用户名: 密码: 验证码:
多约束下复杂地质模型快速构建与定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地质行业信息化程度的不断提高,三维地质建模技术得到了不断的发展,并逐渐成为矿山地质、城市地质、岩土工程等领域的研究热点,在一系列关系到国计民生的重大领域中的应用越来越广泛。通过利用地质数据,建立多约束的地下复杂三维地质结构模型,可以辅助地质专业人员对地质空间实体的空间结构和地质拓扑关系有一个直观的认识,增强对复杂地质构造的理解和判别能力,为实际的研究工作提供验证和解释。在此基础上进行灵活方便的地质分析,为制定科学合理的地下空间开发利用规划和区域发展规划提供决策依据。
     三维地质建模所依赖的地质数据源有很多:钻孔数据、地质剖面图、地层顶板等值线图、断层和褶皱等构造数据等。钻孔数据反映了在勘探点位置上的详细地层分层,属于高可信度数据,钻孔点位的疏密程度将决定三维地质模型的精细程度;剖面图反映了建模区域内的整个地层框架结构,是整个建模数据源中比较复杂的一类,它来自于钻孔信息和物探解释资料,在剖面图上也可反映断裂构造信息,而且剖面图在成图过程中还引入了地质专家的知识经验;中段图数据反映了地层在某一深度的水平面上的地层分区情况,其中既有原始的地质信息,也包含了地质专家的经验;地层顶板等值线数据主要由测量点和钻孔分层数据追踪而来,包含了地质专家的知识,反映了单个地层面的起伏形态;断裂和褶皱等构造数据主要来源于地球物理的解释数据,可信度不高,但是它的引入会增加建模的复杂度。多源地质数据的提取和融合采用MapGIS K9的数据中心中的框架+插件的数据管理模式,支持建模数据源的动态扩展。
     多约束条件下的复杂三维地质结构模型快速构建方法主要思路是:采用不规则三角网数据模型,综合分析各个建模数据源的特性,论文以交叉网格状的地质剖面数据为主体,根据交叉剖面确定建模区域的空间结构,划分出田字状的模型单元格,在单元格内同时约束其他各类地质建模数据源。对建模数据源进行数据融合和归并,形成单元格内的建模点状数据源和线状数据源。通过快速搜索单元格内每个地层融合后的点线数据源,自上而下逐次建立单元格内每个地层的地质面模型。在建立地质面的模型过程中,根据算法提供的三维地质模型交互编辑工具,允许地质专业人员适时加入约束信息或调整建模参数,修正或光滑地质面模型。所有单元格内的地质面模型都建立结束后,合并单元格之间的同种地层属性的地质面,并利用地层编辑工具和地质面相交处理工具切断相交的地质面模型,保证地质面的空间拓扑正确性。最后算法根据地质面的空间拓扑规律自动构建整个建模区域的所有地质体,并给地质体赋于地层的相关属性。复杂地质体的块体构建体现在这几个方面:建模数据源快速引入、建模数据源的快速融合、基于地层属性和空间条件快速搜索融合后的建模数据源以及基于地质面拓扑的快速构建。
     建立的地质体随着建模数据源的更新和新约束的建模数据源的加入,模型在局部会发生变化,需要重构。论文通过提供三维地质模型地质点、地质线、地质面和地质体的多种编辑工具,提供对模型的局部交互式编辑,并通过地质体的布尔运算等方法,解决了地质体重构后的空间冲突问题。
     三维地质模型建立之后是否能够进行模型定量分析,取决于模型的建模精度。论文先从模型的建模数据源和建模过程分析了模型误差产生的原因,论述了针对三维地质模型的质量评估方法。论文分析了建模初始数据的误差检测和建模中间结果的误差检测方法,并讨论了模型的误差修正技术。基于高精度的三维地质模型,论文研究了模型的定量分析方法,主要包括:三维模型的交互工具和三维模型的查询、三维模型的任意方式的切割、地质体的交叉并布尔运算、三维模型生成二维地质图件、模型长度、方向、面积和体积计算方法、结构模型与属性模型的融合可视化与分析方法以及通过模型网格剖分并结合具体地质专业的专业分析计算方法。
     论文在充分吸收国内外三维地质模拟发展前沿及其研究成果的基础上,围绕在多约束条件下快速建模和高质量建模这两个基本点,详细阐述了论文采用的数据模型,分析了建模过程中面临的一系列技术难题,结合不同地区的地质特点进行建模试验,验证建模算法的效率和精度。论文从以下方面进行了研究工作:
     (1)从三维地质数据源信息的表述、三维地质结构建模和相关软件应用的研究等多个层面来讨论复杂三维地质结构建模技术的研究情况,充分比较和分析了现有数据模型的优缺点,提出多约束地质数据条件下的基于地质要素的TIN网模型作为建模中的三维数据模型,阐述了模型对方向及拓扑的处理,确定了本论文的主要研究目标、研究内容。
     (2)分析了多约束下多源地质数据的各自特点,提出在一个建模区域内,各种数据源必须在同一个标准地层的参数控制指导之下.。详细阐述了多源数据的标准化方法,和基于框架插件式的数据提取、数据检查和一致性处理方案,提出多约束下复杂地质结构模型构建所依赖的三维要素模型,为多源地质数据融合的实践提供了新的方法思路。
     (3)提出一套适合不同地区地质特点的多约束下复杂地质结构快速建模方法,研究在确保模型精度的前提下,尽量减少人工交互建模的工作量,提高模型的建模效率。建模算法以交叉剖面网格数据为核心数据源,整个算法突出快速和支持定量分析两个特点,重点研究了多约束数据融合下的含断裂等复杂构造现象的复杂地质面快速构建方法和三维模型局部重构方法。
     (4)在分析三维地质模型误差来源的基础上,讨论了三维地质模型的质量评价方法和理论。论文分析了三维地质模型的误差产生的原因,提出了模型误差检测的方法;在此基础上,归纳出了模型的质量评价理论。并从几个方面论述了模型误差的修正方法,如地质剖面修正法和虚拟孔修正法等。
     (5)在高质量三维地质结构模型基础上,研究了三维模型定量分析方法。论文研究了三维地质模型的切割技术,包括任意切割面的构建、地质模型的任意面切割、地质体的布尔运算和基于三维模型的平面图和剖面图的生成等。介绍了三维地质模型的数学量算方法:空间距离与方向量算、面积量算、体积量算、产状计算与查询等。并对结构模型与属性模型的融合分析进行了讨论,阐述了结构模型与属性模型的融合可视化技术和结构模型约束下的属性建模与统计分析。并结合地质专业给出了三维地质结构模型的专业计算方法:先进行三维地质结构模型的单元剖分,然后进行专业计算,如工程地质的应力分析技术、水文地质的地下水流分析等。
     概括起来,本论文的主要成果和创新点主要为:
     (1)提出以交叉剖面数据为主体,涵盖多源地质数据的复杂地质结构的数据模型,研究这种数据模型中的要素组织方法和空间拓扑规则。
