用户名: 密码: 验证码:
鸭肠炎病毒UL18基因部分特性及其原核表达蛋白应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.鸭肠炎病毒UL18基因的序列特征与密码子使用偏爱性运用生物信息学分析软件对注册的鸭肠炎病毒(Duck enteritis virus,DEV) UL18基因(GenBank登录号为EU195093)及其编码蛋白进行了分析。结果表明,DEVUL18基因大小969bp,编码蛋白为一条含322个氨基酸残基组成的多肽,相对分子量为35.250KD,等电点理论值为8.37,无信号肽切割位点,含有15个潜在的磷酸化位点和2个N-糖基化位点,含15个潜在的B细胞表位;系统进化分析结果表明,DEVUL18属于α-疱疹病毒的一个成员,与MeHV-1的亲缘关系最近;密码子偏爱性分析结果表明,若要对DEVUL18基因进行外源表达,真核表达系统可能更容易。若选择原核表达系统,则需要对宿主表达菌进行选择和条件优化,才能有利于该基因在体外表达重组蛋白。
     2.鸭肠炎病毒UL18基因的原核表达、抗体制备及应用根据注册的DEV UL18基因序列,用Primer Premier6.0软件设计合成一对特异性扩增DEVUL18基因的引物。用该引物从DEV基因组中扩增UL18基因,并将其正向插入pET32a(+)原核表达质粒,成功构建了原核表达质粒pET32a-UL18。将pET32a-UL18原核表达质粒转化BL21(DE3)表达宿主菌,以IPTG诱导,获得了大小约为55KD且主要以包涵体形式存在的pET32a/DEV-UL18重组蛋白。将该重组蛋白纯化后免疫家兔,得到了兔抗pET32a/DEV-UL18重组蛋白的高免血清。以纯化的pET32a/DEV-UL18重组蛋白作为包被抗原,建立了基于pET32a/DEV-UL18重组蛋白的间接ELISA方法;以纯化的兔抗pET32a/DEV-UL18重组蛋白IgG作为一抗,建立了基于兔抗UL18重组蛋白IgG的免疫组化和免疫荧光方法,并对DEV感染鸭组织和鸭胚成纤维细胞后UL18蛋白的分布进行了检测。
     3.鸭肠炎病毒UL18基因在感染宿主细胞中的转录与表达特征采用荧光定量RT-PCR和Western blotting对DEV感染鸭胚成纤维细胞(DEF)后UL18基因的转录和表达情况进行了检测。结果表明,DEV感染DEF后2h,UL18基因已经开始转录,感染后12h检测到开始表达,感染24h后转录和表达产物急剧上升,到36h和48h后转录和表达产物分别达最大值,之后逐渐下降。DEV UL18基因在DEF细胞中的表达产物分子量约为35KD。根据该基因的转录和表达特征,初步推测DEV UL18基因为病毒晚期基因。
1. Analysis of duck enteritis virus(DEV) UL18gene for its sequence features and codon bias. The DEV UL18gene sequence (GeneBnak accession EU195093) and its protein sequence were analyzed with bioinformatics software. The results showed that DEV UL18gene was969bp,its encoded protein was a polypeptide which comprised of322amino acids residue, the relative molecular weight was35.250KD, the theoretical value of its isoelectric point was8.37,which had no N-terminal signal peptide, but contained15potential phosphorylation sites,2glycosylation sites,and15potential B-cell epitopes. The phylogenetic tree analysis showed that DEV UL18belonged to one of the Alphaherpesvirinae, which was evolutionarily closest to the MeHV-1.It is proper to choose eukaryotic expression system to express this gene based on the codon analysis.So it might be necessary to screen different host bacteria and optimize the condition if using a prokaryotic expression system to expressing this protein.
     2. Prokaryotic expression and antibody preparation of DEV UL18gene and its application. The primers were designed based on the DEV UL18gene sequence using software Primer Premier6.0. The UL18gene fragment was amplified from DEV genomic DNA by PCR and was cloned into pMD18-T vector. The recombinant construct, named pMD18-T-UL18, was verified by PCR and double digestion (Hind Ⅲ and Xho Ⅰ) and DNA sequencing. Then the UL18gene fragment was subcloned into the prokaryotic expression plasmid, pET32a(+).The recombinant plasmid pET32-UL18was transformed into the host bacteria BL2](DE3), the optimal concentration was0.6mmol/L IPTG as inductor, the optimal time was4h at37℃, and the recombinant expressed protein is about55KD, which was mostly existed in inclusion body. The recombinant protein was purified, rabbits were immunized four times after immunization, then collected the hyperimmune serum of the rabbit anti pET32a/DEV-UL18. Based on the purified recombinant protein pET32a/DEV-UL18, DEV-UL18-ELISA was developed for detecting the DEV serum antibodies in an indirect ELISA. Indirect immunoperoxidase assay (IPA) and indirect immunofluorescence assay (IFA) with the rabbit IgG raised against UL18recombinant protein was used to study the distribution in the tissues of infected ducks.
