用户名: 密码: 验证码:
四叶片微陀螺结构设计与加工工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动式微陀螺是利用哥氏效应工作的测角传感器,以其外形尺寸小、质量轻、功耗低、启动快、成本低、可靠性高和易于数字化等优点已逐步在军用和民用市场得到广泛的应用。四叶片微陀螺是一种具有完全对称的驱动模态和检测模态的微陀螺,它的性能与结构设计、加工工艺密切相关。本文针对四叶片微陀螺结构设计与加工工艺,开展了以下研究:
     1.四叶片微陀螺基本原理分析。根据四叶片微陀螺基本结构,建立了四叶片微陀螺的动力学模型,推导了微陀螺关键运动参数的表达式,并在此基础上分析了微陀螺的灵敏度,得出影响灵敏度的关键因素。分析了四叶片微陀螺的空气阻尼形式,提出了减小空气阻尼的措施。
     2.四叶片微陀螺结构分析与设计。分析了四种形式的微陀螺支撑结构:平端支撑结构、开孔支撑结构、凸台支撑结构和凹槽支撑结构,对比了四种支撑结构的差别,综合考虑模态频率分离、支撑能量损耗和目前加工工艺等因素,确定采用平端支撑结构。设计了四叶片微陀螺主要结构参数。分析了主要结构参数对模态频率的影响,并分析了不同参数误差对模态频差的影响程度,为微陀螺加工工艺设计提供了指导依据。
     3.四叶片微陀螺加工工艺研究。包括硅结构的预埋掩模湿法腐蚀工艺、玻璃基板加工工艺、惯性质量棒和支撑底座的加工工艺。基于以上加工工艺,对微陀螺的装配进行了分析,得出主要装配误差形式,并提出了改进措施。
     4.四叶片微陀螺性能测试,包括微陀螺静态电容测试、微陀螺模态测试和哥氏力测试。微陀螺样机的静态电容为3.289pF,与理论值误差小于5%;大气环境下,驱动模态频率和检测模态频率分别为2.676KHz和2.699KHz,品质因数分别为10.5和17.4;真空封装条件下,驱动模态频率和检测模态频率分别为2.689KHz和2.721KHz,品质因数分别为432和672.3。
The vibrating microgyroscope is an angle measurement sensor based on the Coriolis Effect. For the advantages of small size, low weight, low power, fast startup, low cost, high reliability, being easy to be digital and et al, the microgyroscope is becoming more and more popular in the applications of military and civil fields. The quatrefoil microgyroscope is a totally symmetrical structure, the performance of which is closely connected with the structural design, fabrication process. This dissertation focuses on the structural design and fabrication process. Subsequent research contents are included in this dissertation.
     1. The basic structure of the quatrefoil microgyroscope is designed. The dynamic model of the microgyroscope is established. The expressions of the key kinematical parameters are deduced based on the dynamic model. The sensitivity is analyzed, and the crucial factors affecting the sensitivity are also found. The air damping of the quatrefoil gyroscope is analyzed and simulated. According to the special structure of the quatrefoil gyroscope, some measures to decrease the squeeze air damping are put forward.
     2. The structural analysis and design of the quatrefoil microgyroscope is studied. Four kinds of support structure for the quatrefoil microgyroscope are analyzed. According to some factors, including mode separating, support energy loss and the current fabrication process, the flat support structure is chosen for the structural design of the quatrefoil microgyroscope. The main structural parameters of the quatrefoil microgyroscope are designed. The influence of structural parameters on the mode frequency is studied. The influence of the errors of the structural parameters is analyzed. It provides guidance for the fabrication process designed for the quatrefoil microgyroscope.
     3. The fabrication process is deeply studied, including the pre-embedded mask wet etching of the silicon structure, the wet etching of the Pyrex glass, the fabrication process of the inertial mass pole and support pedestal. Based on the fabrication process above, the assembly process of the microgyroscope is analyzed, the assembly errors are obtained and some steps for improving the assembly process are taken consideration.
     4. A fabricated quatrefoil microgyroscope is characterized, including static capacitance test, mode test and Coriolis force test. The static capacitance is 3.289pF,and the error between the capacitance test result and the theoretic value is less than 5%;The drive frequency and sense frequency are 2.676 KHz and 2.699 KHz at atmosphere pressure, and the Q-factor values are 10.5 and 17.4, respectively; after being packaged in the vacuum, the drive frequency and sense frequency are 2.689 KHz and 2.6721 KHz, and the Q-factor values are 432 and 672.3, respectively.