     (2)提出多约束地质数据下的的复杂地质结构快速建模方法,既保证模型的精度,又能保证建模的效率。
     (3)研究了多种三维地质结构模型的定量分析方法,如模型计算、模型切割和结合专业的三维地质模型的评价分析研究。
     (4)以多约束、快速和高质量为主要目标,研制了多约束下复杂地质模型构建与定量分析原型系统。
     论文在研究过程中,采取建模方法技术研究和实际应用相结合的思想,取得一定的结论和成果,丰富了三维地质模拟的研究方法,也为后期通用的三维智能地学建模系统的研究提供建设经验。
As the degree of geological industry information continuous improvement, three-dimensional geological modeling technology has been continuously developed, which has become the research focus in mine geology, urban geology, geotechnical engineering and other fields.which applied more and more widely in a series major areas related to the people's livelihood.A multi-constrained underground complex three-dimensional model of the geological structure can be build through the use of geological data, and geological professionals can have an intuitive understanding of the geological structure of space and geo-spatial entities, topological relations, and enhance the understanding of complex geological structure and the ability of distinguish, which can provide validation and interpretation for the actual research work.Based on this, we can analysis the geological flexible and convenient, which help for decision-making for the utilization of underground space planning and regional development scientifically and rationally.
     There are many kinds of geological data sources which three-dimensional geological modeling relied on, including:borehole data, geological cross-section map, contour map, faults and folds and other structural data. Borehole data is a kind of high creditable data, which reflects the position of the detailed exploration of layered strata. The final level of three-dimensional geological model is determined by the density of the drill point; profile data, which comes from drilling information and geophysical interpretation, is a kind of complex data in the whole modeling sources-data, and reflects the whole stratum framework of the modeling region. The profile also reflects the fault structure information, and also introduces the geological expert knowledge and experience in the mapping; the middle of map data reflect the formation of the horizontal surface at a depth of the stratum area, which not only include the original geological information, but also contains the geological expert experience; formation of roof contour data mainly tracked by measuring point and drilling from hierarchical data, which including the geological knowledge of experts, faults and folds and other structural data comes mainly from the interpretation of geophysical data, but the credibility is low. However, but it's introduction will increase the complex of the geo-model. Using data centers of MapGIS K9+plug-in framework for data management, multi-source geological data extraction and integration can support the dynamic expansion of modeling data sources.
