用户名: 密码: 验证码:
干旱区绿洲地下水水化学成分形成及演化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水资源是干旱区绿洲生存与发展的重要水源。随着人口的增长和社会经济的快速发展,对水的需求量增大,加之对地下水资源的不合理开采,导致许多绿洲地下水水位不断下降,地下水水质出现恶化,可利用地下水资源日趋减少,引发了一系列相关的水资源—环境问题,严重威胁着绿洲的可持续发展。在这样的背景下,长安大学国际干旱半干旱地区水资源与环境研究培训中心承担了《阿拉善盟腰坝绿洲地下水资源承载力及可持续利用》的研究任务,以典型干旱区绿洲——内蒙古阿拉善腰坝绿洲为研究对象,对其水资源开发利用现状和水资源开发过程中出现的环境地质问题进行研究,确定地下水资源允许开采量及承载力,为该地区可持续发展提供水资源保证,并为进一步开展其他绿洲的同类研究创造经验。本文作者承担了总项目中的子课题“阿拉善盟腰坝绿洲地下水水质评价”的研究工作,并结合研究课题,开展博士论文的研究,重点对腰坝绿洲地下水水化学成分形成及演化机制进行了研究。揭示了人类长期生活生产影响下的水化学场时空演化规律,借助水化学信息全面系统的认识干旱区绿洲地下水系统,对于评价区域地下水可持续开发利用,制定合理的地下水开发模式,促使绿洲自然与人类和谐发展具有重要意义。
     本文综合应用水文地质学、水文地球化学、同位素水文学的理论与方法,对干旱区绿洲地下水水化学成分的时空变异特征与演变规律进行了深入的研究,明确了地下水水化学成分演化规律及其演化过程中发生的主要地球化学作用,揭示了地下水与环境的相互作用机制,验证了地下水补给来源、径流途径、排泄方式。论文的主要研究成果如下:
     (1)腰坝绿洲不同农灌季节地下水主要水化学指标的统计分析结果表明:季节变化对水化学空间变异性影响较小。但潜水水文化学性质空间变异性较大,主要受含水层介质、地形地貌、水文气象条件和人类活动等因素的影响大,尤其Na~+、Cl~-、SO_4~(2-)空间变异性较大,是决定潜水盐化作用的主要变量。承压水受外界因素干扰较少,盐化作用弱。
     (2)地下水水化学成分的实测分析结果表明:地下水化学类型和总溶解固体(TDS)在空间上的分布特征表现为:在垂直方向上,由上到下表现为TDS由高变低,水化学类型由复杂变简单的反向地球化学分带特征。在水平方向上,地下水的水化学分布特征为东北部的TDS较低,水化学类型主要为HCO_3-SO_4型水;西南部TDS大部分较高,水质较差,水化学类型主要为Cl-SO_4型水。且TDS含量和水化学类型随季节变化明显,非开采期较开采期TDS含量整体增大,硫酸型和氯型水的分布面积较开采期扩大。
     (3)地下水离子比例系数(γ_(Cl~-)/γ_(Ca~(2+))、γ_(Mg~(2+))/γ_(Ca~(2+))、γ_(Na~+))/γ_(Mg~(2+))、γ_(Cl~-)/γ_(HCO_3~(2-))、γ_(Cl~-))/γ_(SO_4~(2-))-、γ_(Na~+))/γ_(Cl~-))的研究表明:研究区地下水流动系统中的水化学成分总体上受水动力条件和地下水在径流途径上的沿程累积作用影响,表现为自东北向西南随着水动力条件逐渐变差,Cl~-、Mg~(2+)、Na~+离子等高盐分离子逐渐富集,易溶盐逐渐累积,水体总体向咸化方向发展。
     (4)以1968~2006年的地下水水化学资料为基础研究地下水水化学场随时间的演化规律,得出:腰坝绿洲自开采以来地下水TDS总体上呈增加趋势,平均每年增加40mg/L以上,但随年际和位置的不同增加幅度并不均匀,南部TDS增加速率比中部和北部大。水化学类型已由原来以HCO_3-Ca·Mg型为主要转为现在Cl·SO_4-Na.Mg型为主,Ca~(2+)、Mg~(2+)离子基本达到饱和,HCO_3~-虽有增加,但相对含量在减少,Na~+、SO_4~(2-)、Cl~-离子含量显著增加。表明天然水化学场正在向盐化和碱化以及地下水化学类型趋于复杂化、水质变差的方向演化。
     (5)腰坝绿洲地下水的δ~(18)O、δD值都集中沿同位素雨水线分布,标志着绿洲地下水为大气降水补给成因。而且地下水的δ~(18)O和δD值呈现出东北区大于西南区的分布特点,指示着两区地下水具有不同的水循环意义,即西南区地下水更多地保存着较冷气候补给环境下的地下水;而东北区,水循环比较积极,为较暖气候环境下补给的地下水。垂向上,氢氧同位素含量十分相近,表明垂向上各层地下水水力联系密切。
     (6)根据腰坝绿洲及其周边地区地下水中氚含量的测定结果证实:腰坝绿洲地下水的的主要补给来源是东部山前台地裂隙孔隙水、北部孔隙水和西部沙漠潜水的侧向径流补给,及山区洪水的垂直渗漏补给。径流特征主要表现为:在天然条件下,由东北向西南方向径流,陶苏湖则是腰坝绿洲范围内的局部排泄区;在大规模开发以后,绿洲地下水径流交替严格受到人为开采及开采时段的影响。在开采期内,由于区域降落漏斗的形成,地下水的径流主要是绿洲周边地下水向漏斗中心运移。在非开采期内,地下水位以恢复为主,此时,区内地下水的径流方向则主要是由北、西北、西南向绿洲内径流。西南陶苏湖方向的上层咸水向其东北方向运移,源源不断地补给绿洲地下水。
     (7)研究区第四系孔隙潜水水文地球化学模拟结果表明:混合作用是控制区域北部和西南部孔隙潜水水化学状况的最主要因素,但混合过程并非是单纯的机械混合,在北部伴随着孔隙潜水、洪水、沙漠潜水三种补给水源的混合,还发生了方解石、白云石的沉淀,石膏和二氧化碳的溶解,以及钙离子的吸附和钠离子解析;在西南陶苏湖区伴随着沙漠潜水和洪水两种补给水源的混合,还发生了白云石和方解石沉淀,盐岩、石膏、萤石和二氧化碳的溶解,以及钙离子的吸附和钠离子解析。东部山前台地下水系统与腰坝绿洲地下水系统水力联系紧密,是研究区地下水的主要补给水源。在地下水径流过程中发生了方解石和白云石的沉淀,石膏、岩盐和萤石的溶解,以及钙离子的吸附和钠离子解析。
     (8)影响和决定研究区地下水水化学成分形成及演化规律的因素主要包括:水-岩相互作用、人类活动因素的影响和土壤易溶盐含量的影响。①溶解/沉淀作用、阳离子交换吸附作用、蒸发浓缩作用和混合作用共同决定了研究区地下水水化学成分的形成特征;②人类的生产活动,改变了地下水的原始环境,破坏了水化学场的原有模型。③土壤中的易溶盐的溶解及离子交换作用,造成区内地下水SAR值增高,TDS增大。