     3. Transcription and translation characteristics of DEV UL18gene in infected host cells. UL18mRNA and protein were detected through qRT-PCR and western blotting respectively. The result showed that the transcription of DEV UL18were started at2h post infection (PI),and the detection of its expression products were at12h PI,the transcripts and expression products were surging at24h PI,afterwards came to a peak at36h and48h PI,then both of them were reduced.The expression products was nearly35KD. It can be inferred that this gene was in the last period of the virus by analyzed synthetically the characteristics of DEV UL18's transcripts and expression.
引文
[1]Mettenleiter T. C., Klupp B. G.,Granzow H. Herpesvirus assembly:a tale of two membranes[J]. Curr Opin Microbiol,2006,9(4):423-429.
    [2]McGeoch D. J., Dalrymple M. A., Davison A. J., et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1[J]. J Gen Virol,1988,69:1531-1574.
    [3]Klupp B. G., Granzow H.,Mettenleiter T. C. Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product[J]. Journal of virology,2000, 74(21):10063-10073.
    [4]Donnelly M.,Elliott G. Fluorescent tagging of herpes simplex virus tegument protein VP13/14 in virus infection[J]. J Virol,2001,75(6):2575-2583.
    [5]Saif Y. M., Barnes H. J.,Glisson J. R. Diseases of PouItry[M]. Iowa State University Press,2003, 676-682.
    [6]Li Y., Huang B., Ma X., et al. Molecular characterization of the genome of duck enteritis virus[J]. Virology,2009,391(2):15]-161.
    [7]Pertuiset B., Boccara M., Cebrian J., et al. Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene required for capsid assembly[J]. J Virol,1989,63(5):2169-2179.
    [8]金奇.医学分子病毒学[M].北京:科学出版社,2001,717-718.
    [9]Roizman B. The structure and isomerization of herpes simplex virus genomes[J]. Cell,1979, 16(3):481-494.
    [10]Vlazny D. A., Kwong A.,Frenkel N. Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA[J].Proc Natl A cad Sci U S A,1982,79(5):1423-1427.
    [11]薛念波,肖少波,江云波,等.伪狂犬病病毒Ea株UL18基因的克隆、序列分析及表达[J].中国预防兽医学报,2008,30(4):255-259.
    [12]Lopez-Botet M., Llano M..Ortega M. Human cytomegalovirus and natural killer-mediated surveillance of HLA class I expression:a paradigm of host-pathogen adaptation[J]. Immunol Rev, 2001,181:193-202.
    [13]Chapman T. L..Bjorkman P. J. Characterization of a Murine Cytomegalovirus Class 1 Major Histocompatibility Complex (MHC) Homolog:Comparison to MHC Molecules and to the Human Cytomegalovirus MHC Homolog[J]. J Virol.,1998,72(l):460-466.
    [14]Spencer J. V., Trus B. L., Booy F. P., et al. Structure of the herpes simplex virus capsid:peptide A862-H880 of the major capsid protein is displayed on the rim of the capsomer protrusions[J]. Virology,1997,228(2):229-235.
    [15]Thomsen D. R., Newcomb W. W., Brown J. C., et al. Assembly of the herpes simplex virus capsid:requirement for the carboxyl-terminal twenty-five amino acids of the proteins encoded by the UL26 and UL26.5 genes[J]. J Virol,1995,69(6):3690-3703.
    [16]Newcomb W. W., Homa F. L., Thomsen D. R., et al. Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation[J]. J Mol Biol,1996, 263(3):432-446.
    [17]Homa F. L.,Brown J. C. Capsid assembly and DNA packaging in herpes simplex virus[J]. Rev Med Virol,1997,7(2):107-122.
    [18]Taus N. S., Salmon B.,Baines J. D. The herpes simplex virus 1 UL 17 gene is required for localization of capsids and major and minor capsid proteins to intranuclear sites where viral DNA is cleaved and packaged[J]. Virology,1998,252(1):115-125.
    [19]Newcomb W. W., Thomsen D. R., Homa F. L., et al. Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids[J]. J Virol,2003,77(18):9862-9871.
    [20]Newcomb W. W., Homa F. L.,Brown J. C. Involvement of the portal at an early step in herpes simplex virus capsid assembly[J]. J Virol,2005,79(16):10540-10546.
    [21]Scholtes L.,Baines J. D. Effects of major capsid proteins, capsid assembly, and DNA cleavage/packaging on the pUL17/pUL25 complex of herpes simplex virus 1[J]. J Virol,2009, 83(24):12725-12737.
    [22]Baines J. D. Herpes simplex virus capsid assembly and DNA packaging:a present and future antiviral drug target[J]. Trends Microbiol,2011,19(12):606-613.
