用户名: 密码: 验证码:
半干旱区蒸散发对地下水变化响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于气候变化和人类活动,导致地下水水位频繁、快速的波动甚至是长时段下降,进而诱发依赖地下水植被(Phreatophytes)蒸腾量变化,是全球半干旱地区广泛存在的一种现象。在依赖地下水植被广泛分布的地区,植被蒸腾同蒸发一样,是地下水排泄不可忽略的水均衡要素。同时,植被蒸腾也是判断植被水分胁迫响应及植被对地下水依赖程度的重要指标。可见,研究半干旱区植被蒸腾及潜水蒸发对地下水变化的响应机制,对水均衡分析、生态需水量计算、植物水分胁迫程度判别等多个方面都具有十分重要的科学意义和实际应用价值。以鄂尔多斯盆地为例,该盆地地处干旱—半干旱地区,降水稀少、蒸发强烈、地表水资源匮乏,地下水是植被和人类生存的重要水源,有时甚至是唯一水源。同时,该区矿产资源丰富,能源开发同样需要大量的水资源。在“保护中开发水资源”及“在开发中保护水与生态”是亟待解决的科学问题与生产实践问题。
     本论文在广泛整理归纳国内外研究文献的基础上,深入分析了饱和-非饱和带水汽热及植被蒸腾的水分传输机制基本理论。进而在鄂尔多斯盆地海流兔河流域开展了饱和-非饱和带水汽热耦合传输及地下水影响下的植被蒸腾实验研究。对获取的实验数据进行统计及数值模拟分析,初步认识到:
     1.饱和-非饱和带水汽热耦合规律为:(1)土壤温度对降水发生的时间及降水量大小响应表现出不同的特征。总体规律为夜间降水加速了土壤温度的下降,白天降水量较大时对土壤温度产生显著的影响;(2)统计分析表明,土壤温度与气温、净辐射呈正相关关系,与气压呈负相关关系。多元线性回归分析表明气象因子基本解释了不同深度的土壤温度变化:2、5、8、15、40、70、100cm及地下水温度与气温、净辐射、相对湿度、风速和气压的拟合度分别为86%、84%、67%、59%、59%、58%和57%;(3)压力梯度和温度梯度控制了饱和-非饱和带的水汽热传输过程,且日动态和年动态呈现不同的特征;(4)次降水量为62.0mm(平均4.43mm/hr)、42.8mm(平均0.73mm/hr),有效入渗补给地下水的降水量分别为21.9mm、34.4mm;(5)水流对温度穿透深度有影响,水流方向向下时,温度穿透深度增大,反之,温度穿透深度减少。
     2.饱和-非饱和带植被蒸腾规律为:(1)沙柳蒸腾与降水的关系为:①降水过程中沙柳蒸腾迅速减少,甚至停止;②降水后沙柳蒸腾较降水前蒸腾量有所增加,但是出现最大蒸腾量距降水开始的天数不同,且蒸腾量与降水量非线性关系;③潜在蒸散发与沙柳蒸腾量的拟合度为65%;④受潜在蒸散发量和水分来源共同作用,沙柳蒸腾量并未由于降水量的增加呈增加趋势,暗示实验沙柳未受到明显的水分胁迫。(2)沙柳与其他气象因子的关系为:沙柳蒸腾量的变化主要受净辐射驱动,但同时依赖于空气温度、相对湿度和风速。沙柳蒸腾的峰值与净辐射的峰值同时出现,但是提前于空气温度的最大值和相对湿度的最小值。蒸腾量基本上与净辐射、温度、相对湿度呈线性正相关,但与相对湿度呈负相关关系。多元线性回归分析表明,沙柳蒸腾量与气象因子的拟合度达80%以上。(3)沙柳的水分来源为:沙柳能够同时利用土壤水和地下水。干旱时沙柳可以使用更多的地下水导致地下水水位快速下降。相对湿润时,土壤水和地下水开始下降,但降速较低。相关分析和回归分析表明地下水水位变化受累积蒸腾的影响,即沙柳蒸腾依赖地下水。(4)数值分析表明,实验期间,蒸散发对地下水的利用率为20-40%;(5)地下水水位对蒸腾影响分析表明,当地下水埋深为215cm时,沙柳不能够利用地下水。此时,沙柳实际蒸腾与潜在蒸腾的比例为0.5;(6)蒸发与潜在蒸发、蒸腾与潜在蒸腾的比值随地下水水位埋深变化为非线性,可以分别用指数函数和幂函数表达。
     上述认识对指导生产实际应用的意义在于:1.大气-土壤-地下水温度梯度的变化(包括量值和方向)将深刻影响土壤蒸发、地下水蒸发的模式,并在小时、天、季节、年内的时间尺度上非定值;2.植被实际蒸腾与潜在蒸腾随地下水水位变化呈倒“S”曲线形状,并非传统地下水模拟软件的线性关系。
It is a worldwide phenomena that the changes of phreatophytic transpiration response tofast, frequent or long time decline of groundwater levels caused by climate change andanthropic activity. In the phreatophytes live area, the transpiration along with evaporation is avery important water balance items. The ratio between actual transpiration and potentialtranspiration is also a virtual criterion to plant water stress. So, to make clear the dynamicresponses of phreatophytic transpiration to groundwater level changes will be benefited toanalysis of water balance, calculation of ecosystems water demands, criterion of plant waterstress degree.
