用户名: 密码: 验证码:
几种红树植物的木材解剖学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了海桑科海桑属、使君子科榄李属、红树科木榄属、角果木属、秋茄属、红树属等15种红树植物的木材解剖特征。通过光学显微镜、扫描电子显微镜、激光共聚焦成像显微镜的观察,详细描述了研究植物次生木质部导管(管孔)、射线、纤维、轴向薄壁组织等结构的形态特征。应用Lasersharp软件测量了研究植物次生木质部导管(管孔)、射线、纤维数量特征的24项指标。根据观测结果,讨论了15种研究植物的系统学、分类学、生态学意义。同时,应用Lasersharp甲软件,测量了红海榄、海莲、海桑、秋茄等4种植物导管(管孔)数量特征在河口不同生境条件下的种内变动。利用统计分析方法,分析了种内导管数量特征的不同与土壤盐份含量和养分含量的关系。
     1. 首次系统报道了中国现有海桑属所有种的木材解剖特征。结果表明:
     A) 海桑属植物木材结构的特化与潮间带生境是相适应的,能在水分胁迫的生境中,有效地协调水分输导的有效性和安全性。其特化结构包括:(1)宽、窄导管并存;(2)管孔密度较大,复孔率高;(3)存在纤维状导管和少量环管管胞;(4)螺旋雕纹、附物纹孔、管壁具疣等许多导管壁的微观结构有利于水分输导的安全性;(5)射线细胞和分隔木纤维内的淀粉粒是渗透调节的物质基础,有利于促进水分上升;(6)纤维壁的厚度较薄和纤维腔径较宽,这有利于水分的贮存。
     B) 某些海桑属植物木材结构具有种类鉴定意义。杯萼海桑和无瓣海桑具硬化侵填体,可区别于海桑属其余4种。卵叶海桑的射线高度和射线宽度远大于其余海桑属种类,由于射线的数量特征与个体发育时间有关,这一特征可作为卵叶海桑区别于其它种类的辅助特征。
     C) 木材比较解剖的结果表明海桑属可以归入千屈菜科。因为海桑属和紫薇属的木材结构中,与木质部进化的主要趋势相关的木材结构异常相似(除木薄壁组织类型不同外)。
     D) 导管数量特征的聚类分析可以把海桑属聚成两类:(1)海桑和拟海桑:(2)杯萼海桑、卵叶海桑、无瓣海桑、海南海桑。这证明了海桑属导管的数量特征具系统演化意义。海桑属植物沿两支进化,一支逐渐进化为水分输导效率高的种类(具宽的导管直径和大的输导面积,小的管孔密度如海桑和拟海桑),另一支逐渐进化为水分输导安全性高的种类(具窄的导管直径和小的输导面积,高的管孔密度如杯萼海桑、卵叶海桑、无瓣海桑、海南海桑)
     2. 首次利用比较解剖学的研究结果对榄李和红榄李生态隔离现象进行了合理的解释。榄李和红榄李木材比较解剖学的研究结果表明,生境条件较为相似的情况下,红榄李具有比榄李显著更宽的导管,使它的输导率增大(估定有效输导率为榄李的3倍),这在竞争中更容易获得生长所必须的营养物质。因而,在生境条件较为优越的时候(如盐度较低,有机营养较丰富的生境中),红榄李容易在竞争中取得优势,而把榄李排挤掉。然而,榄李因具有更窄的管孔直径,更高的管孔密度,有利于水分输导的安全性,在盐度较高(水分胁迫)的生境中,更容易存活下来。由此推测榄李和红榄李木材结构的差异至少是这两种植物生态隔离现象的一个原因。
     3. 应用激光共聚焦成像显微镜结合光学显微镜、扫描电子显微镜对研究植物次生木质
    
     部的形态特征进行了观察,首次报道了:()研究的15种红树植物具有纤维状导管;
     (2)海生红树科植物具有附物纹孔:(3)15种红树植物具有丰富的导管螺旋雕纹。
     并对研究植物附物的位置、形态、多少进行了详细描述。根据这些结果,我们提出
     了一些新的观点:
     A)榄李属植物附物纹孔的差异具种类鉴定意义。红榄李纹孔具网状附物且纹孔口
     间相互连接沟具网状附物,榄李纹孔无附物,或仅具有颗粒状附物,纹孔口间
     相互连接沟无附物或仅具有颗粒状附物。
     B)榄李属管孔直径及附物纹孔的差异表明附物纹孔的结构有助于输导安全性。榄
     李在进化过程中形成了高管孔密度和窄的管孔直径以保证输导的安全性,则在
     进化中,附物逐渐消失,仅有少量附物存在。红榄李管孔直径比拨李大,容易
     倒塌,容易形成栓塞,因而进化过程中,附物成为输导安全性的辅助结构。
     C)海生红树植物具有附物纹孔为红树科的系统位置提供了确凿的、令人信服的证
     据,即红树科隶属于桃金娘目这一系统分类是正确的。
    4.首次阐明了红树植物中耐寒性强的种类的木材结构基础。红树科红树植物次生木质
     部比较解剖学研究表明秋茄具有如下三特点:()管孔直径极小(管孔平均弦向直
     径:48.41】m;管孔平均径向直径:39.47口m):(2)具有发达的轴向薄壁组织(呈带状
     傍管型薄壁组织);(3)具有发达的射线薄壁组织(射线比率:40.45%)。这些构成了
     秋茄耐寒性的结构基础。
    5.海生红树科植物木材结构具种类鉴定特征。红树科红树族由木横属、.角果木属、秋
     茄属、红树属4个属组成,射线的类型及轴向薄壁组织类型可以作为属的鉴定特征,
     而射线两端翼的特征,分泌细胞和硬化侵填体存在与否,可以作为种的鉴定特征。
     据此原则,我们制定出如下检?
STUDIES ON WOOD ANATOMY OF SOME MANGROVE SPECIES
    Deng Chuanyuan
    (School of life science. Xiamen University, Xiamen 361005)
    Wood anatomical features of 15 mangrove species belonging to Sonneratia, Lumnitzera, Rhizophoraceae including Bruguiera, Ceriops. Kandelia, Rhizophora were surveyed and analyzed. The morphological features of vessels (pores),fibers, rays and axial parenchyma in secondary xylem were described thoroughly by means of optical microscopy, scanning electronic microscopy and laser scanning confocal microscopy. The quantitative features of vessels (pores), fibers, rays in secondary xylem were measured by means of software Lasersharp. These results were used for the identification of species, related to systematic position and correlated with ecological adaptation to intertidal habitats. Variations in the qnantitative wood anatomical features of vessel elements (pores) of R. stylosa, S. caseolaris, B. sexangula, K. candel with different habitats along estuary were studied. Relationship between physicochemical variables in soil and quantitative wood anatomical features were analyzed by means of statistical methods.
    1. Wood anatomical features of all Sonneratia species native to China were surveyed systematically for the first time. The results showed:
    A) The specialized wood structures in Sonneratia, which can coordinate conductive capacity with conductive safety, are adaptive to intertidal habitats. These character states include: (1) wide and narrow vessel elements (pores) co-occur; (2) the high pore density and a great percentage of pores in clusters occur; (3) the vesturing and helical structure in Sonneratia improve conductive safety; (4) starch grains in ray cells and septate fibers may have the effect of facilitating conduction by providing a source for sugar transfer into vessels; (5) the wide lumen in fiber is obviously a water storage. 8) Some wood structures are indicative of diagnostic features. S. alba and S. apetala characterized by sclerosed tyloses can be distinct from the other Sonneratia species. Compa/ed to the other Sonneratia species, ray height in S. ovata is significantly higher and ray width is significantly wider. These characters can be used for subsidiary diagnostic features considering that quantitative features in ray are relative to ontogeny.
    C) Data from wood anatomy supports inclusion of Sonneratia in Lythraceae, which accords with recent results from phylogenetic analysis based on ITS sequences of rDNA. Wood structures relative to main trends in xylem evolution in both Sonneratia and Lagerstroemia showed great similarity except for axial parenchyma types.
    D) Clustering based on quantitative characters of vessel elements (pores) indicated two clades contain: (\) S. caseoalris and S. caseolaroides\ (2) S. alba, S. ovata, S. apetala and S. hainanensis, which suggests the significance of phytogeny, namely, the Sonneratia species formed into two clades in the course of evolution, one including S. caseoalris and S. caseolaroides by formation of the wider vessel and lower pore
    131
    