     The main idea of building the multi-constrained model of the complex three-dimensional geological structure quickly is:use the triangulated irregular network as the data model, analysis the characteristics of the various modeling data sources comprehensively, use cross-grid of the geological cross-section of data as the main body,, carve out of fields like the model of the word cell in the cell simultaneously according to cross-profiles to determine the spatial structure of regional modeling,and bind other types of geological modeling of data sources. Fusion and merging the modeling-data, point-like data sources and linear data sources are formed, then build each successive establishment of the cell-surface model the geological strata from top to bottom by quick search the dotted line data sources of each stratum. In the process of the establishment of the geological surface model, geological constraint information professionals are allowed to use the interactive editing tools of three-dimensional geological modeling which provided by algorithms, and add or adjust the model parameters immediately, which in order to amend or smooth the geological surface model. When all cells of the geological surface model have been established, we merger the same kinds of geological formation properties of surfaces, cut off the intersection of geological surface model by using editing tools and geological strata intersecting surface processing tools to ensure that the geological surface space topological correctness. Finally, we build all the geological body of the entire modeling region automatically by algorithms which based on the laws of geological surface space topology, and assign to the geologic body formation associated attributes. The building of complex geological body block is reflected in these areas:the rapid introduction of modeling data sources, rapid integration of data sources, quick search fused modeling data sources based on conditions of formation properties and spatial and rapid construction based on the geological surface topology.
     With the update of modeling data source and new constraint modeling data source joined in, the model will be changed in the local, and need be reconstructed. This paper has reconstructed the geological body space conflict by providing three-dimensional geological model of the geological point of geological lines, geological surfaces and a variety of geological bodies editing tools, which providing a partial model of an interactive editing, and through geological bodies Boolean operations.
     Can the establishment of three-dimensional geological model be carried out quantitative analysis of models or not depends on accuracy of the modeling. This paper has discussed the causes of model errors form modeling data sources and modeling analysis of three-dimensional geological model of quality assessment methods, and discussed the technology of model error correction. Based on the high-precision three-dimensional geological model, paper model of quantitative analysis of research methods are represented, including:interactive and query tools of three-dimensional model, three-dimensional model cross-cutting with arbitrary mode, and Boolean operations between geological body, the algorithm of three-dimensional model of generate two-dimensional geologic maps, the method of model length, direction, area and volume calculations, structural model and attribute model of the integration of visualization and analysis methods, as well as the professional analysis method through the model mesh generation in combination with the specific geology.
     This paper in the full three-dimensional geologic simulation in the absorption and the research results home and abroad, based on the multi-constraint conditions around the rapid modeling and high-quality modeling as two basic points, elaborating the data model, analysis a series of technical problems faced in the process of modeling, verify the efficiency and accuracy of modeling algorithms by combining different parts of the geological characteristics of model. The research work is as follows:
     (1) Discuss the three-dimensional geological modeling technology research status from the expression of geological information from the three-dimensional, three-dimensional geological model construction and related software and applications research in the field, and fully comparison and analysis of the strengths and weaknesses of existing data model, proposed multi-constrained under the condition of geological data elements of the TIN network which based on geological model as three-dimensional model data, described right direction and handling of topology of the model, and identified the main research objective and contents of this paper.
     (2) Analysis the multi-source geo-data multi-constrained in their own characteristics and offered in a modeling area, a variety of data sources must be in the same parameter controlled by a standard formation. The method of guidance and detailed standardization of multi-source data and frame-based plug-in data extraction, data checking and consistency of treatment options,and raise more constraints to build a complex geological structure of the model which is depended on three-dimensional factor model, and provides a new way of thinking for multi-source data fusion of the practice of geology.
     (3) Propose a set of rapid modeling methods suitable for different geological characteristics and different regions of the multi-constraints of a complex geological structure, study how to minimize human interaction modeling, and how to improve the efficiency of modeling at the premise of ensuring model accuracy. Cross-section of grid data is the core data source of this algorithm, quickly and support the quantitative analysis is the two important characteristic. This paper focuses on with fracture under the complexity of the phenomenon of complex geological structures quickly build method and three-dimensional surface model reconstruction partially method based on multi-constrained data fusion.
     (4) Discuss the three-dimensional geological model of quality evaluation methods and theories with the analysis of three-dimensional geological model based on the sources of error. We analyze the causes of errors of the three-dimensional geological model, and put forward methods of error detection, and summed up the quality of the model evaluation theory, Discussed the model error correction methods from several aspects, such as the method of geological cross-section and the method of virtual-hole amendment act amended.