     In the northwest of China, the spare rainfall and strong evaporation ascribe this area to aridand semi-arid area. And the rare surface water resources expose the importance of thegroundwater resources do what human and plants rely on. At the same time, to exploit mineresources also need groundwater. Allocating scarce water resources for the socio-economicdevelopment at the same time maintaining ecosystem healthy is a primary challenge,especially in the semi-arid areas.
     Considering the importance all mentioned as above, the objectives of this paper is to:(1) tounderstand the dynamic of coupling water, heat and vapor movements in the variablysaturated zone under the effects of groundwater;(2) to study the responses of transpiration tothe groundwater level changes. The organization of this paper is that analysis the advances ofevaporation and transpiration at chapter1; description the basic theory of air, vapor, water andheat in soil at chapter2; introduction basic information of Hailiutu river catchment to implythe research background at chapter3; Introduction the field experiments and data analysisabout water, heat and plant water use at chapter4and5.
     Systematic field measurements were conducted to investigate the dynamic of couplingwater, vapor and heat movement and plant water use in variably-saturated zone under theeffects of groundwater. Bowen ratio system was used to monitored weather variables. Sapflows32were installed to measure the transpiration of a selected Salix psammophila bush.Soil water contents were measured at different depths in soil base on TDR technology. Soiltemperatures were measured using HOBO temperature logger. Groundwater levels andtemperatures were monitored using Mini-diver.
     The analysis methods include the statistic and numerical analysis. The results show that the temperatures in soil are affected by weather varialbes and soil physical characters. Both thetemperature and soil matrix potential gradients control the movements of water, vapor andheat in variably-saturated zone. Further, the temperature characters of amounts and directionschanged in different time scales. Consequently the coupling of water and heat has effect onrecharge and penetration depth of temperature.
     The statistical analysis identified controls of climatic factors on sap flow and the water usestrategy of Salix bush in periods that are characterized by different wetness. Correlationanalyses show strong positive correlations between diurnal sap flow and net radiation, airtemperature and wind speed, but a negative correlation with relative humidity. The peak ofsap flow occurs at the same time as the peak of net radiation, but a few hours ahead of thepeak of temperature and the minimum of relative humidity. Multiple regression equationsbetween diurnal sap flow and climatic factors (i.e. net radiation, temperature, relativehumidity and wind speed) can account for more than80%of the variations in sap flow. Theanalysis of soil water contents and groundwater levels indicates that Salix bush can use bothsoil water and groundwater for transpiration. In the dry periods, the cumulative transpirationof Salix caused the continuous decline of soil water contents and shallow groundwater levels.During rain events, sap flow was very low; but immediately after the rain, the peak value ofsap flow increased significantly due to better soil water availability. The correlation andregression analysis indentified a strong relationship between the sap flow and groundwaterlevels that fluctuated at depths of145.5to180.7cm. Therefore, Salix bush can be consideredas a groundwater dependent plant in the Hailiutu River catchment, which has effects ongroundwater recharge and discharge, and consequences on groundwater resourcesmanagement. Numerical model analysis results shows that the groundwater contributes toevapotranspiration about20to40percentage.
     The experimental and analysis results indicate that the temperature gradient in air, soil andgroundwater continuums has an important effect on soil and groundwater evaporation andintroduce the different values in hourly, daily, season, annual time scales. Interestingly, theratio between actual transpiration and potential transpiration change along with differentgroundwater depth shows the inverse‘s’ shape curve not but a linear type as some numericalmodel.
引文
[1]侯光才,张茂省,刘方,等.鄂尔多斯盆地地下水勘查研究[M].北京:地质出版社,2008.
    [2] Collins D.B.G., Bras R.L. Plant rooting strategies in water-limited ecosystems [J].Water Resources Research,2007,43, W06407, doi:10.1029/2006WR005541.
    [3] Le Maitre, D. C., D. F. Scott, C. Colvin. A review of information on interactionbetween vegetation and groundwater [J]. Water SA,1999,25:137-152.
    [4] Groom, P.K., T.H. Froend, E.M. Mattiske, et al. Long-term changes in vigour anddistribution of Banksia and Melaleuca overstory species in the Swan CostalPlain[J]. Journal of the Toyal Society of Western Austrialia,2001,84:63-69.