    
    
    density means high conductive efficiency, the other including S. alba, S. ovata, S. apetala and S. hainanensis by formation of the narrower vessel and higher pore density means high conductive safety.
    2. The results of comparative wood anatomy between L. littorea and L. racemosa can be used to explain why two species occupy different ecological sites reasonably. Under similar habitats, estimated specific conductance relative to conductive efficiency in L. littorea is 3 times more than that in L. racemosa, which suggests that L. littorea can obtain nutrition and water more readily in the suitable habitats, and thus L. littorea supplant L. racemosa by competition. However, narrower pores and higher pore density occur in L. racemosa, these character states relative to conductive safety are adaptive to saline habitats (water stress), and then can survive more easily under more saline habitats. According to the above description, the difference in wood structure
引文
1.于永福,傅立国.1996.杉科植物的系统发育分析.植物分类学报,34(2):124-141.
    2.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社.1983:227-228
    3.王开发.1983.太湖地区第四纪沉积的孢粉组合及其古植被与古气候.地理科学,3(1):17-26
    4.王开发.1984a.长江三角洲第四纪孢粉组合及其地层、古地理意义.海洋学报,6(4):485-496
    5.王开发.1984b.杭州湾沿岸晚第四纪沉积的孢粉组合及其地层、地理意义.见:第四纪孢粉分析与古环境.北京:科学出版社,60-77
    6.王开发.1990.南海及沿岸地区第四纪孢粉藻类与环境.上海:同济大学出版社
    7.王瑞江,陈忠毅,陈二英,郑馨仁.1999.国产海桑属植物的两杂交种.广西植物,19(3):199—204.
    8.华南热带作物研究院.用比色法测定橡胶样品氮含量.热带科技通讯,1974,5:13-13
    9.张芝玉,路安民,潘开玉,温洁.1990.杜仲科的解剖学和胚胎学及其系统关系.植物分类学报,28(6):430-441.
    10.张新英,曹宛虹.1993.豆科7种沙生植物次生木质部的生态解剖.植物学报,35(12):920-935.
    11.李正理,1996.植物制片技术(第三版).北京:北京大学出版社
    12.李建强.1996.论山毛榉科植物的系统发育.植物分类学报,34(6):597-609.
    13.周崟,姜笑梅,张立非.1990.中国裸子植物木材具缘纹孔构造类型的研究.植物学报,32(3):178-186.
    14.周崟,姜笑梅.1992.木材构造特征在裸子植物系统学中的意义.植物分类学报,30(5):405-414
    15.林益明,林建辉,林鹏.1998a.红树植物秋茄次生木质部生态解剖学的比较.台湾海峡,17(2):219-223.
    16.林益明,林建辉,林鹏.1998b.海莲和木榄次生木质部的生态解剖.海洋湖沼通报,4:23-31.
    17.林鹏.1981.中国东南部海岸红树林的类群及其分部.生态学报,1(3):283-290.
    18.林鹏.1984.红树林.北京:海洋出版社
    19.林鹏,傅勤.1995.中国红树林环境生态及经济利用.北京:高等教育出版社
    20.林鹏.1997.中国红树林生态系.北京:科学出版社
    21.林鹏,林益明,林建辉.1998.红树植物次生木质部的结构与进化.海洋学报,20(4):108-114.
    22.林鹏,林建辉,林益明.1999.海莲和白骨壤次生木质部的生态解剖.台湾海峡,18(4):414-417.
    
