensional analysis of touchdown dynamics of spacecraftwith hinged legs including elastic, damping, and crushing effects [J]. NASA-TM-X-57404,1963.
    [69] Cappelli A P. Dynamic Analysis for Lunar Alightment [J]. AIAA JOURNAL,1963,1(5):1119-1125.
    [70] Lavender R E. Comment on "Dynamic Analysis for Lunar Alightment"[J]. AIAA JOURNAL,1963,1(9).
    [71] Cappelli A P. Reply by Author to R E Lavender [J]. AIAA JOURNAL,1963,2(2).
    [72] Lavender R E. Reply to A. P. Cappelli [J]. TECHNICAL COMMENTS,1965.
    [73] Lavender R E. Touchdown dynamics analysis of spacecraft for soft lunar landing [J], NASATN D-2001[R]. Hzcntsville, Ala bum&: George C. Marshall Space Flight Center,1964.
    [74] Lavender R E. Lunar Touchdown Dynamics Studies[R]. Marshall Space Flight Center, Jan1,1964.
    [75] Blanchard U J. Characteristics of a lunar landing configuration having various multiple-leglanding-gear arrangements, NASA-TN-D-202764N14981[R]. Langley Research Center,1964.
    [76] Walton W C, Here R W, Leonard H W. Studies of touchdown stability for lunar landingvehicles[J]. J. Spacecraft,1964,1(5):552-556.
    [77] Admire J, Mackey A. Dynamic analysis of a multi-legged lunar landing vehicle to determinestructural loads during touchdown, NASA TN D-2582[R]. Huntsville, Ala: George C,Marshall Space Flight Center,1965.
    [78] Lavender R E. On touchdown dynamics analysis for lunar lander[R]. Boston, MA,30AUG.-1SEPT.1965.
    [79] Lavender R E. Monte Carlo approach to touchdown dynamics for soft lunar landings, NASATN D-3117[R]. Hun tsuille, A la: George C. Marshall Space Flight Center,1965.
    [80] Feiveson A H. Analysis of lunar landing simulation results as applied to landing designcriteria [J]. NASA-TM-X-65208, Johnson Space Center,1965.
    [81] Hilderman R A, Mueller W H, Mantus M. Landing Dynamics of the Lunar Excursion Module[J]. J. SPACECRAFT,1966,3(10):1484-1489.
    [82] Alderson R G, Wells D A. Surveyor lunar touchdown stability study Final report[R].NASA-CR-80514, Jet Propulsion Laboratory,1966.
    [83] Walton W C, Durling B J. A Procedure for Computing the Motion of a Lunar-LandingVehicle during the Landing Impact, NASA TN D-4216[R]. Langley Station, Hampton, Va.:Langley Research Center,1967.
    [84] Herr R W, Leonard R H. Dynamic model of touchdown investigation stability[R]. NASA-TND-4215,1967.
    [85] Blanchard, U. J. Full-scale dynamic landing-impact investigation of a prototype lunar modulelanding gear[R]. NASA-TN-D-5029,1967.
    [86] Williamson D R. Phase Plane Methods for Toppling Stability Analysis of Landing Spacecraft[J]. J. SPACECRAFT.1967,5(12).
    [87] Howlett J T. An analytical procedure for prediction the two-dimensional impact dynamics ofspacecraft landing gear, NASA TN D-4434[R]. Langley Station, Hampton, Va.: LangleyResearch Center,1968.
    [88] Zupp G A, Doiron H H. A Mathematical Procedure for Predicting the Touchdown Dynamicsof a Soft-Landing Vehicle, NASA TN D-7045[R]. Houston, Texas: Manned Spacecraft Center,1971.
    [89] Laurenson R M. Analysis of Legged Landers for the Survivable Soft Landing of InstrumentPayloads [J]. J. SPACECRAFT,1972,10(3).
    [90] Stubbs S M. Experimental investigation of the landing dynamics of three-legged spacecraftmodels[R]. NASA-TN-D-7664, Langley Research Center,1974.
    [91] Doiron H H, Zupp G A. Apollo lunar module landing dynamics, AIAA-2000-1678[R].InDyne, Inc.2000.
    [92] Nohmi M, Miyahara A. Modeling for Lunar Lander by Mechanical Dynamics Software,AIAA2005-6416[R]. Takamatsu, Kagawa: Kagawa University,2005.
    [93]邓宗全,王少纯,高海波,等.基于ADAMS平台的月球着陆器上限振幅研究[J].哈尔滨工业大学学报,2003,35(12):1492-1495.
    [94]邓宗全,王闯,刘荣强,等.空间桁架式着陆器的动力学分析[J].振动与冲击,2007,26(10):169-173.