Groundwater resources has become an extremely significant water sources for oasissurvival and development. However, with the growth of population and rapid development ofsocio-economy, irrational utilization of groundwater resources has triggered to a series ofwater resources and environmental issues, such as the decline ceaselessly of groundwaterlevel, deterioration continuously of groundwater quality, and diminution increasingly ofavailable groundwater quantity. These problems seriously threat to the sustainabledevelopment of oasis. Therefore, it has a great significance to carry out study onhydrochemical composition formation and evolution mechanisms of the groundwater in oasisof arid areas, reveal spatial and temporal evolution laws of gourdwater chemical compositionunder the long-term influence of the human farming, and use water chemistry information tounderstand comprehensively and systematically groundwater systems of arid Oasis. All ofthese play an important role to evaluate sustainable exploitation of groundwater resources,formulate rational exploitation model of groundwater, and promote harmonious developmentof nature and mankind.
     Under the guidance of system theory, the paper takes a typical arid area oasis, namelyYaoba Oasis in Alashan as the research object.. By applying all kinds of integratedinformation, such as groundwater chemical compositions, isotope, hydrogeology etc studiesthe temporal and spatial variations and evolution laws of the groundwater hydrochemistry. Onthe basis of these studies, the interaction mechanisms between groundwater and theenvironment is revealed, and the information of the recharge sources, recharge methods,runoff channels, excretion ways and the main geochemical roles in the groundwater is derivedquantitatively or semi-quantitatively. These study results provides an effective way forunderstanding groundwater system correctly. The main research results are that:
     (1) The paper also conducts statistical analysis on some major hydrochemical indicatorsof groundwater among different irrigation seasons over Yaoba Oasis. The results indicate thatregardless of the exploitation or non-exploitation period, the variation trend of major ioncompositions of phreatic water are in accordance with that of artesian water basically. Theconlusion could be acquired that seasonal change has little effect on hydrochemical spatialvariability. In addition, the hydrological and chemical characteristics of phreatic water is moresusceptible to spatial variation than those of artesian water, which is mainly affected byaquifer media, topography, hydro-meteorological conditions and human activity and so on.Among those water chemical characteristics, Na~+, Cl~- and SO_4~(2-) has more spatial variability,which are the main variables determining salinization. Confined water is less suffuring fromexternal interference, therefore, the salinization is weak.