    
    23.金建华,韩博平.1995.红树林地史追追溯及其意义.见:范航清,梁士楚主编.中国红树林研究与管理.北京:科学出版社,76-79
    24.金杰里II A,方亦雄,1958.红树植物胎生的生理学意义.植物学报,7(2):51-59
    25.胡玉熹,1983.中国特有裸子植物的解剖,Ⅰ.穗花衫(Amentotaxus argotaenia(Hance Pilger)),植物学集刊,1:127-154
    26.胡玉熹,马瑞君.1989.中国特有裸子植物的解剖,Ⅱ.秃杉.植物分类学报,27(2):96-104
    27.赵可夫,李法曾主编,1999.中国盐生植物.北京:科学出版社
    28.唐亚.1993.论平当树属的系统位置.植物分类学报,31(4):297-308.
    29.唐亚.1995.斜翼属叶和茎的解剖及其系统学意义.云南植物研究,17(4):439-444
    30.唐燿.1973.云南热带材及亚热带材.北京:科学出版社
    31.高蕴璋.1985.海桑属的新分类群.植物分类学报,23(4):311-314.
    32.高蕴璋.1993.中国海桑属小志.熟带亚热带植物学报,1(1):11-13
    33.黄椰林,邱小忠,施苏华,蓝崇钰,文军.1999.中国主要红树科植物的分子系统发育.中山大学学报(自然科学版),38(1):39-42
    34.喻成鸿.1954.次生木质部的进化与植物系统发育的关系.植物学报,3(2):183-196.
    35.喻成鸿.1981.裸子植物次生木质部的进化趋势.植物分类学报,19(2):179-185
    36.路安民,李建强,徐克学.1991.金缕梅类科的系统发育分析.植物分类学报,29(6):481-493.
    37.Alves ES. 1995.The effects of the pollution on wood of Cecropia glazioui(Cecropiaceae). IAWA Journal, 16: (1)69-80
    38.Alves ES, Angyalossy-Alfonso V. 2000. Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal, 21:(1) 3-30.
    39.APG (Angiosperm Phylogeny Group), 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard.,85: 531-553
    40.Archer RH, Vanwyk AE. 1993. Wood structure and generic status of some Southern African Cassinoideae (Celastraceae). IAWA Journal, 14: (4) 373- 389.
    41.Armbruster W S, Balswin B G. 1998. Switch from specialized to generalized pollination. Nature 394:632
    42.Ashworth VETM, DosSantos G. 1997. Wood anatomy of four Californian mistletoe species (Phoradendron, Viscaceae). IAWA Journal, 18: (3) 229-245.
    43.Baas P, 1972. Anatomical contributions to plant taxonomy Ⅱ. The affinities of Hua Pierre and Afrostyrax Perkins et Gilg. Blumea 20:161-192
    44.Baas P. 1973. The wood anatomical range in Llex (Aquifoliaceae) and its ecological and phylogenetic significance. Blumea, 21: 193-258.
    45.Baas P, 1975. Vegetative anatomy and the affinities of Aquifoliaceae, Sphenostemon, Phelline, and Oncotheca. Blumea 22:311-407
    
    
    46. Baas P. 1979a. The anatomy of Alzatea Ruiz and Pavon (Myrtales). Acta Bot Neerl 28:156-158.
    47. Baas P, Zweypfenning RCVJ,1979b. Wood anatomy of The Lythraceae. Acta. Bot. Neerl., 28: 117-155
    48. Baas P, Werker E. 1981. A new record of vestured pits in Cistaceae. IAWA Bull NS 7:195-220.
    49. Baas P. 1982. Systematic, phylogenetic and ecological wood anatomy-history and perspectives. Pp.23-58 in: Baas P (ed.). New perspectives in wood anatomy. The Hague.
    50. Baas P, Werker E, Fahn A. 1983. Some ecological trends in vessel characters. IAWA Bull.n.s., 4:141-159.
    51. Baas P, Schweingruber FH, 1987. Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull, n.s.,8: 245-274
    52. Baas P, Esser PM, Westen ME Tv.d., Zandee M. 1988. Wood anatomy of the Oleaceae. IAWA Bull.n.s., 9: 103-182.
    53. Bailey IW, Tupper WW. 1918. Size variation in tracheary cells. Acomparison between the secondary xylems of vascular cryptogams, gymnosperms, and angiosperms. P roc Am. AcadArts Sci 54: 149-204
    54. Bailey I W. 1925. Some salient lines of specialization in tracheary pitting 1. Gymnospermae. Ann Bot, 39: 587-598.
    55. Bailey I W. 1933. The cambium and its derivative tissues. VIII. Structure, distribution and dianostic significance of vestured pits in dicotyledons. J. Arnold Arbor., 14: 259-273.
    56. Bailey IW, Howard RA. 1941. The comparative morphology of the Icacinaceae. Jour. Arn.Arb.,22: 125-132
    57. Bailey IW. 1944. The development of vessels in angiosperms and its significance in morphological research. Amer. Jour Bot. 31: 421-428
    58. Bailey IW. 1951. The use and the abuse of anatomical data in the study of phylogeny and classification. Phytomorphology, 1: 67-69
    59. Bailey I W. 1953. Evolution of the tracheary tissue of land plants. Amer. Jour. Bot., 40: 4-8.
    60. Barajas-Morales J. 1985. Wood structural differences between trees of two tropical forests in Mexico. IAWA Bull NS 6:355-364
    61. Bhosale L J, Shinde L S. 1983. Significance of cryptovivipary in Aegiceras corniculatum (L.) Blanco. Chap. 14 in: Teas H J(ed.) Biology and ecology of mangroves, Tasks for vegetation science 8. The Hague: Junk.
    62. Biles CL, Abeles FB. 1991. Xylem sap proteins. Plant Physiology, 96:597-601
    63. Braun HJ.1984. The significance of the accessory tissues of the hydrosystem for osmotic water shifting as the second principle of water ascent, with some thoughts concerning the evolution of trees. IAWA Bullitin, 5:275-294
    