    [95]王少纯,邓宗全,杨涤,等.月球着陆器新结构的ADAMS仿真研究[J].哈尔滨工业大学学报,2007,39(9):1392-1394.
    [96]邓宗全,王少纯.三支撑月球着陆器缓冲性能试验研究[J].哈尔滨工业大学学报,2007,39(1):32-34.
    [97]黄传平.月球探测器软着陆机构展开过程的动力学分析[J].中国空军科学技术,2007,2:10-16.
    [98]朱汪,杨建中.月球探测器软着陆机构着陆腿模型与仿真分析[J].宇航学报,2008,19(6):1723-1728.
    [99]王闯,刘荣强,邓宗全,等.月球着陆器着陆过程动力学分析[J].北京航空航天大学学报,2008,34(4):381-385.
    [100]刘焕焕.多腿式月球探测软着陆器着陆动力学建模与仿真研究[D].南昌:南昌大学,2008.
    [101]陈金宝,聂宏,赵金才,等.月球探测器软着陆缓冲机构着陆性能分析[J].宇航学报,2008,29(6):1729-1732.
    [102]陈金宝,聂宏,柏合民,等.月壤及缓冲支柱弹塑性变形对探测器着陆性能影响分析[J].机械科学与计算,2008,27(12):1572-1575.
    [103] Chen J B, Hong N. Overloading of Landing Based on the Deformation of the Lunar Lander[J]. Chinese Journal of Aeronautics,2008(21):43-47.
    [104]陈金宝,聂宏,柏合民.月球着陆条件对铝蜂窝材料缓冲性能的影响[J].机械工程材料,2008,32(1):48-51.
    [105]王春洁,郭永.着陆器软着陆机构的动力学分析[J].北京航空航天大学,2009,35(2):183-187.
    [106]朱汪,杨建中.月球着陆器软着陆机构着陆稳定性仿真分析[J].宇航学报,2009,30(5):1792-1796.
    [107]胡亚冰,孙毅.腿式月球着陆器静态稳定性研究[J].中国空间科学技术,2009(2):17-24.
    [108]田浩.月球软着陆器动力学建模研究[J].中国空间科学技术,2009,12(6):32-38.
    [109]陈金宝,万峻麟,李立春,等.月球探测器着陆性能若干影响因素分析[J].宇航学报,2010,31(3):669-673.
    [110]孙毅.月球探测器软着陆机构展开动力学仿真分析[J].宇航学报,2010,31(2):335-341.
    [111]曾福明.月球着陆器着陆缓冲性能研究[J].航天器工程,2010,19(5):43-49.
    [112]罗昌杰,邓宗全,刘荣强,等.基于零力矩点理论的腿式着陆器着陆稳定性研究[J].机械工程学报,2010,46(9):38-45.
    [113]万峻麟,聂宏,李立春,等.基于瞬态动力学方法的月球探测器着陆腿着陆冲击性能分析[J].兵工学报,2010,31(4):22-28.
    [114]万峻麟,聂宏,李立春,等.月球着陆器着陆性能及多因素影响分析[J].南京航空航天大学学报,2010,42(3):288-293.
    [115]万峻麟,聂宏,陈金宝,等.月球着陆器有效载荷着陆冲击响应分析[J].宇航学报,2010,31(11):1-9.
    [116]蒋万松.月球探测器软着陆动力学仿真[J].宇航学报,2011,32(3):462-469.
    [117]顾仲权,马扣根,陈卫东.振动主动控制[M],北京:国防工业出版社,1997.
    [118] Leland T J. Studies of some unconventional systems for solving various landingproblems[R]. Langley Research Center,1981.
    [119] Macha J M. Critical soft landing technology issues for future US space missions[R].NASA-CR-185673,1992, NASA (non Center Specific).
    [120] Bender E K. A feasibility study of active landing gear[R], AFFDL-TR-70-126, Air ForceFlight Dynamics Laboratory,1971.
    [121] Wignot J E. Design formulation and analysis of an active landing gear[R],AFFDL-TR-71-80. Air Force Flight Dynamics Laboratory,1971.
    [122] Corsetti C D. A study of the practicability of active vibration isolation applied to aircraftduring the taxi condition[R], AFFDL–TR-7--159, Air Force Flight Dynamics Laboratory,1972.
    [123] McGehee J R. A mathematical model of an active control landing gear for load controlduring impact and roll-out[R]. NASA-TN-D-8080, Langley Research Center,1976.
    [124] McGehee J R. Carden. Improved Aircraft Dynamic Response and Fatigue Life duringGround Operations Using an Active Control Landing Gear System[C]. Los Angeles, Calif,August21-23,1978,78-1499.