    [23]Schipke J., Pohlmann A., Diestel R., et al. The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus[J]. J Virol,2012,86(7):3682-3700.
    [24]Zhou Z. H., He J., Jakana J., et al. Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids[J]. Nat Struct Biol,1995,2(11):1026-1030.
    [25]Guzowski J. F.,Wagner E. K. Mutational analysis of the herpes simplex virus type 1 strict late UL38 promoter/leader reveals two regions critical in transcriptional regulation[J]. J Virol,1993, 67(9):5098-5108.
    [26]Huang C. J., Goodart S. A., Rice M. K., et al. Mutational analysis of sequences downstream of the TATA box of the herpes simplex virus type 1 major capsid protein (VP5/UL19) promoter[J]. J Virol,1993,67(9):5109-5116.
    [27]Celluzzi C. N.,Farber F. E. Role of the major capsid protein in herpes simplex virus type-1 capsid assembly[J]. Acta Virol,1990,34(6):497-507.
    [28]Newcomb W. W., Homa F. L., Thomsen D. R., et al. Cell-free assembly of the herpes simplex virus capsid[J]. J Virol,1994,68(9):6059-6063.
    [29]Zhou Z. H., Prasad B. V., Jakana J., et al. Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy[J]. J Mol Biol,1994, 242(4):456-469.
    [30]Ace C. I., Dalrymple M. A., Ramsay F. H., et al. Mutational analysis of the herpes simplex virus type 1 trans-inducing factor Vmw65[J]. J Gen Virol,1988,69:2595-2605.
    [31]Spector D., Purves F.,Roizman B. Mutational analysis of the promoter region of the alpha 27 gene of herpes simplex virus 1 within the context of the viral genome[J]. Proc Natl Acad Sci U S A,1990,87(14):5268-5272.
    [32]Thomsen D. R., Roof L. L.,Homa F. L. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins[J]. J Virol,1994,68(4):2442-2457.
    [33]Newcomb W. W., Homa F. L., Thomsen D. R., et al. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins[J].J Virol,1999,73(5):4239-4250.
    [34]Spencer J. V., Newcomb W. W., Thomsen D. R., et al. Assembly of the herpes simplex virus capsid:preformed triplexes bind to the nascent capsid[J]. J Virol,1998,72(5):3944-3951.
    [35]Adamson W. E., McNab D., Preston V. G., et al. Mutational analysis of the herpes simplex virus triplex protein VP19C[J]. J Virol,2006,80(3):1537-1548.
    [36]Kim H. S., Huang E., Desai J., et al. A domain in the herpes simplex virus 1 triplex protein VP23 is essential for closure of capsid shells into icosahedral structures[J]. J Virol,2011, 85(23):12698-12707.
    [37]Apostolopoulos V., Yu M., Corper A. L., et al. Crystal structure of a non-canonical high affinity peptide complexed with MHC class 1:a novel use of alternative anchors[J]. J Mol Biol,2002, 318(5):1307-1316.
    [38]陈慰峰.病毒逃逸免疫防卫机制及可能对策[J].中华医学杂志,]999,79(4):314.
    [39]Browne H., Churcher M.,Minson T. Construction and characterization of a human cytomegalovirus mutant with the UL18 (class 1 homolog) gene deleted[J]. J Virol,1992, 66(11):6784-6787.
    [40]Nicholson P., Addison C, Cross A. M., et al. Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a[J]. J Gen Virol,1994,75 (Pt 5):1091-1099.
    [41]Kotsakis A., Pomeranz L. E., Blouin A., et al. Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein[J]. J Virol,2001,75(18):8697-8711.
    [42]Sandhu T. S.,Metwally S. A., Duck Virus Enteritis (Duck Plague), in Diseases of poultry, ed. by S.Y.M (Singapore:Blackwell Publishing,2008),384-393.
    [43]Gardner R., Wilkerson J. Johnson J. C. Molecular characterization of the DNA of Anatid herpesvirus 1[J]. Intervirology,1993,36(2):99-112.
    [44]沈婵娟,程安春,汪铭书,等.鸭瘟病毒UL51基因在COS-7细胞中的瞬时表达[J].中国兽医科学,2009,(10):859-865.
    [45]黄引贤.拟鸭瘟的研究[J].华南农学院学报,1959,1(1):1-13.
    [46]甘孟侯.中国禽病学[M].1999,107-119.
    [47]Fauquet C. M., Mayo M., Maniloff J., et al. Virus taxonomy:Ⅷth report of the International Committee on Taxonomy of Viruses[M].Academic Press,2005.
    [48]程安春,汪铭书,文明,等.鸭瘟病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定[J].高技术通讯,2006,16(9):948-953.
    [49]张成岗,贺福初.生物信息学方法与实践[M].科学出版社,2002,17-25.