    [5] Naumburg E., Gonazlez R. M., Hunter R.G., et al. Phreatophytic vegetation andgroundwater fluctuations: A review of current research and application ofecosystem response modeling with an emphasis on Great Basin vegetation [J].Enviromental Management,2005,35(6):726-740, doi:10.1007/s00267-004-0194-7.
    [6] Froend R., Sommer R. Phreatophytic vegetation response to climatic andabstraction-induced groundwater drawdown: Examples of long-term spatial andtemporal variability in community response [J]. Ecological Engineering,2010,36:1191-1200, doi:10.1016/j.ecoleng.2009.11.029.
    [7] Ladekarl, U. L., Rasmussen, K., Christensen, R., et al. Groundwater recharge andevapotranspiration for two natural ecosystems covered with oak and heather [J].Journal of Hydrology,2005,300(1-4):76-99.
    [8] Guswa A. J., Celia M. A., Rodriguez-Iturbe I. Effect of vertical resolution onpredictions of transpiration in water-limited ecosystems [J]. Advances in WaterResources,2004,27:467-480.
    [9]周仰效.地下水—陆生植被系统研究评述[J].地学前缘,2010,17(6):21-30.
    [10]王文科,李俊亭,黄金廷,等.鄂尔多斯盆地白垩系潜水面降水入渗补给强度与蒸发强度试验研究报告[R].西安:长安大学,2006.
    [11]黄金廷.鄂尔多斯盆地沙漠高原区降雨入渗补给地下水研究[D].长安大学硕士论文,长安大学,2006.6
    [12]何渊.鄂尔多斯盆地沙漠高原区湖区及潜水面蒸发研究[D].长安大学硕士论文,长安大学,2006.6
    [13] M.W. Lubczynski. The hydrogeological role of trees in water-limitedenvironments[J]. Hydrogeology Journal,2009,17:247–259
    [14]邱国玉.陆地生态系统中的绿水资源及其评价方法[J].地球科学进展,2008,23(7):713-722.
    [15]孟春雷.土壤蒸发及水热传输综述[J].土壤通报,2007,38(2):374-378.
    [16] Mahpouf J.F, Nolhan J. Comparative study of various formulations ofevaporation from bare soil using in situ data [J]. Journal application Meteor,1991,30:1354-1365.
    [17] Hillel, D. Soil and Water: Physical Principles and Processes [J]. Academic Press,New York,1971.
    [18] Campbell, G.S. Soil Physics with Basic: Transport Models for Soil-Plant System
    [M]. Elsevier, New York,1985.
    [19] Kobayashi T, Matsuda A, Kamichika M. Studies of the dry surface layer in asand dune field effects of soiltem perature gradients on the water content profilesin the dry surface layer [J]. Journal of A gricultural Meteorology,1987,43(2):121-126.
    [20] Kobayashi T., Matsuda A., Kamichika M. A simple method for estimating therate of evaporation from a dry sand surface [J]. Journal of AgriculturalMeteorology,1989,44(4):269-274.
    [21] Li Q, Kobayashi T, Motada Y, et al. Evaporation characteristics of the dune sandin the Mu Su Sha mo Desert, China [J].Journal of Agricultural eteorology,1989,44(4):301-304.
    [22] Yamanaka T, Takeda A, Shimada J. Evaporation beneath the soil surface: someobservational evidence and numerical experiments [J]. Hydrological Processes,1998,12:2193-2203.
    [23] Yamanaka T, Yonetani T. Dynamics of the evaporation zone in dry sandy soils [J].Journal of Hydrology,1999,217:135-148.
    [24] Marco Bittelli, Francesca Ventura, Gaylon S. Campbell, Richard L. Snyder, FabiaGallegati, Paola Rossi Pisa. Coupling of heat, water vapor, and liquid water fluxesto compute evaporation in bare soils [J]. Journal of Hydrology,2008,362:191-205.
    [25]张瑜芳,蔡树英,蔡美娟.表土低含水率条件下土壤非稳定蒸发研究[J].武汉水利电力学院学报,1991,24(2):157-164.
    [26]冯起.半湿润沙地干沙层特性初步研究[J].干旱区研究,1994,11(1):24-27.
    [27]李品芳,李保国.毛乌素沙地水分蒸发和草地蒸散特征对比研究[J].水利学报,2000,3:42-46.
    [28]牛国跃,孙淑芬,洪钟祥.沙漠土壤和大气边界层中水热交换和传输的数值模拟研究[J],气象学报,1997,55(4):992-704.
    [29]孟春雷.陆面过程模式中土壤蒸发与水热耦合传输的进一步研究[D].北京师范大学博士学位论文,2006.
    [30]杨汉波,杨大文,雷志栋,等.蒸发互补关系在不同时间尺度上的变化规律及其机理[J].中国科学E辑:技术科学,2009,39(2):333-340.
    [31]焦月红,姜志强.土壤蒸发及水热传输综述[J].勘察技术科学,2009(5):3-8.