    [125] McGehee J R. Analytical Investigation of the Landing Dynamics of a Large Airplane with aLoad-Control System in the Main Landing Gear[R]. NASA TP1555,1979.
    [126] McGehee J R. Experimental Investigation of Active Loads Control for Aircraft LandingGear [J]. NASA TP2042,1982.
    [127] McGehee J R. Validation of an Active Gear, Flexible Aircraft Take-off and Landing analysis(AGFATL)[J], NASA-TP-2353,1984.
    [128] Howell W E, McGehee J R. F-106B airplane active control landing gear drop testperformance [R]. NASA-TM-102741,1990.
    [129] Ross I, Edson R. An Electronic Control for an Electrohydraulic Active Control AircraftLanding Gear [J]. NASA CR-3113,1979.
    [130] Ross I. Flightworthy Active Control Landing Gear System for a Supersonic Aircraft[J].NASA-CR-3298,1980.
    [131] Ross I, Edson R. An Electronic Control for an Electrohydraulic Active Control LandingGear for the F-4Aircraft [J]. NASA CR-3552,1982.
    [132] Ross I, Edson R. Application of active control landing gear technology to the A-10aircraft[J]. NASA CR-166104,1983.
    [133] Somm P T. Adaptive landing gear for improved taxi performance, Boeing AerospaceCompany[R], AFFDL-TR-77-119,1977.
    [134] Staff of Boeing Commercial Airplane Company. Integrated Application of Active Controls(IAAC) technology to an advanced subsonic transport Project plan[R]. NASA-CR-3305,1981. NASA (non Center Specific).
    [135] Freymann R. An active control landing gear for the alleviation of aircraft taxi ground loads[J], Zeitschrift fur Flugwissenschaft und Weltraumforschung,1987.
    [136] Freymann R. Actively Damped Landing Gear System. Landing Gear Design Loads [J],AGARD CP-484,1990.
    [137] Daniels J N. A Method for Landing Gear Modeling and Simulation with ExperimentalValidation [J], NASA-CR-201601,1996.
    [138] Horta L G. Modeling and Validation of a Navy A6-Intruder actively Controlled LandingGear System [J]. NASA/TP-1999-209124,1999.
    [139]贾玉红,何庆芝,杨国柱.主动控制起落架滑行性能分析[J].航空学报,1999,20(6):545-548.
    [140]贾玉红,刘鹰.采用主动控制提高民用客机的滑跑性能[J].北京航空航天大学学报,2003,29(11):1017-1021.
    [141]王海涛.前馈反馈控制在主动控制起落架中的应用[J].测控技术,2004.
    [142]王海涛.主动控制起落架建模与仿真[J].系统仿真学报,2008,20(22).
    [143]王铁勇.飞机起落架缓冲器主动控制技术的分析与研究[D].西安:西北工业大学,2003.
    [144] Karnopp D. Active and semi-active vibration isolation[C]. Transactions of the ASME.Journal of Special50th Anniversary Design Issue,1995,117:177-185.
    [145] Ervin R D. Electro rheology for Smart Landing Gear[R]. NASA-CR-20083. LangleyResearch Center,1996.
    [146] Krüger W. Multi-body simulation in the integrated design of semi-active landing gears [J].AIAA-98-4361,1998.
    [147] Wang X M. Fuzzy Control of Aircraft Semi-active Landing Gear System [J]. AIAA99-0265.1999.
    [148] Ghiringhelli G L. Testing of Semi-active Landing Gear Control for a General AviationAircraft [J]. JOURNAL OF AIRCRAFT,2000,37(4):606-616.
    [149] Krüger W. Integrated Design Process for the Development of Semi-Active Landing Gearsfor Transport Aircraft [D]. Stuttgart: Universit t Stuttgart,2000.
    [150] Choi Y T, Worley N M. Vibration Control of a Landing Gear System FeaturingElectrorheological Magnetorheological Fluids [J]. JOURNAL OF AIRCRAFT, May–June2003,40(3):432-439.
    [151] Ghiringhelli G L. Evaluation of a landing gear semi-active control system for completeaircraft landing [H]. Aerotecnica Missili e Spazio,2004,83(1).
    [152] Batterbee D C. Design and performance optimisation of magnetorheological oleo-pneumaticlanding gear [J]. Proc. of SPIE,2005,5760:77-88.
    [153] Batterbee D C. Magnetorheological landing gear:2.Validation using experimental data [J].Smart Mater. Struct.2007,16:2441–2452.
    [154] Miku owski G M. Adaptive landing gear concept-feedback control validation [J]. SmartMater. Struct.2007,16:2146–2158.