     (5) Study of quantitative analysis method of the geological structure based on the high-quality three-dimensional model. In this paper, we discussed the thesis of the cutting technology of the three-dimensional geological model, including the construction of an arbitrary cut surface, an arbitrary surface cutting of the geological model, Boolean operations between geological bodies and plans and profile generation based on three-dimensional model, and so on. Describes the calculation method of the three-dimensional geological model, include the calculation of space distance and direction, area measuring and calculation, volume calculation, production-like computing and inquiries. Discuss the amalgamation of the structure model and attribute model, and the visualization technology, and the modeling of structural properties and statistical analysis. Present the professional calculation method of three-dimensional model of the geological structure combination with geological expertise:first, the geological structure of the cell subdivision of three-dimensional model, and then a professional analysis, such as engineering stress analysis of geological, hydrological and geological groundwater flow analysis.
     To sum up, the main results and innovation of this paper are as follows:
     (1) The complex geological structure of the model is presented, which cross-profile data as the main geological data and covering the multi-source data.Analysis the elements of this data model and the spatial topological rules.
     (2) The method of rapid modeling of the complex geological structures by using the multi-constrained geological data is presented, which not only guarantee the accuracy of the model, but also to ensure the efficiency.
     (3) Study a variety of three-dimensional geological structure model of quantitative analysis methods, such as the model calculation, model cutting and model analysis combined the professional evaluation of three-dimensional geology.
     (4) Complex multi-constrained geological model building and quantitative analysis of prototype system are developed, the main goal of which is multi-constrained, fast and high-quality.
     In this study, we combined our modeling methods and techniques and practical application, got some certain findings and results, extensive the research methods simulation of three-dimensional geological, and also provide experience for the three-dimensional modeling system intelligently science research latterly.
引文
[1]刘修国.城市地质信息平台三维关键技术研究[D].武汉:中国地质大学,2004.
    [2]娄华君,王宏,夏军,等.地质信息可视化的应用一城市环境地质研究之发展方向[J].中国地质,2002,29(3):330-334.
    [3]韩文峰,宋畅.我国城市化中的城市地质环境与城市地质作用探讨[J].天津城市建设学院学报,2001,7(1):1-5.
    [4]吴冲龙,牛瑞卿.城市地质信息系统建设的目标与解决方案[J].地质科技情报,2003,22(3):67-72.
    [5]陈树铭,王满春.区域地质三维信息系统解决方案[DB/OL]. http://www.geoxd.com,2003-12-20.
    [6]杨斌,田永青,朱仲英.GIS前瞻性技术的若干应用研究[J].微型电脑应用,2002,18(1):9-12.
    [7]肖乐斌,钟耳顺,刘纪远,等.三维GIS的基本问题探讨[J].中国图象图形学报,2001,6A(9):842-848.
    [8]李青元,林宗坚,李成明.真三维GIS技术研究的现状与发展[J].测绘科学,2000,25(2):47-51.
    [9]朱良峰.基于GIS的三维地质建模及可视化系统关键技术研究[D].武汉:中国地质大学,2005.
    [10]Marschallinger R, Johnson S E. Presenting 3-D models of geological materials on the World Wide Web[J]. Computers & Geosciences,2001,27(3):467-476.
    [11]侯恩科,吴立新.三维地学模拟几个方面的研究现状与发展趋势[J].煤田地质与勘探,2000,28(6):5-8.
    [12]侯卫生等.面向三维地质建模的领域本体逻辑结构与构建方法[J].地理与地理信息科学,2009,25(1):27-31.
    [13]陈国良.基于地质断面的多约束复杂地质体重构技术研究及应用[D].武汉:中国地质大学,2009.
    [14]http://www.cgal.org/.
    [15]http://www.creatar.com/.
    [161 http://www.3d-grid.com.cn/.
    [17]张力岩.数字矿山中的三维地质模拟与体视化研究[D].北京:中国科学院遥感应用研究所,2004.
    [18]Wu Q, Xu H. On three-dimensional geological modeling and visualization. Science in China Series D:Earth Sciences,2004,34(1):54-60.
    [19]McCormick B H, DeFanti T A, Brown M D. Visualization in Scientific Computing. Computer Graphics,1987,21(6).
    [20]郭开波等.STL模型布尔运算的实现[J].华中科技大学学报(自然科学版),2006,34(7):97-99.
    [21]Siyka Zlatanova, Alias Abdul Rahman. Morakot Pilouk. Trends in 3D GIS development[J]. Journal of Geospatial Engineering,2002,4(2):1-10.