    [32] Wislon G. W., Fredlund D G. Coupled soil-atmosphere modeling for soilevaporation [D]. Canadian Geotechnical Journal,1994,31(2):151-161.
    [33] Philip J R, de Vries V D. Moisture movement in porous materials undertemperature gradient [J]. Trans Am Geophys Union,1957,38(2):222-232.
    [34] Taylor S A, Stewart GL. Some thermodynamic properties of soil water [J]. SoilSci Soc Am Proc,1960,24:243-247.
    [35] Taylor S A, Cary J W. Linear equations for the simultaneous flux of matter andenergy in a continuous soil system [J]. Soil Sci Soc Am Journal,1964,28:167-172.
    [36] Cary J W. Onsager’s relation and the non-isothermal diffusion of water vapor [J].The Journal of Physical Chemistry,1963,67(1):126-129.
    [37] Cary J W. An evaporation experiment and its irreversible thermodynamics [J]. IntJ Heat Mass Transfer,1964,7:531-538.
    [38] Cary J W. Water flux in moist soil: thermal versus suction gradients [J]. Soil Sci,1965,100(3):168-175.
    [39] Cary J W. Soil heat transducers and water vapor flow [J].Soil Science Society ofAmerica Journal,1979,43(5):835-839.
    [40] Rose D A. Water movement in porous materials: Part1. Isothermal vapourtransfer [J]. British Journal of Applied Physics,1963,14(5):256-262.
    [41] Rose D A. Water movement in porous materials: Part2. The separation of thecomponents of water movement [J]. British Journal of Applied Physics,1963,14(8):491-496.
    [42] Rose D A. Water movement in dry soils:1. physical factors affecting sorption ofwater by dry soil [J]. J Soil Sci,1968,19(1):81-93.
    [43] Rose D A. Water movement in porous materials: Evaporation of water from soil[J]. Brit J Appl Phys,1968,2(1):1779-1791.
    [44] Milly P C D. Moisture and heat transport in hysteretic, inhomogeneous porousmedia: a matric head-based formulation and a numerical model [J]. Water Res Res,1982,18(3):489-498.
    [45] Milly P C D. Simulation analysis of thermal effect s on evaporation from soil [J].Water Res Res,1984,20(8):1087-1098.
    [46] Milly P C D. Effect s of thermal vapor diffusion on seasonal dynamics of waterin the unsaturated zone [J]. Water Res Res,1996,32(3):509-518.
    [47]杨金忠,蔡树英.土壤中水、汽、热运动的耦合模型和蒸发模拟[J].武汉水利电力学院学报,1989,22(4):35-44.
    [48]胡和平,杨诗秀.土壤冻结时水热迁移规律的数值模拟[J].水利学报,1992,7:128.
    [49] Stromberg, J. C., Tiller, R., Richter, B. Effects of groundwater decline on riparianvegetation of semiarid regions: the San Pedro, Arizona[J]. Ecological Applications,1996,6:113-131.
    [50] Eamus D. Identifying groundwater dependent ecosystems, A guide for land andwater managers [M]. Land&Water Australia,2009.
    [51] Rodriguez-Iturbe, A. Porporato, F. Laio, et al., Plants in water-controlledecosystems: active role in hydrologic processes and response to water stress I.Scope and general outline [J]. Advances in water Resources,2001,24:695-705.
    [52] F. Laio, A. Porporato, L. Ridolfi, et al., Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress II. Probabilisticsoil moisture dynamics [J]. Advances in water Resources,2001,24:707-723.
    [53] A. Porporato, L. Ridolfi, F. Laio, et al., Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress III. Vegetationwater stress [J]. Advances in water Resources,2001,24:725-744.
    [54] F. Laio,A. Porporato, C.P. Fernandez-Illescas, et al., Plants in water-controlledecosystems: active role in hydrologic processes and response to water stress IV.Discussion of real cases [J]. Advances in water Resources,2001,24:745-762.
    [55] Laio F., D’Odorico P., Ridolfi L. An analytical model to relate the vertical rootdistribution to climate and soil properties [J]. Geophysical Research Letters,2006,33, L18401, doi:10.1029/2006GL027331.
    [56] Guswa, A. J., M. A. Celia, I. Rodriguez-Iturbe, Mmodesl of soil moisturedynamics in ecohydrology: A comparative study [J]. Water Resource Research,2002,38, NO.9,1166, doi:10.1029/2001WR000826.
    [57] Guswa A. J., Celia M. A., Rodriguez-Iturbe I. Effect of vertical resolution onpredictions of transpiration in water-limited ecosystems [J]. Advances in WaterResources,2004,27:467-480.
    [58] Guswa A. J. The influence of climate on root depth: A carbon cost-benefitanalysis [J]. Water Resources Research,2008,44, W02427,doi:10.1029/2007WR006384.