    
    64. Callado CH, Costa CG. 1997. Wood anatomy of some Anaueria and Belischmiedia species (Lauraceae). IAWA Journal. 18: (3) 247-259.
    65. Canny MJ. 1993. The transpiration stream in the leaf apoplast: water and solutes. Philosophical Transactions royal Society London 8341:87-100
    66. Carlquist S. 1957. The genus H/c/z/a(Compositae). Univ. Calif. Publ. Bot. 29:1-144.
    67. Carlquist S. 1966. Wood anatomy of Compositae: a summary, with comments on factors controlling wood evolution. Aliso 6: 505-525
    68. Carlquist S. 1975a. Ecological strategies of xylem evolution. University of California Press, Berkeley.
    69. Carlquist S. 1975b. Wood anatomy of Onagraceae, with notes on alternative modes of photosynthate movement in dicotyledon woods. Ann. Mo. Bot. Card.,62:386-424.
    70. Carlquist S. I977a. Ecological factors in wood evolution: A flasistic approach. Amer. Jowl. Bot.,64:887-896
    71. Carlquist S. 1977b. Wood anatomy of Onagraceae: additional species and concepts. Ann. Mo. Bot. Gard. 64: 627-637.
    72. Carlquist S. 1983. Wood anatomy of Onagraceae: further species: root anatomy; significance of vestured pits and allied structures in dicotyledons. Ann. Mo. Bot. Gard. 69: 755-769.
    73. Carlquist S, Hoekman D A. 1985a. Ecological wood anatomy of the woody southern Californian flora. IAWA Bull.n.s. 6: 319-347.
    74. Carlquist S. 1985b. Wood anatomy and familial status of Viviania. Aliso 11:159-165.
    75. Carlquist S. 1987. Wood anatomy of noteworthy species of Ludwigia (Onagraceae) with relation to ecology and systematics. Ann Mo. Bot. Gard., 75:889-896.
    76. Carlquist S. 1988. Comparative Wood Anatomy. Springer-Verlag, Berlin.
    77. Carlquist S. 1993. Wood and bark anatomy of Aristolociaceae-systematic and habital correlations. IAWA Journal, 14: (4) 341-357.
    78. Carlquist S, Schneider EL, Miller RB. 1994. Wood and bark anatorny of Argemone (Papaveraceae).LAWA Journal, 15: (3) 247-255.
    79. Carlquist S, Wilson EJ. 1995a. Wood anatomy of Drosophyllum (Droseraceae)-ecological and phylogenetic considerations. Bulletin of the Torrey Botanical Club, 122: (3) 185-189.
    80. Carlquist S. 1995b. Wood anatomy of Ranunculiflorae: A summary. Plant Systematics and Evolution, 11-24, Suppl. 9.
    81. Carlquist S, Boggs CJ, 1996a. Wood anatomy of Plumbaginaceae. Bulletin of the Torrey Botanical Club, 123: (2) : 135-147
    82. Carlquist S. 1996b. Wood anatomy of Akaniaceae and Bretschneideraceae: A case of near-identity and its systematic implications. Systematic Botany, 21: (4) 607-616.
    83. Carlquist S. 1997a. Wood anatomy of Argyroxiphium (Asteraceae): Adaptive radiation and ecological correlations. Journal of the Torrey Botanical Society, 124: (1) 1-10.
    
    
    84. Carlquist S. 1997b. Pentaphragma: A unique wood and its significance. LAWA Journal, 18: (1) 3-12.
    85. Carlquist S. 1998a. Wood anatomy of Wikesia (Asteraceae) with relation to systematic, organography, and habit. Journal of the Torrey Botanical Society, 125: (4) 261-267.
    86. Carlquist S. 1998b. Wood and bark anatomy of Caricaceae; Correlations with systematics and habit. LAWA Journal, 19: (2) 191-206.
    87. Carlquist S. 1999a. Wood and stem anatomy of Stegnosperma (Caryophyllales); phylogenetic relationships; nature of lateral meristems and successive cambial activity. IA WA Journal 20: (2) 149-163.
    88. Carlquist S. 1999b. Wood anatomy, stem anatomy, and cambial activity of Barbeuia (Caryophyllales). LAWA Journal, 20: (4) 431-440
    89. Carlquist S. 2000. Wood and stem anatomy of Sarcobatus (Caryophyllales): systematic and ecological implications. Taxon, 49: (1) 27-34.
    90. Chai PK, 1982. Ecological studies of mangrove forest in Sarawak. Ph.D. thesis. University of Malaysia, Kuala Lumpur
    91. Chattaway MM. 1932. Proposed standards for numerical values used in describing woods. Tropical woods 29:20-28.
    92. Chauhan L, Dayal R, 1985. Wood anagymy of Indian Albizias. LAWA Bull NS, 6: 213-218
    93. Chen BL, Baas P, Wheeler EA, Wu SM. 1993. Wood anatomy of trees and shrubs from China. 6. Magnoliaceae. IA WA Journal, 14: (4) 391-412.
    94. Cherubini P, Schweingruber FH, Forster T. 1997. Morphology and ecological significance of intra-annual radial cracks in living conifers. Trees-Structure and Function, 11: (4) 216-222.
    95. Cole TG. Ewel KC, Devoe NN.1999. Structure of mangrove trees and forests in Micronisia. Forest Ecology and Management, 117(1-3) : 95-109
    96. Connor D. 1969. Growth of grey mangrove (Avicennia marina) in nutrient culture. Biltropica 1: 36-40.
    97. Conti EA,Litt A, Sytsma KJ. 1996. Circumscription of Myrtales and their relationships to other rosids: evidence from rbcL sequencedata. American Journal of Botany,83:221-233
    98. Davis SD, Sperry JS, Hacke UG, 1999. The relationship between xylem conduit diamenter and cavitation caused by freezing. American Journal of Botany, 86(10) : 1367-1372
    99. DenOuter RW, Van veenendaal WLH. 1992. Wood anatomy of the Baphia group (Leguminosae). LAWA Bulletin, 13: (2) 135-149.
    100. DenOuter RW, van Veenendaal WLH. 1996. Wood anatomy of the Aphanocalyx-Monopetalanthus complex (Caesalpinioideae). LAWA Journal 17: (2) 205-223.
    101. Diasleme CL, Gasson P. Lughadha EN. 1995. Wood anatomy of 4 Myrtaceae genera in
    