    [22]Lebel D, Vuitton R, Deblonde C, et al. Integration of photogrammetric data in the construction of a 3D geological model in a thrust-fold belt, Moose Mountatin, Alberrta, Canada[J]. Journal of the Virtual Explorer,2001, (3):123-136.
    [23]Raper J F.. The 3D geo-scientific mapping and modeling systems:a conceptual design[M]. London:Taylor & Francis,1989.11-19.
    [24]Simon W. Houlding.3D Geoscience Modeling:Computer Techniques for Geological Characterization[M]. Berlin:Springer-Verlag,1994.
    [25]Mallet J L. Discrete smooth interpolation[J]. ACM Transactions on Graphics,1989,8(2): 121-144.
    [26]Mallet, J.-L. Geomodeling[M]. New York:Oxford University Press,2002.
    [27]Wu Qiang, Xu Hua. An approach to computer modeling and visualization of geological faults in 3D[J]. Computers & Geosciences,2003,29(3):503-509.
    [28]Wu Qiang, Xu Hua. An effective method for 3D geological modeling with multi-source data integration[J]. Computers & Geosciences,2005,31(1):35-43.
    [29]潘懋等.三维地质建模若干基本问题探讨[J].地理与地理信息科学,2007,23(3):1-5
    [30]吴春燕等.布尔运算在建模中的实际应用[J].西安石油大学学报,2005,20(5):81-86.
    [31]王文成等.判断检测点是否在多边形或多面体内的新方法[J].软件学报,2000,11(12):1615-1619.
    [32]屈红刚等.基于交叉折剖面的高精度三维地质模型快速构建方法研究[J].北京大学学报,2008,1:84-89.
    [33]屈红刚.基于交叉折剖面的三维地质表面建模方法研究[J]测绘学报,2006,35(4):411.
    [34]张恒.复杂地质界面三维建模方法研究[D].西安:西安科技大学.2005.
    [35]2005,24(4):575-580.
    [36]朱良峰等.地质断层三维构模技术研究[J].岩土力学,2008,29(1):274-278.
    [37]朱良峰等.三维地质结构模型精度评估理论与误差修正方法研究[J].地学前沿,2009,16(4):363-371.
    [38]黄地龙等.复杂地层结构模型三维重构与可视化方法研究[J].成都理工大学学报(自然科学版),2008,35(5):553-558.
    [39]钟登华等.水利水电工程地质三维统一建模方法研究[J].中国科学,2007.
    [40]徐华,武强.基于层状结构的三维地质体可视化设计与实现[J].计算机应用,2001,21(12):59-60.
    [41]何满潮,刘斌,徐能雄.工程岩体三维可视化构模系统的开发[J].中国矿业大学学报,2003,32(1):38-43.
    [42]徐能雄,何满潮.层状岩体三维构模方法与空间数据模型[J].中国矿业大学学报,2004,33(]):103-108.
    [43]吴立新,张瑞新,戚宜欣等.三维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(1): 28-33.
    [44]吴立新,史文中,Christopher Gold.3D GIS与3D GMS中的空间构模技术[J].地理与地理信息科学,2003,19(1):5-11.
    [45]吴立新,郝海森,殷作如.基于钻孔点集Voronoi图的矿产储量新算法[J].地理与地理信息科学,2004,20(1):57-59.
    [46]齐安文,吴立新.一种新的三维地学空间构模方法—类三棱柱法[J].煤炭学报,2002,27(4):158-163.
    [47]吴立新,陈学习,史文中.基于GTP的地下工程与围岩一体化真三维空间构模[J].地理与地理信息科学,2003,19(6):1-6.
    [48]Wu Li-xin. Topological relations embodied in a generalizes tri-prism(GTP) model for a 3D geoscience modeling system[J]. Computers & Geosciences,2004,30(5):405-418.
    [49]王殷行.基于单形剖分的三维复杂地质体建模[J].金属矿山,2008,389(11):74-75.
    [50]胡娟等.断层地质体的三维建模技术研究[J].计算机与数字工程,2009,37(4):56-58.
    [51]钟登华等.复杂工程岩体结构三维可视化构造及其应用[J].岩土力学与工程学报,曹代勇,王占刚.三维地质模型可视化中直接三维交互的实现[J].中国矿业大学学报,2004,33(4):384-387.
    [52]陈军,邬伦.数字中国地理空间基础框架[M].北京:科学出版社,2003.
    [53]郑贵洲,申永利.地质特征三维分析及三维地质模拟研究现状[J].地球科学进展,2004,19(2):218-223.