    [59] J. im nek, M. ejna, H. Saito, M. Sakai, et al., The Hydrus-1D softwarepackage for simulating the one-dimensional movement of water, heat and multiplesolutes in variably-saturated media,2009, Department of environmental sciencesuniversity of California Riverside.
    [60] Chen, J. M., Y. C. Tan, C. H. Chen. Analytical solutions of one-dimensionalinfiltration before and after ponding [J]. Hydrol. Proc.2003,17:815-822.
    [61] Hogarth, W. L, J. Y. Parlange. Application and improvement of a recentapproximate analytical solution of Richards’ equation [J]. Water ResourcesResearch,2000,36:1965-1968.
    [62] Fasong Yuan, Zhiming Lu. Analytical solutions for vertical flow in unsaturated,rooted soils with variable surface fluxes [J]. Vadose Zone Journal,2005,4:1210-1218.
    [63] Xu, C. Y., Chen, D. Comparison of Seven Models for Estimation ofEvapotranspiration and Groundwater Recharge Using Lysimeter MeasurementData in Germany[J]. Hydrological Processes,2005,19:3717-3734.
    [64] Cooper, D. J., Sanderson, J. S., Stannard, D. I., Groeneveld, D. P. Effects oflong-term water table drawdown on evapotranspiration and vegetation in an aridregion phreatophyte community[J]. J Hydrol,2006,325:21–34.
    [65] Sanderson, J. S., Cooper, D. J. Ground water discharge by evapotranspiration inwetlands of an arid intermountain basin[J]. Journal of Hydrology,2008,351(3-4):344-359.
    [66]张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1997.23-24.
    [67]王大纯,张人权,史毅虹,许绍倬,于青春,梁杏.水文地质学基础[M].北京:地质出版社,1995.77-80.
    [68]唐海行,苏逸深,张和平.潜水蒸发的实验研究及其经验公式的改进[J].水利学报,1989,(10):37-44.
    [69] Nyambayo, V. P., Potts, D. M.(2010). Numerical simulation of evapotranspira-tion using a root water uptake model [J]. Computers and Geotechnics,37(1-2):175-186.
    [70]杨建锋.地下水—土壤水—大气水界面转化研究综述[J].水科学进展,1999,6,10(2):183-189.
    [71]侯莉莉.蒸发条件下包气带水热运移模拟研究[D].长安大学硕士学位论文,长安大学,2009.6.
    [72]阿维里扬诺夫.防治灌溉土地盐渍化的水平排水设施[M].北京:中国工业出版社,1985.
    [73]叶水庭,施鑫源,苗晓芳.用潜水蒸发经验公式计算给水度问题分析.水文地质工程地质,1981,4.
    [74]沈立昌.利用长期观测资料分析地下水资源的几个问题[J].水文(水资源专集).1982(增刊).
    [75]雷志栋,杨诗秀,谢森传.潜水稳定蒸发的分析与经验公式[J].水利学报,1984,8:60-64.
    [76]王文焰,李智录,沈冰.对考虑潜水蒸发条件下农田排水沟(管)间距计算的探讨[J].水利学报,1992,7.
    [77]赵成义,胡顺军,刘国庆等.潜水蒸发经验公式分段拟合研究[J].水土保持学报,2000,14(5):122-126.
    [78]史文娟.蒸发条件下夹砂层土壤水盐运移实验研究[J].西安理工大学博士学位论文,西安理工大学,2005.2.
    [79] Gardner W.R. and Fireman M. Laboratory study of evaporation from soil columnin the presence of water table [J].Soil.sci.,1958,85(5):244-249.
    [80] Gardner W. R. Solution of the Flow Equation for the Drying of Soils and OtherPorous Media [J]. Soil Sci Soc. Amer. Proc.23,1959:183-187.
    [81] Covey W. Mathematical Study of the First Stage of Drying of a Moist Soil [J].Soil Sci Soc. Amer. Pro.27,1963:130-134.
    [82]张蔚榛.张蔚榛论文集.北京:中国水利水电出版社,2002.
    [83]杨金忠等.多孔介质中水分及溶质运移的随机理论[M].北京:科学出版社,2000.9.
    [84]邵明安,黄明斌.土—根系统水动力学[M].西安:陕西科学技术出版社,2000.11.
    [85] Loheide II, S. P., Butleer, J. J. Gorelick, S. M. Estimation of groundwaterconsumption by phreatophytes using diurnal water table fluctuations: Asaturated-unsturated flow assessment [J].Water Resoures Research,2005,41,W7030, doi:10.1029/2005WR003942.
    [86] White, W.N. A method of estimating ground-water supplies based on dischargeby plants and evaporation from soil: Results of investigation in Escalante Valley,Utah, Water-Supply Paper659-A.1932, Washington, D.C.: U.S. Department ofthe Interior.
    [87] Meyboom, P. Groundwater studies in the Assinibonie River drainage basin-part I:Evaluation of a flow system in south-central Saskatchewan, Bull. Geol. Surv. Can[J].1996,139.