     (2) The analysis of groundwater chemical compositions measure display that thedistribution of groundwater chemical types and Total Dissolved Solids (TDS) with spacepresents the following features:①In vertical direction, from up to down, TDS varies fromhigh to low, and water chemical types range from complex to easy, which is a reversegeochemical zonation characteristics.②In horizontal direction, for the northeastern, TDS islower and water chemical type is HCO_3-SO_4. The hydrochemical characteristics of southwestern are high TDS, poor water quality and Cl-SO_4 type water; furthermore, it isobvious that TDS varies with season and TDS in non-mining period is higher than miningstage at overall production, while the change of water chemical types with season is notobvious.
     (3) The study on all kinds of ions ratio coefficients of groundwater (e.g.γ_(Cl~-)/γ_(Ca~(2+))、γ_(Mg~(2+))/γ_(Ca~(2+))、γ_(Na~+)/γ_(Mg~(2+))、γ_(Cl~-)/γ_(HCO_2~(2-))、γ_(Cl~-)/γ_(SO_4~(2-))、γ_(Na~+)/γ_(Cl~-)show the results as below:generally speaking, in research area, water chemical compositions of groundwater flowsystem is affected by hydraulic condition and groundwater accumulative action with runoffflowing, becoming poor from northeast to southwest with hydraulic condition, andassembling high saline ions like Cl~-, Mg~(2+) and Na~+. The increasing of various salt densityprovides a good environment for salitation.
     (4) According to the data of groundwater chemistry in research area, the evolutionchateristics of hydrogeochemical compositions with time could be obtained. Sincegroundwater was exploited by human being, the TDS has been keeping on an increasing trendat speed of 40mg/L per year in overall. However, with the difference of years and locations,the raising extents are not even. Southern has higher increasing rate than middle part andnorthern. The hydrochemical type has changed from the original type of HCO_3-Ca·Mg toCl·SO_4-Na·Mg. The amount of Ca~(2+) and Mg~(2+) in groundwater has reached saturation statebasically. The amount of HCO_3~- is increasing, but the ratio of HCO_3~-to total ions is reducing.Groundwater contains more Na~+, SO_4~-, and Cl~- than before. All those reveal that waterchemical field changes toward salination and alkalization, water chemical type developstoward complex, and water quality is becoming poor gradually.
     (5) Theδ~(18)O,δD values of groundwater concentrating along the rainfall distribution line,marks that groundwater is recharged by precipitation in Yaoba Oasis. Furthermore, thedistribution feature that theδ~(18)0 andδD values of northeastern are bigger than those ofsouthwestern, indicates the two regions have different groundwater cycles. Namely, thegroundwater of southwest area is almost kept in a colder climate environment; while in theNortheast area, due to water cycle is more positive for the environment, the groundwaterrecharge is in a warmer climate environment. Vertically, the hydrogen and oxygen isotopecontent are very similar with each other, indicating that all layers of the groundwater keepclose hydraulic contact in vertical direction.
     (6) The measured value of tritium in its surrounding areas groundwater approve that: inYao Oasis area, the Quaternary pore groundwater originated from precipitation, whichbasically is recharged vertically by precipitation Unit preserved by storage accumulationrather than modern atmospheric precipitation and surface water. but recharge. There is littlegroundwater recharge of the Quaternary groundwater in the Oasis's east mountain valley tothe study area. The pore phreatic water of north part and surface floods are the main rechargesource of Oasis's groundwater. The diving of Western desert is another source of supply.
     (7) The results of shallow groundwater hydrogeochemical simulation in study area showthat: the mixing action plays a crutial role in the formation of current water chemistry condition of shallow groundwater. However, the process is not simple mechanical mixing; inthe north, along with the mixture of three supply sources (shallow groundwater, floods, desertdiving), some reaction occurred involving calcite dissolution, dolomite and gypsumprecipitation, carbon dioxide escape, calcium ion parsing and sodium ion adsorption; in TaoSuLakes region of the southwest, along with two types of recharges (shallow groundwater andflood) mixing, the precipitation of dolomite, gypsum and rock salt, the dissolution of calcite,fluorite and dissolved carbon dioxide, as well as Absorption of calcium and sodium ions alsotake place. Analysis of deep groundwater hydrogeochemical simulation results interpret that:in the process of deep groundwater flowing, water-rock interaction occurred refering to manyreactions. Dolomite, gypsum, rock salt, potassium salt dissolved into groundwater, and theirtransfer capacity changed from small and large, which caused calcite precipitation. At thesame time, cations undertook exchange between Na+, Ca2+ on the flowing path. In theprocess, Ca2+ entried into the water, and Na+ was adsorbed to the surface of the aquiferparticles. This reaction caused a significant change of water chemical compositions for theflow in the northern part, showing the water chemistry characteristics from recharge to runoffzone.
     (8) The factors affecting and determining the groundwater chemical characteristics of theOasis and their evolution laws include physical chemistry action, soluble salt content insurface soil as well as man-made acitivity.