    [54]Michel Perrin, Beiting Zhu, Jean-Francois Rainaud, etc. Knowledge-driven applications for geological modeling[J]. Journal of Petroleum Science and Engineering,2005,47(1-2): 89-104.
    [55]Hamburger, J.,1989. Reconnaissance d'objets ge'ologiques base'e sur un formalisme de representation F.R.O.G.:une approche intelligence artificielle. Institut Franc,cais du Pe'trole, Direction de Recherche Informatique et Mathe'matiques Applique'es.Janvier 1989.
    [56]Schneider, S.,2002. Pilotage automatique de la construction de modeles ge'ologiques surfaciques. Memoire de these, Ecole Nationale Supe'rieure des Mines de Paris, de'cembre 2002.
    [57]何满朝,李学元,刘斌,等.工程岩体三维构模中钻孔数据处理方法[J].岩石力学与工程学报,2005,24(11):1821-1826.
    [58]KSL. Website of Knowledge Systems Laboratory, Stanford University, Ontolingua software description,2003, http://www.ksl.stanford.edu/software/ontolingua/.
    [59]Jianya Gong, Penggen Cheng, Yandong Wang. Three-dimensional modeling and application in geological exploration engineering[J]. Computer & Geosciences,2004,30(4):391-404.
    [60]张煜,白世伟.一种基于三棱柱体体元的三维地层建模方法及应用[J].中国图象图形学报,2001,6A(3):285-290.
    [61]张煜,温国强.三维体绘制技术在工程地质可视化中的应用[J].岩石力学与工程学报,2002,21(4):563-567.
    [62]Marcus A. Development of a 3D GIS based on the 3D modeler GOCAD[A]. IAMG Meeting, Cancun,2001.256-268.
    [63]孟小红,王卫民等.地质模型计算机辅助设计原理与应用[M].北京:地质出版社,2001.
    [64]吴时国,王秀铃等.3D MOVE构造裂缝预测技术在古潜山的应用研究[J].中国科学(D辑,地球科学),2004,34(9):818-824.
    [65]宁书年,李育芳.三维地质体可视化软件理论探讨[J].矿产与地质,2002,16(4):254-255.
    [66]吴焱.基于体元技术的复杂三维地质体建模方法研究与系统实现[D].北京:北京航空航天大学,2002.
    [67]宫法明.三维地质建模[D].北京:北京航空航天大学,2002.
    [68]朱大培.三维地质建模和带权曲面限定Delaunay三角化的研究与实现[D].北京:北京航空航天大学,2002.
    [69]王靖.三维地质建模与剖面图生成[D].泰安:山东科技大学,2003.
    [70]陈少强.一个以“移动立方体法”为关键技术的人机交互三维地质建模系统[D].北京:中国地质大学(北京),2002.
    [71]赵洲.基于剖面的三维地质建模研究[D].西安:西安科技大学,2004.
    [72]吴健生,朱谷昌.三维GIS技术在固体矿产勘探和开发中的研究与应用[J].地质与勘探,2004,40(1):68-72.
    [73]吴立新,殷作如,钟亚平.再论数字矿山:特征、框架与关键技术[J].煤炭学报,2003,28(1):1-7.
    [74]Ross R. Moore, Scott E. Johnson. Three-dimensional reconstruction and modelling of complexly folded surface using Mathematica[DB/OL].
    [75]Noy, N.F., McGuinness, D.L. Ontology development 101:a guide to creating your first ontology. Stanford University,2002.
    [76]潘如刚.基于断层轮廓数据的三维形体网格构造方法研究[D].杭州:浙江大学,2004.
    [77]曹代勇,李青元,朱小弟,等.地质构造三维可视化模型探讨[J].地质与勘探,2001,37(4):60-62.
    [78]王志宏,陈应显.基于三维可视化矿床模型的断层整体插值方法[J].煤炭学报,2003,28(6):569-572.
    [79]景东升.基于本体的地理空间信息语义表达和服务研究[D].北京:中国科学研究院,2005.
    [80]李培军.层状地质体的三维模拟与可视化[J].地学前缘,2000,7(增刊):271-277.
    [81]杨一鹏,张银,王桥.基于知识的地质剖面图生成器研究和实现[J].地理与地理信息科学,2004,20(5):24-27.
    [82]武强,徐华.虚拟矿山系统中三维断层模拟技术[J].辽宁工程技术大学学报,2005,24(3):316-319.
    [83]李清泉,杨必胜,史文中,等.三维空间数据的实时获取、建模与可视化[M].武汉:武汉大学出版社,2003.