    [88] Loheide II, S. P. A method for estimating subdaily evapotranspiration of shallowgroundwater using diurnal water table fluctuations[J], Ecohydrology,2008,1:59-66, doi:10.1002/eco.7
    [89] Gribovszki Z., Kalicz P., Szilagyi J. Riparian zone evapotranspiration estimationfrom diurnal groundwater level fluctuations [J]. Journal of Hydrology,2008,349:6-17.
    [90] Mould D. J., Frahm E., Salzmann Th., et al. Evaluating the use of diurnalgroundwater fluctuations for estimating evapotranspiration in wetlandenvironments: case studies in southeast England and northeast Germany.Ecohydrology [J]. Ecohydrol,2010,3:294-305. doi:10.1002/eco.108.
    [91] Shah N., Nachabe M., Ross M. Extinction depth and evapotranspiration fromground water under selected land covers [J]. Groundwater,2007,45(3):329-338,doi:10.1111/j.1745-6584.2007.00302.x.
    [92] Nichols, W.D. Regional groundwater evapotraspiration and groundwater budgets,Great Basin, Nevada[R]. US Geological Survey Professional Paper,2000,1628.
    [93] Devitt, D.A., Donovan, D.J., Katzer, T., et al. A reevaluation of thegroundwater budget for Las Vegas Valley, Nevada, with emphasis on groundwaterdischarge [J]. Journal of the American Water Resources Association,2002,38,1735-1751.
    [94] Shah N., Nachabe M., Ross M. Extinction depth and evapotranspiration fromground water under selected land covers [J]. Groundwater,2007,45(3):329-338,doi:10.1111/j.1745-6584.2007.00302.x.
    [95] Laio F., D’Odorico P., Ridolfi L. An analytical model to relate the vertical rootdistribution to climate and soil properties [J]. Geophysical Research Letters,2006,33, L18401, doi:10.1029/2006GL027331.
    [96] Collins D.B.G., Bras R.L. Plant rooting strategies in water-limited ecosystems [J].Water Resources Research,2007,43, W06407, doi:10.1029/2006WR005541.
    [97] Guswa A. J., Celia M. A., Rodriguez-Iturbe I. Effect of vertical resolution onpredictions of transpiration in water-limited ecosystems [J]. Advances in WaterResources,2004,27:467-480.
    [98] Mahoney, J.M., S.B. Rood. Response of a hybrid poplar to water table decline indifferent substrates [J]. Forest Ecology and Management,1992,54:141-156.
    [99] Scott, M. L., G. C. Lines, G. T Auble. Channel incision and patterns ofcottonwood stress and mortality along the Mojave River, California [J]. Journal ofArid Environments,2000,44:399-444.
    [100] McElrone, A. J., Pockman, W.T. Martinez-Vilalta J., et al. Variation in xylemstructure and function in stems and roots of trees to20m depth [J]. NewPhilologist,2004,163:507-517.
    [101] Cooper D. J., John S. Sanderson, David I. Stannard, et al. Effects of long-termwater table drawdown on evapotranspiration and vegetation in an arid regionphreatophyte community[J]. Journal of Hydrology,2006,325:21-34,doi:10.1016/j.jhydrol.2005.09.035.
    [102] Froend R., Sommer R. Phreatophytic vegetation response to climatic andabstraction-induced groundwater drawdown: Examples of long-term spatial andtemporal variability in community response[J]. Ecological Engineering,2010,36:1191-1200, doi:10.1016/j.ecoleng.2009.11.029.
    [103] Zencich SJ, Froend RH, Turner JT, Gailitis V. Influence of groundwater depthon the seasonal sources of water accessed by Banksia tree species on a shallow,sandy coastal aquifer [J]. Oecologia,2002,131:8–19.
    [104] Snyder KA, Williams DG. Water sources used by riparian trees varies amongstream types on the San Pedro River, Arizona [J]. Agricultural and ForestMeteorology,2000,105:227–240.
    [105] Newman B.D., Bradford P. Wilcox, Steven R. Archer, et al. Ecohydrology ofwater-limited environments: A scientific vision [J]. Water Resources Research,2006,42, W06302, doi:10.1029/2005WR004141,2006.
    [106] Naumburg E., Gonazlez R. M., Hunter R.G., et al. Phreatophytic vegetation andgroundwater fluctuations: A review of current research and application ofecosystem response modeling with an emphasis on Great Basin vegetation [J].Enviromental Management,2005,35(6):726-740, doi:10.1007/s00267-004-0194-7.
    [107]万力,曹文炳,胡伏生,等.生态水文地质学[M].北京:地质出版社,2005.
    [108] Eamus D., Hatton T., Cook P., et al. Ecohydrology: vegetation function, waterand resource management[M].CSIRO Publishing,2006.