    the subtribe Myrciinae from South-America. IAWA Journal, 16: (1) 87-95.
    102. Dickison WC. 1972. Anatomical studies in the Connaraceae. II. Wood anatomy. J Elisha Mitchell Sci Soc 88:120-126.
    103. Dickson WC, Baas P, 1977. The morphology and relationships of Paracryphia (Paracryphiaceae). Blumea 23:417-438.
    104. Dickison WC, 1982. Vegetative anatomy of Oncotheca macrocarpa, a newly described species of Oncothecaceae. Adansonia, 4: 177-181
    105. Dickison WC, 1986. Wood anatomy and affinities of Alseuosmicaeae. Syst. Bot. 11: 214-221
    106. Dickison, WC, 1990. The morphology and relationships of Medusagyne (Medusagynaceae). Pl. Syst. Evol. 171: 27-55
    107. Dickison WC. 1996. Stem and leaf anatomy of Saruma henryi Oliv, including observations on raylessness in the Aristolochiaceae. Bulletin of the Torrey Botanical Club,123:(4) 261-267.
    108. Dong ZM, Baas P. 1993. Wood anatomy of trees and shrubs from China. 5. Anacardiaceae. IAWA Journal, 14: (1) 87-102.
    109. Donoghue MJ. 1989. Phytogenies and the analyses of evolutionary sequences, with examples from seed plants. Evolution 43: 1137-1156.
    110. DosSantos G, Miller RB. 1997. Wood anatomy of Jacaranda (Bignoniaceae): Systematic relationships in sections Monolobos and Dilobos as suggested by twig and stem wood rays. IAWA Journal, 18: (4) 369-383.
    111. Downton WJS. 1982. Growth and osmotic relations of the mangrove Avicennia marina as influenced by salinity. Australian Journal of plant physiology, 9: 519-528.
    112. Duke NC, Jacques BR, 1987. A systematic revision of the mangrove genus Sonneratia (Sonneratiaceae) in Australia. Blumea,32: 277-302
    113. Dute RR, Freeman JD, Henning F, Barnard LD. 1996. Intervascular pit membrance structure in Daphne and Wikstroemia-Systematic implications. IAWA Journal, 17: (2) 161-181.
    114. Eckstein D, Scholz F, Klein H. 1995. Wood anatomical studies of cloned spruce trees fumigated with sulfur-dioxide. IAWA Journal, 16: (3) 299-309
    115. Ellmore GS, Ewers FW.1985. Hydraulic conductiveity in trunk xylem of elm, Ulmus americana. IAWA Bull NS, 6:303-307
    116. Endress P K 1997. Evolutionary biology of flowers; prospects for the next century. Pp. 99-119 in: Lwatsuki L & Raven P H (eds.), Evolution and diversification of land plants. Tokyo.
    117. Ewers FW. 1985. Xylem structure and water conduction in conifer trees, dicot trees, and lianas, International Association of Wood Anatomists Bulletin, New Series, 6: 309-317
    118. Exell AW. 1954. Combretaceae. Flora Malesiana, Series 1, 4: 553-589
    119. Fahn A, Werker E, Baas P. 1985. Wood Anatomy and Identification of Trees and
    
    Shrubs from Isreal and Adjacent Regions. The Israel Acad. of Sci. and Hum., Jerusalem.
    120. Fernando ES, Gadek PA, Quinn CJ. 1995. Simaroubaceae, an artificial construct-evidence from rbcL sequence variation. American Journal of Botany, 82:(1) 92-103.
    121. Feuillat F, Dupouey JL, Sciama D, Keller R. 1997. A new attempt at discrimination between Quercus petraea and Quercus robur based on wood anatomy. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere. 27: (3) 343-351.
    122. Frost FH. 1930. Specialization in secondary xylem in dicotyledons, II. Evolution of end wall of vessel element. Bot Gaz 90:198-212
    123. Fujikawa S, Kuroda K. 2000. Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species. Micron, 31: 669-686
    124. Gasson P. 1996. Wood anatomy of the tribe Swartzieae with conmments on related Papilionoid and Caesalpinioid Leguminosae. IAWA Journal, 17: (1) 45-75.
    125. Gasson P, Webley P. 1999a. Wood anatomy of Exostyle venusta (Swartzieae, Papilionoideae, Leguminosae). IAWA Journal, 20: (1) 59-66.
    126. Gasson P. 1999b. Wood anatomy of the tribe Dipterygeae with comments on related papilionoid and caesalpinioid Leguminosae. IAWA Journal, 20: (4) 441-455.
    127. Gill AM, Tomlinson PB, 1975. Aerial roots: an array of forms and functions. Chap. 12 in The development and function of roots, eds. JG Torrey and DT Clarkson. London: Academic Press.
    128. Givnish TJ, Sytsma K J (eds.). 1997. Molecular evolution and adaptive radiation. Cambridge.
    129. Goldblatt P, Tobe H, Carlquist S, Patel VC. 1985. Familial position of the Cape genus Empleuridium.Ann Mo Bot. Card, 72: 167-183.
    130. Greguss P. 1955. Identification of living gymnosperms on the basis of xylotomy. Budapest,
    131. Gustafsson MHG, Bremer K. 1997. The circumscription and systematic position of Carpodetaceae. Australian Systematic Botany, 10: (6) 855-862.
    132. Gutzwiller M A, 1961. Die phylogenetische Stellung von Suriana maritime. L. Bot. Jahrb 81:l-49.
    133. Hacke U, Sauter JJ. 1996. Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia, 105:435-439
    134. Hayden WJ. 1977. Comparative anatomy and systematics of Picrodendron, genus incertae sedis. Jarnold Arbor., 58:257-279.
    135. Hayden WJ, Hayden SM. 2000. Wood anatomy of Acalyphoideae (Euphorbiaceae). IAWA Journal, 21: (2) 213-235.
    136. Heenan PB. 1997. Wood anatomy of the Carmichaetia(Fabaceae) complex in New Zealand. New Zealand Journal of Botany, 35: (3) 395-415.
    137. Herendeen PS, Wheeler EA, Baas P, 1999. Angiosperm wood evolution and the
    