    [84]Courrioux, G., Nullans, S., Guillen, A., Boissonnat, J.-D.,et.al.3-D Volumetric modelling of Cadomian Terranes (Northern Brittany, France):an automatic method using Voronoi diagrams[J]. Tectonophysics,2001,331 (1-2),181-196.
    [85]Shi W Z. Development of a hybrid model for 3D GIS[J]. Geo-spatial Information Science, 2000,3(2):6-12.
    [86]郑坤,刘修国,吴信才,等.顾及拓扑面向实体的三维矢量数据模型[J].吉林大学学报(地球科学版),2006,36(3):474-479.
    [87]李军.三维GIS空间数据模型及可视化技术研究[D].长沙:国防科技大学,2000.
    [88]Peuquet, D.J., A Conceptual Framework and Comparison of Spatial Data Models, Cartographic,1984,21(4):66-113.
    [89]Peuquet, D.J., The Use of Spatial Relations to Aid Spatial Database Retrieval, Proceedings of the 2nd International Symposium on Spatial Data Handling,1986,459-471.
    [90]Jurgen Dollner, Klaus Hinrichs. An object-oriented approach for integrating 3D visualization systems and GIS[J]. Computers & Geosciences,2000,26(1):67-76.
    [91]Matthias K. Visualization of geographically related multidimensional data in virtual 3D scenes[J]. Computers & Geosciences,2000,26(1):101-108..
    [92]Guillen A, Meunier C, Renaud X. New Internet tools to manage geological and geophysical data[J]. Computers & Geosciences,2001,27(4):563-575.
    [93]符海芳,朱建军,崔伟宏.3D GIS数据模型的研究[J].地球信息科学,2002,4(2):45-49.
    [94]Chrisman N.R., Topological Information Systems for Geographic Representation, Proceedings of 2nd International Symposium on Computer-Assisted Cartography, 1975,346-351.
    [95]Alan M. Lemon, Norman L. Jones. Building solid models from boreholes and user-defined cross-sections[J]. Computers & Geosciences,2003,29(3):547-555.
    [96]朱良峰等.城市地下空间信息三维数据模型研究[J].华东师范大学学报(自然科学版),2009,2:29-40.
    [97]李清泉.基于混合结构的三维GIS数据模型与空间分析研究[D].武汉:武汉测绘科技大学,1998.
    [98]李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报,1998,27(4):325-330.
    [99]戴吾蛟,邹铮嵘.基于体素的三维GIS数据模型的研究[J].矿山测量,2001,(1):20-22.
    [100]杜培军,郭达志,田艳凤.顾及矿山特性的三维GIS数据结构与可视化[J].中国矿业大学学报,2001,30(3):238-243.
    [101]李建华,边馥苓.工程地质三维空间建模技术及其应用研究[J].武汉大学学报(信息科学版),2003,28(1):25-30.
    [102]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(1):7-15.
    [103]毛善君.灰色地理信息系统:动态修正地质空间数据的理论和技术[J].北京大学学报(自然科学版),2002,38(4):556-562.
    [104]侯恩科,吴立新.面向地质建模的三维体元拓扑数据模型研究[J].武汉大学学报(信息科学版),2002,27(5):467-472.
    [105]李青元,朱小弟,曹代勇.三维地质模型的数据模型研究[J].中国煤田地质,2000, 12(3):57-61.
    [106]李德仁,李清泉.一种三维GIS混合数据结构的研究[J].测绘学报,1997,26(2):128-133.
    [107]程朋根,龚健雅.地勘工程三维空间数据模型及其数据结构设计[J].测绘学报,2001,30(1):74-81.
    [108]肖乐斌,钟耳顺,刘纪远,等.GIS概念数据模型的研究[J].武汉大学学报·信息科学版,2001,26(5):387-392.
    [109]Guillaume Caumon, Francois Lepage, Charles H Sword, et al. Building and editing a sealed geological model[J]. Mathematical Geology,2004,36(4):405-424.
    [110]Marcus A. Development of a 3D GIS based on the 3D modeler GOCAD[A]. IAMG Meeting, Cancun,2001.256-268.
    [111]侯卫生,吴信才,刘修国,等.基于线框模型的复杂断层三维建模方法[J].地质科技情报,2006,25(5):663-667.
    [112]侯卫生,吴信才,刘修国,陈国良.一种基于地质平面图的三维地质建模方法.岩土力学,2007,28(1):169-172.
    [113]Berlioux A. Depth migration of complex surface with GOCAD:Study of the curvature of a triangulated surface. Stanford Exploration Project, Report 82,2001:1-115.