引文
[1] IEEE Aerospace and Electronic Systems Society. IEEE Std 528-2001 IEEE Standard for Inertial Sensor Terminology. New York: The Institute of Electrical and Electronics Engineers,Inc, 2001.
    [2]谷庆红.微机械陀螺仪的研制现状[J].中国惯性技术学报,2003,11(5):67~72.
    [3]肖定邦.新型蝶翼式微机械陀螺关键技术研究[D].长沙:国防科学技术大学,2009.
    [4] P. Greiff, B. Boxenhorn, T. King, L. Niles. Silicon monolithic micromechanical gyroscope[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, 1991: 996-968
    [5] P. Greiff, B. Boxenhorn. Micromechanical Gyroscopic Transducer with Improved Drive and Sense Capabilities[P]. US Patent: 5515724, 1996
    [6] A. Kourepenis, J. Borenstein, J. Connelly, R. Elliott. Performance of MEMS Inertial Sensors[C]. Proceedings of IEEE Position Location and Navigation Symposium, 1998: 1-8
    [7] S. E Alper, T. Akin. A planar gyroscope using a standard surface micromachining process[C]. Proceedings of 14th European Conference on Solid-State Transducers, 2000: 387-390
    [8] K. Maenaka, S. Ioku and N. Sawai. Design, fabrication and operation of MEMS gimbal gyroscope[J]. Sensors and Actuators A, 2005, 121: 6-15
    [9] J. Bernstein, S. Cho and et al. A micromachined comb-drive tuning fork rate gyroscope. Proceedings of International Conference on Micro Electro Mechanical Systems, 1993: 143-148
    [10] P. Greiff, B. Boxenhorn. Tuning Fork Gyroscope[P]. US Patent: 6862934B2, 2005
    [11]满海鸥.硅微陀螺的温度特性研究[D].长沙:国防科学技术大学,2009.
    [12]刘宇,路永乐,黎蕾蕾等.固态振动陀螺与导航技术[M].北京:中国宇航出版社, 2010
    [13] M Lutz, W Golderer and J Gerstenmeier. A precision yaw rate sensor in silicon micromachining[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, 1997: 847-850
    [14] A. Sharma, F. Zaman, B. Amini, F. Ayazi. A High-Q In-Plane SOI Tuning Fork Gyroscope[C]. Proceedings of IEEE SENSORS, 2004: 467-470
    [15] M. Zaman, A. Sharma, F. Ayazi. High Performance Matched-Mode Tuning Fork Gyroscope[C]. Proceedings of IEEE MEMS, Istanbul, Turkey, 2006: 66-69
    [16] A. Sharma, M. Zaman, F. Ayazi. A 104dB SNDR Transimpedance-based CMOSASIC for Tuning Fork Microgyroscopes[C]. Proceedings of IEEE Custom Intergrated Circuits Conference, 2006: 655-658
    [17] A. Sharma, M. Zaman, M. Zucher, F. Ayazi. A 0.1°/h Bias Drift Electronically Matched Tuning Fork Microgyroscope[C]. Proceedings of IEEE MEMS, Tucson, AZ, 2008: 6-9
    [18] K. Y. Park, C. W. Lee and et al. Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish-hook-shaped springs[J]. Sensors and Actuators A, 1998, 64: 69–76
    [19] J. A. Geen, S. J. Sherman and J. F. Chang. Single-chip surface micromachined integrated gyroscope with 50°/h Allan deviation. IEEE J. Solid-State Circuits, 2002, 37: 1860–1866
    [20] M. Braxmaierl, A. GaiBerl, T. Link, A. Schumacher. Cross-Coupling of The Oscillation Modes of Vibratory Gyroscopes[C]. Proceedings of the l2th International Conference on Solid State Sensors, Actuators and Microsystem, Boston, 2003: 167-170
    [21]施芹.提高硅微陀螺仪性能若干关键技术研究—正交误差与杂散电容分析研究[D],东南大学博士学位论文, 2005
    [22] W. Geiger, B. Folkmer, U. Sobe, H. Sandrnaier. New Designs of Micromachined Vibrating Rate Gyroscopes with Delcoupled Oscillation Modes[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, Chicago, 1997: 1129-1132
    [23] C. Acar, A. Shkel. Post-release Capacitance Enhancement in Micromachined Devices[C]. Proceedings of IEEE Sensors, 2004: 268-271
    [24] C. Acar and A. Shkel. Inherently Robust Micromachined Gyroscopes with 2-DOF Sense-Mode Oscillator[J]. Journal of Microelectromechanical Systems, 2006, 15 (2): 380-387