    potential contribution of paleontological data. Bot. Rev.65: 278-300.
    138. Hoffmann O, 1890. Compositae. In: Engler A, Prantl K (eds) Die naturlichen Pflunzenfamilien 4/5 :87-391, Verlag Wilhelm Engelmann, Leipzig.
    139. Hohn A. 1999. Wood anatomy of selected West African species of Caesalpinioideae and Mimosoideae (Leguminosae): A comparative study. IAWA Journal, 20: (2) 115-146.
    140. IAWA Committee. 1989. IAWA list of microscopic feactures for hardwood identification. IAWA Bull NS 10:219-332
    141. Ilic J. 1995. Distinguishing the woods of Araucaria Cunninghamii (Hoop pine) and Araucaria. Bidwilli (Bunya pine). IAWA Journal, 16: (3) 255-260.
    142. Ingle HD, Dadswell HE, 1956. The anatomy of the timbers of the south-west Pacific area. IV. Cunoniaceae, Davidsoniaceae, Eucryphiaceae. Aust J. Bot. 4:125-151.
    143. Irvine J,Grace J. 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta,202:455-461
    144. Jain, K K. 1976. Evolution of wood structuresin Pinaceae. Isr. J. Bot., 25: 28-33.
    145. Jansen S, Robbrecht E, Beeckman H, Smets E. 1996. Gaertnera and Pagamea: Genera within the Psychotrieae or constituting the tribe Gaertnereae? A wood anatomical and palynological approach. Botanica Ada, 109: (6) 466-476.
    146. Jansen S, Robbrecht E, Beeckman H, Smets E. 1997a. Comparative wood anatomy of African Coffeeae (Rubiaceae-Ixoroideae). Belgian Journal of Botany, 130: (1) 47-58.
    147. Jansen S, Robbrecht E, Beeckman H, Smets E. 1997b. Wood anatomy of the predominantly African representatives of the tribe Psychotrieae (Rubiaceae-Rubioideae). IAWA Journal, 18(2) : 169-196.
    148. Jansen S, Smets E. 1998. Vestured pits in some woody Gentianaceae. IAWA Journal 19:35-42
    149. Jansen S, Baas P, Smets E. 2000a. Vestured pits in Malvales s.l.: a character with taxonomic significance hidden in the secondary xylem. Taxon, 49: (2) 169-182.
    150. Jansen S, Piesschaert F, Smets E. 2000b. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships. American Journal of Botany 87(1) :20-28
    151. Jansonnius,HH. 1950. The vessel in the wood of Javan mangrove trees. Blumeu 6:465-469.
    152. Jeffrey E C. 1917. The anatomy of woody plants. Univ Chicago Press, Chicogo
    153. Karehed J, Lundberg J, Bremer B, Bremer K, 1999. Evolution of the Australasian families Alseuosmiaceae, Argophyllaceaeand Phellinaceae. Syst. Bot. 24: 660-682
    154. Kazuyuki Oda. 11983. Anatomical structure of Okinawan mangrove trees. The Sub-Tropical Forest 5:80-89.
    155. Kribs DA. 1935. Salient lines of structural specialization in the. wood rays of dicotyledons. Bot Gaz 96:547-557
    156. Langan SJ, Ewers FW, Davis SD. 1997. Xylem dysfunction caused by water stress and
    
    freezing in two species of co-occurring chaparral shrubs. Plant Cell and Environment, 20:425-437
    157. Li BH, Terwelle BJH, Klaassen RKWM. 1995. Wood anatomy of trees and shrubs from China. 7. Sapindaceae. IAWA Journal 16: (2) 191-215.
    158. Lindorf H. 1994. Eco-anatomical wood features of species from a very dry tropical forest. IAWA Journal, 15: (4) 361-376.
    159. Lindorf H. 1997. Wood and leaf anatomy in Sessea corymbiflora from an ecological perspective. IAWA Journal, 18: (2) 157-168.
    160. LoGullo MA, Salleo S. 1993. Different vulnerabilities of Quercus ilex L. to freeze-and summer drought-induced xylem embolisms: an ecological interpretation. Plant Cell and Environment, 16: 511-519
    161. Machado SR, Angyalossy Alfonso V, deMorretes BL. 1997. Comparative wood anatomy of root and stem in Styrax camporum (Styracaceae). IAWA Journal, 18 : (1) 13-25.
    162. MacNae W, 1968. A general account of fauna and flora of mangroves swamps and forest in the Indo-West-Pacific region. Advances in Marine Biology, (1) : 74-241.
    163. Marco HF. 1935. Systematic anatomy of the woods of Rhizophoraceae. Trop. Woods, 44: 1-20
    164. Mauseth JD, Plemones-Rodriguez BJ, 1998. Evolution of extreme xeromorphic characters in wood: a study of nine evolutionary lines in Cactaceae. American Journal of Botany, 85(2) : 209-218
    165. McMillan C 1975. Adaptive differentiation to chilling in mangrove populations. In: Proceedings of the International Symposium on Biology and Management of Mangroves, eds. G E Walsh, S C Snedaker, and H J Teas, Pp. 62-68. Gainesville: Institute of Food and Agricultural Sciences, University of Florida.
    166. Melchior H. 1964. Rhizophoraceae, In H. Melchior [ed.]. Engler's Syllabus der Pflanzenfamilien. 12th ed., vol.2. 357-359. Gebr(?)der Bomtrager, Berlin, Germany
    167. Mennega AMW. 1997. Wood anatomy of the Hippocrateoideae (Celastraceae). IAWA Journal, 18: (4) 331-368.
    168. Metcalf CR, Chalk L 1983. Anatomy of the dicotyledons (2nd ed.) Clarendon Press, Oxford. Volume II
    169. Metcalfe CR. 1944. An introduction, with special reference to the anatomy of the leaf and stem. In symposium. On the taxonomic valus of the anatomical structure of the vegetative organs of the dicotyledons. Proc. Linn. Soc., 155: 210-214
    170. Miksche JP. 1976. Botanical microtechnique cytochemistry. The Iowa State University Press. Iowa: 54-129
    171. Mitchell AD, Wagstaff SJ. 1997. Phylogenetic relationships of Pseudopanax species (Araliaceae) inferred from parsimony analysis of rDNA sequence data and morphology. Plant systematics and Evolution, 208: (3-4) 121-138.
    