    [109] G. Ward Wilson. Soil evaporative fluxes for geotechnical engineering problems
    [D]. Phd paper, Department of Civil Engineering University of SaskatchewanSaskatoon, Canada,1990.
    [110] Kobayashi, T., W. J. He, and H. Nagai (1998), Mechanisms of evaporation fromsoil with a dry surface [J], Hydrol. Processes,12(13–14),2185–2191.
    [111] Prat, M.(2002), Recent advances in pore-scale models for drying of porousmedia [J], Chem. Eng. J.,86(1–2),153–164.
    [112] Yiotis, A. G., A. G. Boudouvis, A. K. Stubos, I. N. Tsimpanogiannis, andY. C.Yortsos (2004), Effect of liquid films on the drying of porousmedia [J], AiCHE J.,50(11),2721–2737.
    [113] Schokri N., Or D. What determines drying rates at the onset of diffusioncontrolled stage-2evaporation from porous media?[J] WATER RESOURCESRESEARCH, VOL.47, W09513, doi:10.1029/2010WR010284,2011.
    [114] Yijian Zeng, Zhongbo Su, Li Wan,1and Jun Wen.A simulation analysis of theadvective effect on evaporation using a two-phase heat and mass flow model.WATER RESOURCES RESEARCH, VOL.47, W10529, doi:10.1029/2011WR010701,2011
    [115] Cary JW (1963) Onsager’s relation and the non-isothermal diffusion of watervapor [J]. J Phys Chem67(1):126–129
    [116] Cary JW (1964) An evaporation experiment and its irreversible thermodynamics [J]. Int J Heat Mass Transf7:531–538.
    [117] Cary JW (1966) Soil moisture transport due to thermal gradients: practicalaspects [J]. Soil Sci Soc Am Proc30:428–433.
    [118] Cary JW (1979) Soil heat transducers and water vapor flow [J]. Soil Sci Soc AmJ43(5):835–839.
    [119] Cary JW, Taylor SA (1962a) Thermally driven liquid and vapor phase transferof water and energy in soil [J]. Soil Sci Soc Am Proc26:417–420.
    [120] Cary JW, Taylor SA (1962b) The interaction of the simultaneous diffusions ofheat and water vapor [J]. Soil Sci Soc Am Proc26:413–416.
    [121] Penman, H.L.,1940. Gas and vapor movements in soil: The diffusion of vaporsthrough porous solids [J]. J.Agric. Sci.(Cambridge)30:437-462.
    [122] Gurr, C.G., T.J. Marshall, and J.T. Hutton.1952.Movement of water in soil dueto a temperature gradient[J]. Soil Sci.,74:335-345.
    [123] Philip, J.R., and D.A. de Vries.1957. Moisture movement in porous materialsunder temperature gradients [J]. Transactions, American Geophysical Union38:222-232.
    [124] Rose DA (1963a) Water movement in porous materials: Part1-Isothermalvapour transfer [J]. Br J Appl Phys14(5):256–262.
    [125] Rose DA (1963b) Water movement in porous materials: Part2—The separationof the components of water movement [J]. Br J Appl Phys14(8):491–496.
    [126] Rose DA (1968a) Water movement in dry soils:1. Physical factors affectingsorption of water by dry soil [J]. J Soil Sci19(1):81–93.
    [127] Rose DA (1968b) Water movement in porous materials.111.Evaporation ofwater from soil [J]. Br J Appl Phys2(1):1779–1791.
    [128] Rose DA (1971) Water movement in dry soils. II. An analysis of hysteresis [J]. JSoil Sci22(4):490–507.
    [129] Rose DA, Konukcu F, Gowing JW (2005) Effect of watertable depth onevaporation and salt accumulation from saline groundwater [J]. Aust J Soil Res43(5):565–573.
    [130] Cass, A., Campbell, G.S., Jones, T.L.1984. Enhancement of Thermal WaterVapor Diffusion in Soil [J], Soil Sci. Am. J.,48:25-32.
    [131] Nassar, I. N,. and R, Horton,1989, Water transport in unsaturated nonisothermalsalty soil: II. Theoretical development [J]. Soil Sei, Soc.Am, J,53:1330-1337.
    [132] Nassar.1. N.. and R. Horton.1992. Simultaneous transfer of heat, water, andsolute in porous media: I. Theoretical development [J]. Soil Sei. Soc. Am.J,56:1350-1356.
    [133] Nassar.1. N,, and R. Horton,1997. Heat, water, and solution transfer inunsaturated porous media: I—Theory development and transport coefficientevaluation [J], Transp. Porous Med,27:17-38.
    [134] Webb, S. W., and C. K. Ho (1998), Review of enhanced vapor diffusion inporous media [J], SAND-98-1819C; CONF-980559.