引文
[1]李佩成.试论人与自然和谐相处及再造西北山川秀美[J].地球科学与环境学报,2005,27(3):1-4
    [2]李佩成,冯国章.论干旱半干旱地区水资源可持续供给原则及节水型社会的建立[J].干旱地区农业研究,1997,15(2):1-2
    [3]李佩成.试论干旱[M].中国干旱半干旱地区自然资源研究,中国自然资源研究会等六学会主编,北京:科学出版社,1985
    [4]李佩成.关于水源问题及其解决途径的商榷[J].灌溉科技,1975:3-4
    [5]韩德林.中国绿洲研究之进展[J].地理科学,1999,19(4):313-319
    [6]贾宝全,慈龙骏著.绿洲景观生态研究[M],北京:科学出版社,2003
    [7]钱云,郝毓灵.新疆绿洲[M].乌鲁木齐:新疆人民出版社,2000
    [8]贾宝全,慈龙骏,杨晓辉,等.石河子莫索湾垦区绿洲景观格局变化分析[J].生态学报,2001,21(1):34-40
    [9]李佩成.试论地下水研究面临的历史转变[J].地下水,1994,16(4):141-145
    [10]长安大学国际干旱半干旱地区水资源与环境研究培训中心.阿拉善盟腰坝绿洲地下水资源承载力及可持续利用的研究[R].2006
    [11]黄盛璋.论绿洲研究与绿洲学[M].中国历史地理论丛,1990,(2):1-24
    [12]韩德林.新疆人工绿洲[M].北京:中国环境科学出版社,2001
    [13]沈照理,王焰新.水—岩相互作用研究的回顾与展望[J].地球科学,2002,27(2):127-134
    [14](苏)比契叶娃.水文地球化学:地下水化学成分的形成[M].北京:地质出版社.1981
    [15]Stumm,W.,Morgan J.J..Aquatic chemistry.New York,John Wi.leyand Sons,1981.INC59-71
    [16]Afyin,M..Hydrochemical evolution and water quality along the groundwater flow path in the SandLklL plain,Afyon,Turkey[J].Environmental Geology.Volume 31,June 16,1997:221-230
    [17]Parnachev,V.P..Hydrochemical evolution ofNa-SO4-Cl groundwaters in a cold,semi-arid region of southern Siberia[J].Hydrogeology Journal.Volume 7,December 10,1999:546-560
    [18]沈照理.水文地球化学基础[M].北京:地质出版社.1986年6月第一版
    [19]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社.1993年5月第1版
    [20]任增平,闰俊萍.内蒙古达拉特旗平原区地下水水化学特征及形成机制分析[J].中国煤田地质.1998(3):30-33
    [21]宝成,严树堂.阿拉善板滩井盆地地下水及水化学特征研究[J].干旱区资源与环境,1996,10(4): 26-32
    [22]叶浩,王贵玲.宁夏南部月亮山西麓地下水化学特征研究[J].地球学报.2001,22(4):330-334
    [23]李贤庆,侯读杰.鄂小多斯中部气田下古生界水化学特征及天然气藏富集区判识[J].天然气工业.2002,22(4):10-14
    [24]李云峰,李金荣,侯光才.从水文地球化学角度研究鄂尔多斯盆地南区白垩系地下水的排泄途径[J].西北地质.2004,37(3):91-95.
    [25]董维红,苏小四,侯光才等.鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J].吉林大学学报:地球科学版.2007,37(2):288-292.
    [26]董维红,苏小四,侯光才.鄂尔多斯白垩系盆地地下水矿化度和主要离子浓度的分布规律[J].水文地质工程地质.2008,35(4):11-16.
    [27]董维红,苏小四,侯光才.鄂尔多斯白垩系盆地地下水矿化度和主要离子浓度的分布规律[J].水文地质工程地质.2008,35(4):11-16
    [28]温小虎,仵彦卿,常娟等.黑河流域水化学空间分异特征分析[J].干旱区研究.2004,21(1):2-6
    [29]聂振龙,陈宗宁,程旭学等.黑河干流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报:地球科学版.2005,35(1):48-53
    [30]王新建,陈建生.水化学成分聚类法分析干旱区地下水补给[J].水资源保护.2005,21(5):11-15
    [31]白福,杨小荟.河西走廊黑河流域地下水化学特征研究[J].西北地质.2007,40(3):105-110
    [32]王允菊,张志忠.长江口南槽水化学特性与悬沙粘土矿物[J].海洋通报.1995,14(3):106-113
    [33]宋保平,张先林.长江河口地区第四系地下水化学演化机制[J].地理学报.2000,55(2):209-218
    [34]李晶莹,张经.长江南通站含沙量及水化学变化与流域的风化过程[J].长江流域资源与环境.2003,12(4):363-369
    [35]万咸涛,张新宁.长江流域天然水质特征与河流健康[J].水资源研究.2007,28(4):26-28
    [36]范可旭,张晶.长江流域地表水水质演变趋势分析[J].人民长江.2008,39(17):82-84
    [37]张宏锋,李卫红,葛洪涛等.塔里木河下游地下水位与水化学成分关联度排序分析[J].干旱区地理.2003,26(3):260-263
    [38]谭红兵,马万栋,马海州等.塔里木盆地西部古盐矿点卤水水化学特征与找钾研究[J].地球化学.2004,33(2):152-158
    [39]陈永金,陈亚宁,李卫红等.塔里木河下游地下水化学特征对生态输水的响应[J].地理学报.2005,60(2):309-318
    [40]陈永金,陈亚宁,李卫红等.塔里木河下游输水条件下浅层地下水化学特征变化与合理生态水 位探讨[J].自然科学进展.2006,16(9):1130-1137
    [41]杜虎林,肖洪浪,郑威等.塔里木沙漠油田南部区域地表水与地下水水化学特征[J].中国沙漠.2008,28(2):388-394
    [42]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社.1995,6.