    [155] Nam Y J. Semi-active control of a landing gear system using magneto-rheological damper[J]. Proc. of SPIE,2007,6794679433.
    [156] Ahuré L A, Wereley N M. Behavior of Magnetorheological Fluid Composites EmployingCarrier Fluids Certified for Landing Gear Use [J]. AIAA2010-177,2010.
    [157]刘晖,顾宏斌,吴东苏.半主动控制起落架缓冲性能初步研究[J].航空学报,2006,27(5):863-868.
    [158]刘晖,顾宏斌,吴东苏.基于高速开关阀的起落架着陆冲击载荷控制[J].机械科学与技术,2007,26(8):1055-1058.
    [159] Wu D S, Gu H B. GA-Based Model Predictive Control of Semi-Active Landing Gear [J].2007,20:47-54.
    [160]顾宏斌.现代起落架缓冲系统的发展[J].航空科学基金,2008,2.
    [161]贾玉红,吴永康,张冠超.半主动控制起落架实验系统实验室研究与探索[J].实验室研究与探索,2006,25(2):173-175.
    [162]贾玉红,王建军.飞机半主动起落架的自适应控制[J].振动与冲击,2006,25(2):55-58.
    [163]贾玉红,武晓娟.磁流变缓冲器在起落架上的应用[J].飞机设计,2007,27(2):41-45
    [164]史友进.柔性飞机起落架智能半主动控制[J].机械设计,2007,24(3):23-25.
    [165]董小闵,余淼.飞行器磁流变自适应半主动冲击缓冲器[J].西南交通大学学报,2009,44(5):748-752.
    [166]李洪波.磁流变缓冲阻尼器在月球着陆车软着陆过程中的理论与应用研究[D].西安:西北工业大学,2002.
    [167]王少纯,邓宗全.新型涡流磁阻尼月球着陆器[J].上海交通大学学报,2006,40(12):2151-2154.
    [168]毛林章,余淼.基于磁流变技术的登月缓冲装置研究[D].重庆:重庆大学,2007.
    [169]张莹,聂宏,陈金宝.用于月球登陆器软着陆的磁流变缓冲器设计与分析[J].上海航天,2009(1):48-52.
    [170]赵京东,王金昌.基于半主动控制的小天体着陆器缓冲器的研究[J].振动与冲击,2010,29(8):78-80.
    [171] Reid R. Simulation and evaluation of landing gear probe for sensing engine cutoff altitudeduring lunar landing[R]. NASA-TM-X-65205. Johnson Space Center,1965.
    [172]郑军.磁流变传动理论与试验研究[D].重庆:重庆大学,2008.
    [173]李金,张华良.磁流变液研究和应用.上海大学学报(自然科学版),2004,(10):21-29.
    [174] Ginder J M, Davis L C, Elle L D. Rheology of Magnetorheological Fluids: Models andMeasurements [A].In: Tao, R. Proc. of the5th International Conference on ER and MRFluids[C],1995:504-515.
    [175] Alvin Seiff. Atmospheres of Earth, Mars, and Venus, as Defined by Entry ProbeExperiments [J]. J. SPACECRAFT.1991,28(3):265-274.
    [176] Don Petit."Smart" Magnetic Fluids Experiment Operated on the International SpaceStation[R]. InSPACE,2003.
    [177] Bennung E S. Structural transition of magnetorheological fluids in microgravity [D].Delaware: University of Delaware,2009.
    [178]邓志党.磁流变阻尼器力学模型的研究现状[J].振动与冲击,2006,25(3):121-126.
    [179] Yang G Q. Large-scale Magnetorheological Fluid Damper for Vibration Mitigation:Modeling, Testing and Control [D]. Indiana: University of Notre Dame,2001.
    [180]侯保林.冲击载荷作用下磁流变阻尼器的建模与分析[J].机械工程学报,2006,42(4):173-178.
    [181]张也影.流体力学[M].北京:高等教育出版社,1986.
    [182] Spencer B F etc. Modeling and control of magnetorheological damper for seismic dampers.Smart Materials and Structures,1996,5,5.
    [183]任晓崧,许奇. MR阻尼器的状态跳跃控制参数[J].力学季刊,2004,25(1):145-151.
    [184]李秀领,李宏男.磁流变阻尼建筑结构多态控制策略研究[J].应用力学学报,2008,1.
    [185] Ruan D, Huang C F. Fuzzy Sets and Fuzzy Information Granulation Theory [M]. Beijing:Beijing Normal University Press,2000.
    [186]李延成.冲击载荷下磁流变缓冲器半主动控制研究[D].南京:南京理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700