    [25] S. Alper and T. Akin. A symmetric surface micromachined gyroscope with decoupled oscillation modes[J]. Sensors and Actuators A, 2002, 97–98: 347–358
    [26] S. Alper and T. Akin. A Single-Crystal Silicon Symmetrical and Decoupled MEMS Gyroscope on an Insulating Substrate[J]. Journal of Microelectromechanical Systems, 2005, 14 (4): 707-717
    [27] S. Alper, K. Azgin, T. Akin. High-Performance SOI-MEMS Gyroscope with Decoupled Oscillation Modes[C]. Proceedings of IEEE MEMS, Istanbul, Turkey, 2006: 70-73
    [28] S. Alper, I. Ocak1, T. Akin. Ultra-Thick and High-Aspect-Microgyroscope Using EFABTM Multi-Layer Additive Electroforming[C]. Proceedings of IEEE MEMS, Istanbul, Turkey, 2006: 670-673
    [29] S. Alper, K. Azgin. A High-Performance Silicon-on-Insulator MEMS GyroscopeOperating at Atmospheric Pressure[J]. Sensors and Actuators A, 2007, 135: 34-42
    [30] W. Geiger, B. Folkmer and J. Merz. A new silicon rate gyroscope[J]. Sensors and Actuators A, 1999, 73: 45–51
    [31] W. Geiger, J. Merz and T. Fischer. The silicon angular rate sensor system DAVED[J]. Sensors and Actuators A, 2000, 84: 280–284
    [32] W. Geiger, W. U. Butt, A. Gaisser and et a1. Decoupled microgyros and the design principle DAVED[J]. Sensors and Actuators A, 2002, 95: 239-249
    [33] A. GaiBer, W. Geiger, T. Link. New digital readout electronics for capacitive sensors by the example of micro-machined gyroscopes[J]. Sensors and Actuators A, 2002, 97-98: 557-562
    [34] T. Juneau, A. Pisano, J. Smith. Dual Axis Operation of a Micromachined Rate Gyroscope[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, Chicago, 1997: 883-886
    [35] R. Neul, U. Gómez, K. Kehr. Micromachined Angular Rate Sensors for Automotive Applications[J]. IEEE Sensors Journal, 2007, 7 (2): 302–309.
    [36] A. Thomae, R. Schellin, M. Lang, W. Bauer. A Low Cost Angular Rate Sensor in Si-surface Micromachining Technology for Automotive Application[C]. Proceedings of SAE, Detroit, 1999: 0931-0936
    [37] M. W. Putty and K. Najafi. A micromachined vibrating ring gyroscope[C]. Proceedings of IEEE MEMS, Hilton Head, SC, 1994: 213-220
    [38] F. Ayazi and K. Najafi. A HARPSS polysilicon vibrating ring gyroscope[J]. Journal of Microelectromechanical Systems. 2001, 10: 169–179
    [39] G. He, K. Najafi, A single-crystal silicon vibrating ring gyroscope, in: Dig. Tech. Papers, A Solid State Sensors, Actuators and Microsystems Workshop (Hilton Head), 2002, 718–721
    [40] J. A. Gregory, J. Cho and K. Najafi. MEMS Rate and Rate-Integrating Gyroscope Control with Commercial Software Defined Radio Hardware[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, Beijing, 2011: 2394-2397
    [41] F. Ayazi, K. Najafi. Design and Fabrication of A High-Performance Polysilicon Vibrating Ring Gyroscope[C]. Proceedings of 11th IEEE/ASME International Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, 1998: 621-626
    [42] M. F. Zaman and et al. The Resonating Star Gyroscope: A Novel Multiple-Shell Silicon Gyroscope With Sub-5 deg/hr Allan Deviation Bias Instability[J]. IEEE Sensors Journal, 2009, 9: 616-624
    [43] F. Ayazi. Multi-DOF Inertial MEMS: From Gaming to Dead Reckoning[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, Beijing, 2011: 2805-2808
    [44] W. K. Sung and et al. A mode-matched 0.9MHz single proof-mass dual-axis gyroscope[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, Beijing, 2011: 2821-2824
    [45] J. H. Weng, W. H. Chieng and J. M. Lai. Structural design and analysis of micromachined ring-type vibrating sensor of both yaw rate and linear acceleration[J]. Sensors Actuators A, 2005, 117: 230–240