    [43]李云鹏,李怡庭.松嫩平原湖泡湿地水化学特征及净化水质作用研究[J].东北水利水电.2001,19(11):39-43
    [44]廖资生,林学钰等.松嫩盆地的地下水化学特征及水质变化规律[J].地球科学:中国地质大学学报.2004.,29(1):96-102
    [45]孙立梅,刘晓洁.吉林省松辽平原东部高平原白垩系地下水水化学特征[J].吉林地质.2005,24(3):22-27
    [46]章光新,邓伟,何岩等.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展.2006,17(1):20-28
    [47]张青伟,,柴社立,蔡晶.吉林东部花岗岩区地下水化学成分及其对岩石风化作用的制约[J].吉林大学学报:地球科学版.2007,37(增刊):171-174
    [48]陈永金,陈亚宁,李卫红.生态输水影响下地下水化学特征的时空变化分析[J].冰川冻土.2005,27(5):734-741
    [49]李俊云,李林立,谢世友等.人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响[J].长江流域资源与环境.2007,16(4):514-518.
    [50]王水献,王云智,董新光.焉耆盆地浅层地下水埋深与TDS时空变异及水化学的演化特征[J].灌溉排水学报.2007,26(5):90-93.
    [51]孙熠.关中盆地浅层地下水水化学场演化及其相关环境问题研究[D].长安大学硕士学位论文,2003
    [52]叶许春.近20年来昆明盆地北端孔隙水化学场演变过程及其驱动因素分析[D].昆明理工大学硕士学位论文,2005
    [53]李锐.广西北海市地下水水动力场和水化学场演化的研究[D].中国地质大学硕士学位论文,2006
    [54]冯波.吉林西部地下水水化学特征演化研究[D].吉林大学硕士学位论文,2006
    [55]刘敏.和田绿洲地下水时空分布规律及其生态环境效应研究[D].西安理工大学硕士学位论文,2007
    [56]谢延玲.鄂尔多斯中部靖边地区水化学成分演化规律研究[D].西北大学硕士学位论文,2008
    [57]王丽.运城盆地水文地球化学演化规律研究[D].北京:北京师范大学.2003
    [58]董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水~(14)C年龄校正中的应用[D].吉林:吉林大学.2005
    [59]韩冬梅.地第四系地下水流动系统分析与水化学场演化模拟[D].北京:中国地质大学,2007
    [60]徐惠珍.济南岩溶泉域地下水水文地球化学特征及防污性能研究[D].北京:中国地质大学,2007
    [61]Yousif,K.Kharaka.水-岩相互作用国际学术会议三十年[J].地质科技学报.2005,3:111-112.
    [62]Garrel,Thompson.A chemical model for sea water at 25℃ and one atmosphere total pressue[J].American Journal of Science,1962,60:57-66
    [63]文冬光,沈照理,钟佐燊等.水—岩相互作用的地球化学模拟理论及应用[M].北京:中国地质大学出版社,1998
    [64]马振民,何江涛,张锡明.荷泽凸起地下热水的水文地球化学特征及成因分析[J].山东地质.2000,16(2):24-30
    [65]王东胜,吴玉成,陈亮等.束鹿地区地下水咸化机理分析[J].中国地质灾害与防治学报,1997,8(2):62-66
    [66]石培泽,马金珠,赵华.民勤盆地地下水地球化学演化模拟[J].干旱区地理,2004,27(3):305-309
    [67]于艳青,余秋生,张发旺等.应用水文地球化学方法分析郑家泉域水文地质条件[J].水文地质工程地质,2005,5(4):17-19
    [68]余秋生,张发旺,韩占涛等.地球化学模拟在南北古脊梁岩溶裂隙水系统划分中的应用[J].地球学报,2005,26(4):375-380
    [69]栾长青,唐益群,高文冰等.鄂尔多斯白垩系环河含水岩组中的地球化学反向模拟[J].自然灾害学报地球学报,2007,16(4):169-173
    [70]罗奇斌,康卫东,谢延玲等.靖边地区白垩系洛河组地下水水文地球化学模拟[J].地下水,2008,30(6):22-24
    [71]Thilo,L.,M(?)nnich,K.O..The use of environmental isotopes in infiltration studies.Interpretation of environmental isotope data in hydrology.Vienna,TEC-IAEA-116,1970
    [72]Dincer,T.,Al-Mugrin,W.,Zimmermann,V..Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermo-nuclear tritium.J.Hydrol,1974,23:79-109
    [73]Thoma,G.,Esser,N.,Sonntag,C.,Weiss,W.and Rudolph,J..1979.New technique of in-situ soil-moisture sampling for environmental isotope analysis applied at Pilot sand dune near Bordeaux-HELP modeling of bomb tritium propagation in the unsaturated and saturated zones.Isotope Hydrology, 1978(Ⅱ),IAEA Vienna:191-204
    [74]Allison,G.B.,Bames,J.B.,Hughes,M.W.and Leaney,F.W.J..The distribution of deuterium and 18O in dry soils,2.Experimental.J.Hydrol,1983,64:377-397
    [75]Van Omen,H.C..The mixing-cell concept applied to transport of non-reactive and reactive components in soils and groundwater.Journal of Hydrology,1985,78:201-213