    [135] Smits K.M., Cihan A., Sakaki T., Illangasekare T. H. Evaporation from soilsunder thermal boundary conditions: Experimental and modeling investigation tocompare equilibrium-and nonequilibrium-based approaches [J].WATERRESOURCES RESEARCH, VOL.47, W05540,14PP.,2011doi:10.1029/2010WR009533
    [136] Deb S. K., Shukla M. K., Sharma P., Mexal J. D., Coupled Liquid Water, WaterVapor, and Heat Transport Simulations in an Unsaturated Zone of a Sandy LoamField [J]. Soil sci,2011;176:387-398.
    [137] Famiglie, J., and E. Wood.1994. Applicati on of multi scale water and energybalance models on a tallgrass prairie [J]. Water Resour. Res.30:3079–3093.doi:10.1029/94WR01499.
    [138] Salvucci, G.D., and D. Entekhabi.1995. Hillslope and climati c controls onhydrologic fluxes [J]. Water Resour. Res.31:1725–1739. doi:10.1029/95WR00057.
    [139] Kim, C.P., G.D. Salvucci, and D. Entekhabi.1999. Groundwater–surface waterinteracti on over simple hillslopes [J]. Hydrol. Earth Syst. Sci.3:375–384.doi:10.5194/hess-3-375-1999.
    [140] Maxwell, R.M., and N.L. Miller.2005. Development of a coupled land surfaceand groundwater model [J]. J. Hydrometeorol.6:233–247. doi:10.1175/JHM422.1
    [141] Rihani, J.F., R.M. Maxwell, and F.K. Chow.2010. Coupling groundwater andland surface processes: Idealized simulati ons to identi fy eff ects of terrain andsubsurface heterogeneity on land surface energy fl uxes [J]. Water Resour. Res.6:W12523. doi:10.1029/2010WR009111
    [142] Hellwig, D.H.R.1973. Evaporati on of water from sand:4. The infl uence of thedepth of the water-table and the parti cle size distributi on of the sand [J]. J.Hydrol.18:317–327. doi:10.1016/0022-1694(73)90055-3.
    [143] Rose, D.A., F. Konukcu, and J.W. Gowing.2005. Eff ect of water table depth onevaporati on and salt accumulati on from saline groundwater [J]. Aust. J. Soil Res.43:565–573. doi:10.1071/SR04051
    [144] Gowing, J.W., F. Konukcu, and D.A. Rose.2006. Evaporati ve flux from ashallow watertable: The infl uence of a vapour–liquid phase transition [J]. J.Hydrol.321:77–89. doi:10.1016/j.jhydrol.2005.07.035
    [145] Il’ichev, A.T., G.G. Tsypkin, D. Pritchard, and C.N. Richardson.2008.Instability of the salinity profi le during the evaporati on of saline groundwater [J].J. Fluid Mech.614:87–104. doi:10.1017/S0022112008003182
    [146] Shokri N., Salvucci G.D. Evaporation from porous media in the presence of awater table [J]. Vadose zone Journal.2011,10:1309-1318. Doi:10.2136/vzj2011.027
    [147] Lehmann, P., S. Assouline, and D. Or.2008. Characteristi clengths affectingevaporative drying of porous media [J]. Phys. Rev. E77:056309. doi:10.1103/PhysRevE.77.056309.
    [148]赵贵章,王文科,侯莉莉,等.干旱半干旱地区包气带热参数模型研究[J].水文地质工程地质,2009年第5期,107-110.
    [149]赵贵章,王文科,李云良,等.毛乌素沙地典型岩性导热系数试验和模型研究[J].西北农林科技大学学报,2010,38(5):
    [150] Y.Zeng, Z.Su, Z. Yang, et al. Diurnal pattern of the drying front in desert andits application for determining the effective infiltration [J]. Hydrology and EarthSystem Sciences,13,703-714,2009.
    [151] Zhang, L.X., Song, Y.Q.,2003. Efficiency of the Three-North Forest ShelterbeltProgram [J]. Acta Scientiarum Naturalium Univesitatis Pekinensis39,594-600(inChinese with English Abstract).
    [152] Wang, B.W., Yang, Q.K., Liu, Z.H.,2009. Effect of conversion of farmland toforest or grass land on soil erosion intensity changes in Yanhe River Basin, LoessPlateau of China [J]. Frontiers of Forestry in China4,68-74.
    [153] Wenzhi Zhao, Bing Liu.2010. The response of sapflow in shrubs torainfallpulses in the desertregion of China [J]. Agricultural and ForestMeteorology.150(9):1297-1306.
    [154] Granier, A. and Loustau, D.,1994. Measuring and modeling the transpiration ofa maritime pine canopy from sap-flow data [J]. Agricultural and ForestMeterology,71(1-2):61-81.
    [155] Jiang G. M., Zhu G. J.,2001. Effects of natural high temperature and irradiationon photosynthesis and related parameters in three arid sandy shrub species [J].Acta Phytoecologica Sinica.25(5)525~531(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700