    [46] K. Liu, W. Zhang, W. Chen and et al. The development of micro-gyroscope technology[J]. Journal of Micromechnics and Microengineering, 2009, 19: 113001, doi: 10.1088/0960-1317/19/11/113001
    [47] I. Hopkin. Performance and design of a silicon micromachined gyroscope [C]. Symposium of Gyro Technology, Stuttgart, Germany, 1997: 1.0–1.10
    [48] T. K. Tang, R. C. Gutierrez, J. Wilcox, C. Stell, V. Vorperian, R. Calvet, W. Li, I. Charkaborty, R. Bartman, W. Kaiser, Silicon Bulk Micromachined Vibratory Gyroscope[C], Tech Digest, Solid-State Sensor and Actuator Workshop, Hilton Head, S.C. June 1996: 288-293
    [49] T.Tang, R. Gutierrez, C. Stell, V. Vorperian, G. Arakaki, J. Rice, W. Li, I. Chakraborty, K. Shcheglov, J. Wilcox, W. Kaiser. A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft[C]. Digest, IEEE/ASME MEMS Workshop, Nagoyo Castle, Japan, January 1997: 500-505
    [50] T. K. Tang, R. Gutierrez and et al. High Performance Microgyros for Space Application[C]. American Institute of Aeronautics and Astronautics, 1999
    [51] S. Y. Bae, K. J. Hayworth, K. Y. Yee, K. Shcheglov and D. V. Wiberg. High performance MEMS micro-gyroscope[C]. Proceedings of SPIE, 2002, 4755: 316–324
    [52] E. Grayer et al. Automatic Gain Control ASIC for MEMS Gyro Applications[C]. Proceedings of the American Control Conference, Arlington, VA, June 25-27, 2001: 1219–1222
    [53] A. Seshia, R. Howe, S. Montague. An Integrated Microelectromechanical Resonant Output Gyroscope[C]. Proceedings of the IEEE MEMS, 2002: 722-726
    [54] H. K. Xie, G. K. Fedder. Integrated Microelectromechanical Gyroscope[J]. Journal of Aerospace Engineering, 2003, 16(2): 65-75.
    [55] M. Kurosawa et al. A surface acoustic wave gyroscope sensor[J]. Sensors Actuators A, 1997, 66: 863–866
    [56] V. K. Varadan et al. Design and development of a MEMS-IDT gyroscope [J]. Smart Material and Structure, 2000, 9: 898–905
    [57]熊斌.栅结构微机械振动式陀螺[D].中国科学院上海微系统所博士学位论文, 2001
    [58]熊斌,车录锋,王跃林.一种栅形结构微机械陀螺的研究[J].中国机械工程,2003, 14 (3) : 184~186
    [59] Bin Xiong, Yuelin Wang, Xiaozhen Huang. Study of a Novel Silicon Micromachined Gyroscope[C]. Proceedings of International Conference on Solid-State and Integrated-Circuit Technology, 2001: 746-748
    [60] Zhaohui Song, Xuemeng Chen, Shusen Huong. A High-sensitivity Piezoresistive Gyroscope With Torsional Actuation and Axially-stressed Detection[C]. Proceedings of IEEE Sensors, 2003: 457-460
    [61]陈雪萌.一种压阻式微机械陀螺的研究[D].中国科学院上海微系统所博士学位论文, 2005
    [62] Yao Yahong, Gao Zhongyu, Zhang Rong, Dong Yuqian, Chen Zhiyong. A Silicon Wafer Dissolved Vibrating Gyroscope[C]. Proceedings of IEEE Instrumentation and Measurement Technology Conference, St. Paul, Minnesota, 1998: 1133-1136
    [63]周斌,高钟毓,陈怀,张嵘,陈志勇.微机械陀螺数字读出系统及其解调算法[J].清华大学学报(自然科学版), 2004, 44 (5): 637-644
    [64]董煜茜,高钟毓,陈志勇,张嵘.微机械振动轮式陀螺样机的实验研究[J].宇航学报, 2000, 21 (1): 65-70
    [65] Yuqian Dong, Zhongyu Gao, Rong Zhang, Zhiyong Chen. A Vibrating Wheel Micromachined Gyroscope for Commercial and Automotive Applications[C]. Proceedings of IEEE Instrumentation and Measurement Technology Conference, 1999: 1750-1754
    [66]陈志勇,高钟毓,张嵘.振动轮式微机械陀螺频率配置和气压选择[J].中国惯性技术学报, 2001, 9 (3): 52-56
    [67] X. S. Liu, Z. C. Yang, X. Z. Chi, J. Cui, H. T. Ding, Z. Y. Guo, B. Lv, L. T. Lin, Q. C. Zhao, G. Z. Yan. A doubly decoupled lateral axis micromachined gyroscope[C]. Sensors and Actuators A: Physical, 2008, doi:10.1016/j.sna.2008.10.015.