    [76]H(?)tzl,H.B.Reichert,P.Maloszewski,H.Moser,and W.Stichler.Contaminant transport in bank filtration-determining hydraulic parameters by means of artificial and natural labelling.Contaminant Transport in Groundwater(Eds.H.E.Kobus and W.Kinzelbach),A.A.Balkema,Rotterdam,1989:65-71
    [77]Bergman,H.B.,Sackl,P.Maloszewski and W.Stichler.Hydrological investigations in a small catchment area using isotope data series.5th International Symposium on Underground Water Tracing.Institute of Geology and Mineral Exploration(IGME).Athens,1986:255-271
    [78]Maloszewski,P.H.,Moser,W.,Stichler,B.Bertleff,and K.Hed.in.Modeling of groundwater pollution by river bank filtration using oxygen-18 data.Groundwater Monitoring and Management,IAHS Publ, 1990,173:153-161
    [79]Zuber,A..On calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers,IAEA-TECDOC777“Mathematical models and their applications to isotope strdies in groundwater hydrology”.VIENNA,IAEA,1994
    [80]Adar,EM..Assessment of groundwater fluxes and transmissivities by environmental “Mathematical models and their applications to isotope studies in groundwater hydrology”.VIENNA,IAEA,1994
    [81]Garcia,LopezS.,Benavente,J.J.,Cruz Sanjulian,J.J..Analysis of excess deuterium in groundwaters from southeastern Sierra Nvada.America,Geogaceta,1997,21:109-112
    [82]Kondoh,A,Shimada,J..The origin of precipitation in Eastern Asia by deuterium excess.Journal of Japan Society of Hydrology&Water Resources,1997,10(6):627-629
    [83]Glenn A.Harrington,Glen R.Walker,Andrew J.Love,Kumar A.Narayan.A compartmental mixing-cell approach for the quantitative assessment of groundwater dynamics in the Otway basin.Journal of hydrology,1999,214:49-63
    [84]刘进达,赵迎吕,刘恩凯.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术, 1997(3):34-39
    [85]内蒙古水文地质队.内蒙阿左旗腰坝滩农田供水水文地质勘查报告[R].1968
    [86]宁夏地质局.内蒙阿左旗腰坝绿洲区域综合水文地质普查报告[R].1980
    [87]水电部牧区水利科学研究所.内蒙古阿拉善左旗腰坝牧业草料基地水资源评价及合理利用研究[R].1987
    [88]建设部综合勘察研究院,内蒙古自治区阿拉善左旗水利局.内蒙阿左旗腰坝滩井灌区地下水资源科学管理研究[R].1992
    [89]苑莲菊,武胜忠著.干旱区地下水系统—贺兰山西侧地下水系统[M].地质出版社.北京:1996
    [90]王志奇,关铁琴,卢荣茂.贺兰山(南段)西麓水文地质特征及找水前景[J].地球学报,2002,23(B03):21-24
    [91]中国环境监测总站.环境水质检测质量保证手册[M].北京:化学工业出版社,1998
    [92]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983
    [93]郑淑慧,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素的研究[J].科学通报,1983,(13):801-806
    [94]钱会,马致远编著.水文地球化学[M].北京:地质出版社.2005
    [95]Kehew,A E..Applied chemical hydrogeology.Prentice hall,2001
    [96]Mebus A Geyh,顾慰祖,刘涌等.阿拉善高原地下水的稳定同位素异常[J].水科学进展.1 998(4):333-337
    [97]文冬光,沈照理,钟佐燊等.水—岩相互作用的地球化学模拟理论及应用[M].北京:中国地质大学出版社,1998
    [98]Parhurst,D.L.,Thorstenson,D.C.,Plummer,L.N..PHREEQE-A computer program for geochemical calculations[R].U.S.Geol.Surv.Water Resource Invest Rept.1980:80-96
    [99]Parhurst,D.L.,Appelo,C.A.J..User's guide to PHREEQC(Version2)—A computer program for speciation,batch-reaction,one-dimensional transport and inverse geochemical calculations[R]U.S. Geol..Surv.Water atesour.Invest.Rept.99,1999:42-59
    [100]Plummer,L.N.,Parkhurst,D.L.,Thorstenson,D.C..Development of reaction models for ground-water system[M].Geochim.Cosmochim.1982:665-686