    
    172. Morton CM. 1995. A new genus and species of Dipterocarraceae from the Neotropics. 2. Stem anatomy. Brittonia, 47: (3) 237-247.
    173. Mukherjee BB.1969. Wood anatomy of a few mangrove and other plants (recent and fossil). Trans. Bose Res. Inst,32:(2) 59-63
    174. Muller J 1978. New observations on pollenmorphologyn and fossil distribution of the genus Sonneratia (Sonnertiaceae). Review of Palaeobotany and Playnology, 26: 277-300.
    175. Nandi CM, Chase MW, Endress PK. 1998. Acombined cladistiic analysis of angiosperms using rbcL and non-molecular data sets. Annals of the Missouri Botanical Garden, 85: (1) 137-212.
    176. Noshiro S, Joshi L, Suzuki M. 1994. Ecological wood anatomy of .Alus nepalensis (Betulaceae) in east Nepel. J. Plant Res. 107: 399-408.
    177. Noshiro S, Suzuki M, Ohba H. 1995a. Ecological wood anatomy of Nepalese Rhododendmn(Er\caceae). 1. interspecific variation. J. Plant Res. 108:1-9.
    178. Noshiro S, Suzuki M. 1995b. Ecological wood anatomy of Nepalese Rhododendron(Ericaceae). 2. intraspecific variation. J. Plant Res. 108:217-233.
    179. Noshiro S, Baas P. 1998. Systematic wood anatomy of Cornaceae and allies. IAWA Journal 19: (1) 43-97.
    180. Oever L v.d., Baas P, Zandee M. 1981. Comparative wood anatomy of Symplocos and latitude and altitude of provenance. IAWA Bull.n.s. 2:3-24.
    181. Oskolski AA. 1995. Wood anatomy of Schefflera and related taxa (Araliaceae). IAWA Journal 16: (2) 159-190.
    182. Oskolski AA, Lowiy PP. 2000. Wood anatomy of Mackinlaya and Apiopetalum (Araliaceae) and its systematic implications. Annals of the Missouri Botanical Garden, 87: (2) 171-182.
    183. Pannier F, Pannier R F, 1975. Physiology of vivipary in Rhizophora mangle L. Proc. Int. Symp. Bilo. Mgt. Mangroves 2: 632-639.
    184. Panshin,AJ. 1932, An anatomical study of the woods of the Phillippine mangrove swamps.Philipp.J.Sci. 48:143-205.
    185. Parlange JY, Turner NC, Waggoner PE. 1975. Water uptake, diameter change and nonlinear diffusion in tree stems. Plant Physiol, 55: 247-250
    186. Patel RN. 1992. Wood anatomy of the dicotyledons indigenous to New-Zealand. 22. Proteaceae. New Zealand Journal of Botany, 30: (4) 415-428.
    187. Peter JH. 1999. The biology of mangroves. Oxford:Oxford university press
    188. Piesschaert F, Andersson L, Jansen S, Dessein S, Robbrecht E, Smets E. 2000. Searching for the taxonomic position of the African genus Colletoecema (Rubiaceae): morphology and anatomy compared to an rps 16-intron analysis of the Rubioideae. Canadian Journal of Botany-revue Canadienne de Botanique, 78: (3) 288-304.
    189. Plumb RC, Bridgman WB.1972. Ascent of sap in trees. Science 179:1129-1131
    
    
    190. Psarsa GK, Sofroniou I. 1999. Wood anatomy of Cappsris spinosa from an ecological, perspective. IAWA Journal 20: (4) 419-429.
    191. Qiang S, Peng L. 1997. Wood structure of Aegiceras corniculatum and its ecological adaptations to salinities. Hydrobiologia, 352:61-66.
    192. Quirk J T. 1980. Wood anatomy of the Vochysiaceae. IAWA Bull NS 1: 172-179
    193. Raitio H. 1992. Anatomical symptoms in the wood of Scots pine damaged by frost and pine bark bugs. Flora, 186: (3-4) 187-193
    194. Record S J. 1933. The woods of Rhabdodendron and Duckeodendron. Trop Woods 33: 6-10
    195. Roberts LW, Gahan PB, Aloni R, 1988. Vascular differentiation and plant growth regulators. Springer-Verlag, Berlin
    196. Rohwer JG. 2000. Toward a phylogenetic classification of the Lauraceae : Evidence from matK sequences. Systematic Botany, 25: (1) 60-71.
    197. Rury PM. 1985. Systematic and ecological wood anatomy of the Erythroxylaceae. IAWA Bull NS 6:365-397
    198. Saenger P, 1982. Morphological, anatomical and reproductive adaptions of Australian mangroves. In: B. F. Clough(ed.) Mangrove Ecosystems in Australia-Structure, function and Mangement. Canberra: Australian Natuonal Univerity Press.
    199. Sakamoto Y, Sano Y. 2000. Inhibition of water conductivity caused by watermark disease in Salix sachalinensis IAWA Journal, 21: (1) 49-60
    200. Schmid R, 1980. Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classfication of Myrtaceae. Taxon 29:559-595.
    201. Schmid R, Carlquist S, Hufford LD, Webster GL, 1984. Systematic anatomy of Oceanopapaver, a monotypic genus of the Capparaceae from New Caledonia. Bot. L. Linn.Soc., 89:119-152.
    202. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA. 1965. Sap pressures in vascular plants. Sci, 148: 339-346
    203. Schwarzbach AE, Ricklefs RE. 2000. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. American Journal of Botany, 87(4) :547-564
    204. Shi SH, Huang YL, Tan FX, He XJ, Boufford DC. 2000. Phylogenetic analysis of the Sonnertiaceae and its relationship th Lythraceae based on ITS sequences of nrDNA. Journal of Plant Research, 113(1111) : 253-258
    205. Sidiyasa K, Baas P. 1998. Ecological and systematic wood anatomy of Alstonia (Apocynaceae). IAWA Journal, 19: (2) 207-229.
    206. Simmons MP, Hedin JP. 1999. Relations and morphological character change among genera of Celastraceae sensu lato (including Hippocrateaceae). Annals of the Missouri Botanical Garden, 86: (3) 723-757.
    