    [68] J. Cui, Z. Y. Guo, Z. Yang, Y. L. Hao, G. Z. Yan. Electrical Coupling Suppressing for A Microgyroscope Using Ascending Frequency Drive with 2-DOF PID Controller[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, Beijing, 2011: 2002-2005
    [69] Z. Y. Guo and et al. A Lateral-Axis Micro electromechanical Tuning-Fork Gyroscope With Decoupled Comb Drive Operating at Atmospheric Pressure[J]. Journal of Micromechanical Systems , 2010, 19: 458-468
    [70] Z. Y. Guo and et al. A Lateral-Axis Micromachined Tuning Fork Gyroscope With Torsional Z-sensing and Electrostatic Force-balanced Driving[J]. Journal of Micromechanics and Microengineering, 2010, 20, 025007. doi:10.1088/0960-1317/20/2/025007
    [71] J. Cui, Z. Y. Guo, Z. Yang, Y. L. Hao, G. Z. Yan. Improvement of Transient Response for Drive Loop of Microgyroscope using 2-DOF PID Controller[C]. Proceedings of International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, 2011: 287-290
    [72] L. Lin, D. Liu, Z. Y. Guo, Z. Yang, G. Z. Yan. Digital Closed-loop Controller Design of A Micromachined Gyroscope Based on Auto Frequency Swept[C]. Proceedings of International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, 2011: 689-692
    [73]裘安萍,苏岩.振动轮式微机械陀螺仪中滑膜阻尼机理的研究[J].中国机械工程第, 2006, 17(16): 1679-1688
    [74]王元山,王寿荣,许宜申.一种解耦的微机械陀螺研究[J].中国惯性技术学报, 2006, 14 (4): 56-58
    [75] Anping Qiu, Yan Su, Qin Shi. Vacuum Packaged Micromachined Gyroscope[C]. Proceedings of 1st IEEE NEMS, 2006: 407-409
    [76]杨波,周百令.真空封装的硅微陀螺仪[J].东南大学学报(自然科学版), 2006, 36 (5): 736-740
    [77] Lishuang Liu, Jun Liu, Yunbo Shi, Ruirong Wang, Rui Zhao, Jun Tang. GaAs/InxGa1-xAs/GaAs/AlAs Resonant Tunneling Diodes for Novel MEMS Gyroscope Application[C]. Proceedings of International Conference on Solid-State Sensors and Actuators, Beijing, 2011: 28-31
    [78] Jun Liu, Kang Du, Ruirong Wang and Yunbo Shi. Research of Meso-Piezoresistive Effect Micromachined Gyroscope[C]. Proceedings of International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, 2011: 1-4
    [79]孟光,张文明.微机电系统动力学[M].北京:科学出版社, 2008
    [80] K. M. Chang, S. C. Lee and S. H. Li. Squeeze film damping effect on a MEMS torsion mirror[J]. Journal of Micromechanics and Microengineering, 2002, 12: 556-561. PII:S0960-1317(02)29549-2
    [81] Minhang Bao, Yuanchen Sun, Jia Zhou and Yiping Huang. Squeeze-film air damping of a torsion mirror at a finite tilting angle[J]. Journal of Micromechanics and Microengineering, 2006, 16: 2330-2335. doi:10.1088/0960-1317/16/11/012
    [82] Bao Minghang. Analysis and Design Principles of MEMS Devices[M]. Elsevier, 2005
    [83] Xiong Wang, Dingbang Xiao, Zelong Zhou, Zhihua Chen, Xuezhong Wu and Shengyi Li. Support loss for beam undergoing coupled vibration of bending and torsion in rocking mass resonator[J]. Sensors and Actuators A, 2011, doi:10.1016/j.sna.2011.08.023
    [84] Xiong Wang, Dingbang Xiao, Zelong Zhou, Xuezhong Wu, Zhihua Chen andShengyi Li. Support Loss in Rocking Mass Microgyroscope[J]. Sensors 2011, 11, 9807-9819; doi:10.3390/s111009807
    [85]徐泰然著,王晓浩等译.MEMS和微系统——设计与制造[M].北京:机械工业出版社,2004
    [86]侯占强.蝶翼式硅微陀螺的信号检测技术研究[D].长沙:国防科学技术大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700