    [101]Plummer,L.N.,Parkhurst,D.L.,Fleming,G.W.and Dunkle,S.A..A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines[M].U.S. Geological Survey.1988
    [102]Plummer,L.N.,Prestemon,E.C.,Parkhurst,D.L..An interactive code(NETPATH)for geochemical reactions along a flow PATH.U.S.Geological Survey Water-Resources Investigations Report.1991: 90-4078
    [103]Plummer,L.Niel.Geochemical modeling of water interaction:past,present,future[J].Water-Rock interaction.1992(1):23-33
    [104]Chapelle F.H.Groundwater geochemistry and calcite cementation of the Aquia Aquifer in SouthernMaryland[J].Water Resources Research,1983,19(2):545-558
    [105]Kenoyer Wisconsin,G.L,Bowse,C.J..Groundwater chemical evolution in a sandy silicate aquifer in Northerml.Patterns and rates of change[J].Water Resources Research.1992,28(2):579~ 589
    [106]Herman,J.S..The eoect of aunit on the geochemical evolution of groundwater in the upper Floridian aquifer system[J].Journal of Hydrology.1994.153:139-155
    [107]Plummer,L.N.,Busby,J.F..Geochemical Modeling of the Madison Aquifer in Parts of Montana, Wyoming and South Dakota[M].Water Resources Research.1990,26(9):1981~2014
    [108]Weidman C,Jones.G.Development of the mollusc Arctica islandica as a palae ocean ographic tool for reconstructing annual and seasonal records of Delta super ~(14)C and delta super ~(18)O in the mid-to-high-latitude North Atlantic ocean[C].The International Symposium on Applications of Isotope Techniques in Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere,Vienna,Austria,1993,04/19-23:461~470
    [109]James,Thomas M.,Welch Alan H.,Preissler Alan M..Geochemical evolution of ground water in Smith Creek Valley.A hydrologically closed basin in central Nevada,USA[M].APPL GEOCHEM. 1989,4(5):493~510
    [110]Datta,P.S.,Bhattscharya,S.K.,Tyagi,S.K..~(18)O studies on recharge ofphreatic aquifers and groundwater flow-paths of mixing in the Delhi area[J].Journal of Hydrology,1996,176:25-36
    [111]Mahmoud,S.AIyamani.Isotopic Com position of rainfall and Groundwater recharge in the western province of Saudi Arabia[J].Journal of Arid Environments,2001,49:751-760
    [112]Mazor,E..Applied Chemical and Isotopic Groundwater Hydrology[M].Milton Keynes:Open Universit Press,1991:274
    [113]D.S.Wang,K.Wang.Isotopes in precipitation in China(1986-1999)[J].Water Resources Assessment: Isotope Techniques Sciences(Series E),2001,44(9):192
    [114]王凤生.吉林省大气降水氢氧同位素浓度场时空展布及其环境效应[J].吉林地质,1997,16(1): 51-56
    [115]章新平,中尾正义,姚擅栋等.青藏高原及其毗邻地区降水稳定同位素成分的时空变化[J].中国科学(D),2001,31(5):353-361
    [116]Toth J..The modem scope of hydrogeology and its history of evolution:a one man's viewpoint,33rd IAH Congress.Groundwater Flow Understanding from Local to Regional Scales[R].Programa Fina, Mexico,Oct.2004
    [117]Toth J..1986.Models of subsurface hydrology of sedimentary basins.In Brain Hitchon et al.,Third Canadian/American on Hydrogeology,NWWA,Dublin,Ohio,USA.