    [114]Higashi, M., Nakano, H., Nakamura. A., and Hosaka, M.,2001, Use of topological constraints in construction and processing of robust solid models, in Anderson, D. C., ed., Proceedings of the Sixth ACM Symposium on Solid Modeling and Application:ACM Press, New York, p.18-29.
    [115]M"antyla, M.,1988, An introduction to solid modeling:Computer Science Press. Rockville, MD, p.401
    [116]Sakkalis, T., Shen, G., and Patrikalakis. N. M. Representational validity of boundary representation models[J]. Comput. Aided Des.,2000,32(12):719-726.
    [117]Breunig, M., An approach to the integration of spatial data and systems for a 3D geo-information system[J]. Computers & Geosciences 25(1),39-48.
    [118]徐涛,徐果明,高而根等.三维复杂介质的块状建模和试射射线追踪[J].地球物理学报,2004,47(6):1118-1126.
    [119]Sirakov N M, Muge F H. A system for reconstructing and visualizing three-dimensional objects[J].Computer&Geosciences,2001,27 (4):59-69.
    [120]J. Pouzet. Estimation of a surface with known discontinuities for automatic contouring purposes[J]. Mathematical Geology,1980,12(6):559-575.
    [121]蔡强,杨钦,陈其明.地质结构重叠域的限定Delaunay三角剖分研究[J].计算机辅助设计与图形学学报,2004,16(6):766-771.
    [122]徐华,武强.复杂地质体中多值面的网格生成算法[J].计算机辅助设计与图形学学报,2002,14(7):609-612.
    [123]C.H. Lindenbecka, H.D. Ebertb, H. Ulmera. TRICUT:a program to clip triangle meshes using the rapid and triangle libraries and the visualization toolkit[J]. Computers & Geosciences,2002,28(6):841-850.
    [124]黄永丽,徐华.基于断层数据的三维重构技术的研究[J].郑州大学学报(工学版),2003,24(2):63-66.
    [125]邓曙光,刘刚.带地质逆断层约束数据域的Delaunay三角剖分算法研究[J].测绘科学,2006,31(4):98-99.
    [126]Shanjun M. The realization of coaline spatial management information system[A]. In the 29th international symposium on computer application in the mineral industries[C]. Beijing, Beijing University,2001.779-782.
    [127]Bresler Y, Fessler J A, Macovski A. A Bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain. IEEE Trans. On Pattern Anal, and Mach. Intell.,1989,11(8):840-858.
    [128]屈红刚,潘懋,王勇.基于含拓扑剖面的三维地质建模[J].北京大学学报(自然科学版),2006,42(6):717-723.
    [129]Boissonnat, J.D. Shape reconstruction from planar cross sections. Computer Vision, Graphics, and Image Processing,1988,44(1):1-29.
    [130]王勇,薛胜,潘懋等.基于剖面拓扑的三维矢量数据自动生成算法研究[J].计算机工程与应用,2003,25(5):1-2.
    [131]孟宪海,杨钦,李吉刚.基于层面结构的三维闭合地质区块构造算法[J].北京航空航天大学学报,2005,31(2):182-186.
    [132]Jing L.. Block system construction for three-dimensional discrete element models of fractured rocks[J]. Int J Rock Mech & Geomech Abstr,2000,37(4):645-659.
    [133]Warburton PM.. Application of a new computer model for reconstructing blocky block geometry analysis single block stability and identifying keystones[A]. In:Proc 5th Int Congress on Rock Mechanics, Melbourne,1983, F225-F230.
    [134]Heliot D. Generating a blocky rock mass [J]. Int. J Rock Mech Min Sci and Geomech Abstr,1988,25(3):127-138.
    [135]Goodman R E,Shi G H.Block theory and its application to rock engineering[M] Englewood Cliffs, New Jersey:Prentice Hall,Inc.,1985.
    [136]周翠英,董立国.三维地层构造的块体理论方法[J].岩土工程学报,2006,28(9):1081-1084.
    [137]Lu J. Systematic identification of polyhedral rock blocks with arbitrary joints and faults [J]. Computers and Geotechnics,2002,29(1):49-72.
    [138]Lin D, Fairhurst C, Starfield AM. Geometrical identification of three dimensional rock block system using topological techniques[J]. Int J. Rock & Geomech Abstr,1987,. 24(6):331-338.
    [139]张翔等.基于GIS的山地平整三维定量分析技术与应用_以福建长汀河梁开发为例[J].GIS技术,2009.1:79-82
    [140]王俊等.利用等高线栅格化的DEM精度评估[J].武汉大学学报信息科学版,2009,34(8):952-955.
    [141]史文中,吴立新,李清泉,王彦兵,杨必胜等.三维空间信息系统模型与算法[M].电子工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700