    
    207. Slooten PF van. 1924. Contributions a Fetude de la flore des Indes neerlandaises II, The Combretaceae of the Dutch East Indies. Bull. Jard. Bot. Buitenz. Series 3, 6(1) : 11-64
    208. Smith JAC, L(?)ttge U. 1985. Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoe daigremontiana. Planta 163:272-282
    209. Soltis DE, Xiang QY. 1995. Relationships and evolution of Hydrangeaceae on rbcL sequence data. Hufford Lamerican Journal of Botany, 82: (4) 504-514.
    210. So(?) CR.1975. A review of the new classification systems of flowering plants (Angiospermatophyta, Magnoliophytina). Taxon, 24: 585-592
    211. Sperry JS. 1985. Xylem embolism in the palm Rhapis excelsa. IAWA Bull.NS 6:283-292
    212. Sperry JS, Sullivan JEM. 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology, 100:605-613
    213. Stern W L, Brizicky G K, 1958. The comparative anatomy and taxonomy of Heteropyxis. Bull. Torrey. Bot. Club 85: 111-123.
    214. Stern W L, Brizicky G K, 1960. The morphology and relationships Diomma. gen. Inc. sed. Mim N Y Bot Card, 10:38-57.
    215. Sussex I 1975. Growth and metabolism of the embryo and attached seedling of the viviparous mangrove, Rhizophora mangle. Am. J. Bot. 62:948-53.
    216. Swamy GL, Bailey IW. 1949. The morphology and relationships of Cercidipkyllum. Jour Arn. Arb., 30:187-210
    217. Takhtajan AL. 1980. Outline of the classification of the flowering plants(Magnoliophytina). Botanical Review, 46:225-359
    218. Takhtajan AL, 1997. Diversity and classification of flowering plants. Columbia University Press, New York. New York. USA.
    219. Teas H J 1982. Saline silviculture. In Biosaline Research. Eds by Petro, A S. Plenum Press, New York. Pp: 369-383.
    220. Telewski FW, Swanson RT, Strain BR, Burns JM. 1999. Wood properties and ring width responses to long-term atmospheric CO2 enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell and Environment, 22: (2) 213-219.
    221. Terrazas T, Wendt T. 1995. Systematic wood anatomy of the genus Tapirira aublet (Anacardiaceae)-A numerical approach. Brittonia, 47: (2) 109-129.
    222. Thomson RB, Sifton HB. 1925. Resin canals in the Canadian spruce (Picea Canadensis Mill.) Philos. Trans. R. Soc. London. Ser. B. Biol. Sci., 214: 63-111.
    223. Tippo O. 1946. The role of wood anatomy in phylogeny. Amer. Midi. Nat., 36:362-372
    224. Tirel C, J(?)r(?)mie J, Lobreau-Callen D, 1996. Corchorus neocaledonicus (Tiliaceae), veritable identit(?) de I'(?)nigmatique Oceanopapaver. Adansonia, 18: 35-43
    225. Tobe H, Raven PH, 1988a. Floral morphology and evolution in Anisophylleaceae. Botanical Journal of the Linnean Society, 98: 1-25
    
    
    226. Tomiison PB, Bunt JS, Primack RB, Duke Nc. 1978. Lumnitzera rosea (Combretaceae)-its status and floral morphology. J. Arnold Arbor. 59: 342-51.
    227. Tomlinson PB.1986. The Botany of Mangrove. London: Cambridge University Press
    228. Tsumura Y, Kawahara T, Wickneswari R, Yoshimura K. 1996. Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-ampIified chloroplast genes. Theoretical and applied genetics, 93: (1-2) 22-29.
    229. Tyree MT, 1994. Evolution of xylem conduits. IAWA Bull n.s . 15: 335-360
    230. Vander Wyk RW, Canright JE. 1956. The anatomy and relationships of the Annonaceae. Trop Woods, 104: 1-24
    231. van. Vliet,GJCM. 1976. Wood anatomy of Rhizophoraceae. Leiden Bot.Ser. 3:20-75.
    232. van. Vliet GJCM. 1978. The vestured pits of Combretaceae and allied families. Acta Bot Neerl 27: 273-285
    233. van. Vliet GJCM. 1981. Wood anatomy of the palaeotropical Melastomataceae. Blumea 27: 395-462.
    234. van Vliet GJCM, Bass P. 1984. Wood anatomy and classification of the Myrtales. Ann. Mo. Bot. Gard. 71: 783-800.
    235. Villagra PE, Junent FAR. 1997. Wood structure of Prosopis alpataco and P. argentina growing under different edaphic conditions. IAWA Journal, 18: (1) 37-51.
    236. Villar-Salvador P, Castro-Diez P, Perez-Rontome C, Montserrat-Marti G. 1997. Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees Structure and Function, 12: (2) 90-96.
    237. Welle BJH ter, Koek-Noorman J, 1981. Wood anatomy of the neotropical Melastomataceae. Blumea, 27: 335-394.
    238. Wheeler EA, Baas P, 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. Int. Assoc. Wood Anal. Bull. n.s. 12:275-332.
    239. Wiegrefe SJ, Sytsma KJ, Guries RP. 1998. The Ulmaceae, one family or two? Evidence from chloroplast DNA restriction site mapping. Plant Systematics and Evolution, 210: (3-4) 249-270.
    240. Wisniewski M, Ashworth EN. A comparison of seasonal ultrastructural changes in stem tissues of peach (Prunus persica) that exhibit contrasting mechanisms of cold hardiness. Bot. Gaz.,147(4) :407-417
    241. Yoda K, Suzuki M. 1992. Comparative wood anatomy of Coriaria. Botanical Magazine-Tokyo, 105: (1078) 235-245.
    242. Zeeuw C de, 1977. Pakaraimea, Dipterocapaceae of the western Hemisphere. III. Stem anatomy. Taxon 26: 368-380
    243. Zhang SY, Baas P, Zandee M. 1992a. Wood structure of the Rosaceae in relation to ecology, habitat and phenology. IAWA Bull, n.s., 13: 307-394.
    244. Zhang SY. 1992b. Systematic wood anatomy of Rosaceae. Blumea 37:81-158
    
    
    245. Zhang X, Deng L, Baas P. 1988. The ecological wood anatomy of the Lilacs (Syringa , oblata var.giraldii) on Mount Taibei in northwestern China. IA WA Bull.n.s., 9:24-30.
    246. Zhong Y, Baas P, Wheeler EA. 1992. Wood anatomy of trees and shrubs from China. 4. Ulmaceae. IAWA Bulletin, 13: (4) 419-453.
    247. Zimmermann MH. 1958. Translocation o forganic substances in trees: III. The removal of sugars from sieve tubes in the white ash. Plant physiol., 33: 213-217
    248. Zimmermann MH. 1983. Xylem Structure and Ascent of Sap . Berlin: Springer-Verlag.
    249. Zimmermann U, Zhu JJ, MeinzerF, Goldstein G, SchneiderH, Zimmermann G, Benkert R, Th(?)rmer F, Melcher P, Webb D. 1994, High molecular weight organic compounds in the xylem sap of mangroves: implications for long-distance water transport. Botanica Ada 107: 218-220
    250. Zweyphenning RCVJ. 1978. A hypothesis on the function of vestured pits. IAWA Bull. 1978/1: 13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700