    [118]Kwang-Sik,Lee,D.B.Wenner,Insung Lee.Using H and O isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater:example from Cheju Island, Korea[J].Journal of Hydrology.1999,222:65-74
    [119]Njitchoua,R.,Ngounou Ngatcha,B..Hydrogeo chemistry and environmental isotope investigations of the North Duanare Plain.Northern Cameroon[J].Journal of African Earth Sciences.1997,25(2): 307-316
    [120]Iyamani,S.A.Mahmoud.Isotopic Composition of rainfall and Ground—water recharge in the western province of Saudi Arabia[J].Journal of Arid Environments.2001,49:751-760
    [121]Criss,R.E.,Davisson,M..L..Isotope imaging of surface water/groundwater interactions,sacramento valley,california[J].Journal of Hydrology.1996,178:205-222
    [122]Alejandra Cortes,Jaime Durazo,Robert N.,el al.Studies of isotopic hydrology of the basin of Mexico and vicinity:Annotated bibliography and interpretation[J].Journal of Hydrology,1997,198: 346-376
    [123]Sunil Mehta.Controls on the regional—scale salinization of the Ogallala Aquifer,Southern High plains,Texas,USA[J].Applied Geochemistry.2000,15:849-864
    [124]Cheikh,B.Gaye.Isotope techniques for monitoring groundwater salinization[J].Hydrogeology Journal,2001:217-218
    [125]Dansgaard,W..Stable isotopes in precipitation[J].Tellus.1964,16(4):436-468
    [126]文冬光.环境同位素论区域地下水资源属性[J].地球科学.2002,27(3):141-147
    [127]李彬.天山北麓山前平原区水资源合理利用的环境同位素研究[J].水文地质工程地质.1994(5):30-34
    [128]苏小四,林学钰,廖资生等.黄河水δ~(18)O,δD和~3H的沿程变化特征及其影响因素研究[J].地球化学.2003,32(4):349-356
    [129]刘丹,刘世青,徐则民.应用环境同位素方法研究塔里术河下游浅层地下水[J].成都理工学院学报,1997,24(3):89-95
    [130]丁宏伟,赵成,黄晓辉.疏勒河流域的生态环境与沙漠化[J].干旱医研究,2001,18(2):5-9
    [131]沈照理.应该继续重视与开展水—岩相互作用的研究[J].水文地质工程地质,1997,(4):16-20
    [132]曾溅辉.地下水地球化学模拟[J].地质论评.1993:490-495
    [133]冯启言,韩宝平著.任丘油田水文地球化学演化与水—岩作用[M].徐州:中国矿业大学出版社.2001
    [134]郭永海,沈照理,钟佐燊.河北平原地下水化学环境演化的水文地球化学模拟[J].中国科学(D辑).1997(3):360-365
    [135]刘爱菊,郭平战,王勋文.朝邑滩地下水水化学分带性及其形成机制之探讨[J].地下水.1997(2):56-62
    [136]王东胜,吴玉成,陈亮.束鹿地区地下水咸化机理分析[J].中国地质灾害与防治学报.1997(2):62-66.
    [137]万洪涛,谢传节,杨勇等.贵州后寨河喀斯特小流域水化学特征[J].中国岩溶.1999(4):329-336
    [138]陈履安.贵州高氟地下水的分类特征及其形成机理[J].贵州地质.2001(4):244-246.
    [139]马振民等.山东泰安岩溶水系统地下水化学环境演化[J].现代地质.2002(4):424-429.
    [140]王珍岩,孟广兰,王少青.渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟[J].海洋地质与第四纪地质.2003,23(1):49-53
    [141]阿里木·吐尔逊,徐卫亚,萨肯·塞麦提.坝基老化的反向水文地球化学模拟[J].水利水电科技进展.2006,26(5):14-17
    [142]张建立,潘懋,贾国东等.大庆齐家水源地水文地球化学环境的模拟[J].地球学报.2003,24(3):267-272
    [143]李义连,王焰新,周来茹等.地下水矿物饱和度的水文地球化学模拟分析——以娘子关泉域岩溶水为例[J].2002,21(1):32-36
    [144]李义连,王焰新,张江华等.娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析.地球科学[J].2000,25(5):468-471
    [145]王焰新,马腾,罗朝晖等.山西柳泉域水—岩相互作用地球化学模拟[J].地球科学.1998,23(5): 519-522
    [146]王广才,陶澍,沈照理等.平顶山矿区岩溶水系统水—岩相互作用的随机水文地球化学模拟[J].水文地质工程地质.2000,3:9-12
    [147]陈宗宇.天津市塘沽低温热储回灌的水—岩相互作用地球化学模拟[J].1998,23(5):513-518
    [148]吕广罗,蔡德嵩,陈玲芬等.韩城矿区奥灰水化学特征及形成机制探讨[J].中国煤田地质.2003,15(4):27-30.
    [149]钱会,覃兰丽,姬亚东等.鄂尔多斯盆地摩林河水化学成分的形成机制[J].干旱区研究.2007,24(5):590-597
    [150]王焰新,郭华明,阎世龙等著.浅层孔隙地下水系统环境演化及污染敏感性研究—以山西大同盆地为例[M],北京:科学出版社2004年1月第1版
    [151]张宗祜,沈照理,钟佐燊等.华北平原地下水环境演化[M].北京:地质出版社.2000年2月第1版
    [152]史基安.石羊河流域地下水化学环境演化特征研究[J].沉积学报.1998(2):145-149
    [153]陈京生,鲁静.天山北麓阜康—准东山前倾斜平原地下水化学形成特点分析[J].勘察科学技术.1999(5):37-40.
    [154]张艳丽.和田县(市)地下水水化学基本特征[J].新疆地质,2008,26(2):184-188
    [155]李学礼.水文地球化学[M].北京:原子能出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700