    [50]张春霆.生物信息学的现状与展望[J].世界科技研究与发展,2000,22(6):17-20.
    [51]孙涛,程安春,汪铭书,等.鸭肠炎病毒UL6基因B细胞表位的预测及其主要抗原域的原核表达[J].中国兽医科学,2008,38(11):939-945.
    [52]Apostolopoulos V., Yu M., Corper A. L., et al. Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I:a new approach for vaccine design[J]. J Mol Biol,2002, 318(5):1293-1305.
    [53]Barlow D. J., Edwards M. S..Thornton J. M. Continuous and discontinuous protein antigenic determinants[J]. Nature,1986,322(6081):747-748.
    [54]来鲁华.蛋白质的结构预测与分子设计[M].北京大学出版社,1993.
    [55]Shawky S.,Schat K. A. Latency sites and reactivation of duck enteritis virus[J]. Avian Dis,2002, 46(2):308-313.
    [56]Plummer P. J., Alefantis T., Kaplan S., et al. Detection of duck enteritis virus by polymerase chain reaction[J]. Avian Dis,1998,42(3):554-564.
    [57]赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报,2000,16(3):308-311.
    [58]王艳,马文丽,郑文岭.SARS冠状病毒的密码子偏爱性分析[J].生命科学研究,2003,(3):219-223.
    [59]Li M., Zhao Z., Chen J., et al. Characterization of synonymous codon usage bias in the pseudorabies virus US1 gene[J]. Virol Sin,2012,27(5):303-315.
    [60]Duret L.,Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis[J]. Proc Natl Acad Sci U S A,1999, 96(8):4482-4487.
    [61]石秀凡,黄京飞,柳树群,等.人类基因同义密码子偏好的特征以及与基因GC含量的关系[J].生物化学与生物物理进展,2002,29(3):411-414.
    [62]Fedorov A., Saxonov S.,Gilbert W. Regularities of context-dependent codon bias in eukaryotic genes[J]. Nucleic Acids Res,2002,30(5):1192-1197.
    [63]Sakai H., Washio T., Saito R., et al. Correlation between sequence conservation of the 5 untranslated region and codon usage bias in Mus musculus genes[J]. Gene,2001, 276(1):101-105.
    [64]石秀凡,黄京飞,梁宠荣,等.人类基因中同义密码子的偏好与密码子-反密码子间的结合强度密切相关吗?[J].科学通报,2000,45(23):2520-2525.
    [65]戎晶晶,刁振宇,周国华.大肠杆菌表达系统的研究进展[J].药物生物技术,2005,12(6):4]6-420.
    [66]吴丽娟,蒋建新,朱佩芳,等.酵母表达系统及其应用研究[J].生命的化学,2003,23(1):46-49.
    [67]刘庆慧,黄飞,韩文君.WSSV 3个编码蛋白的基因密码子偏爱性分析[J].海洋水产研究,2005,26(4):1-7.
    [68]张瑶.鸭瘟病毒UL26.5基因的原核表达及在病毒感染细胞定位研究[D].四川农业大学,2009.
    [69]宋涌,程安春,汪铭书,等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志,2005,41(2):17-20.
    [70]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版)[M].北京:科学出版社,2003.
    [71]殷震,刘景华.动物病毒学(第二版)[M].科学出版社,1997.
    [72]Shen C., Cheng A., Wang M., et al. Expression and distribution of the duck enteritis virus UL51 protein in experimentally infected ducks[J]. Avian Dis,2010,54(2):939-947.
    [73]Confer A. W., Fulton R. W., Step D. L., et al. Viral antigen distribution in the respiratory tract of cattle persistently infected with bovine viral diarrhea virus subtype 2a[J]. Vet Pathol,2005, 42(2):192-199.
    [74]Miller W. J., Skinner J. A., Foss G. S., et al. Localization of the fragile X mental retardation 2 (FMR2) protein in mammalian brain[J]. Eur J Neurosci,2000,12(1):381-384.
    [75]Yan B., Cheng A. C., Wang M. S., et al. Application of an indirect immunofluorescent staining method for detection of Salmonella enteritidis in paraffin slices and antigen location in infected duck tissues[J]. World J Gastroenterol,2008,14(5):776-781.
    [76]程安春,韩晓英,汪铭书,等.用间接免疫荧光染色法检测鸭病毒性肠炎病毒在人工感染鸭体内的侵染过程和分布规律[J].畜牧兽医学报,2007,38(9):942-946.
    [77]葛菡.鸭瘟强毒TK基因的原核表达及在感染鸭组织亚细胞定位研究[D].四川农业大学,2008.
    [78]李育阳.基因表达技术[M].科学技术出版社,2002.
    [79]Nuc P.,Nuc K. Recombinant protein production in Escherichia coli[J]. Postepy Biochem,2006, 52(4):448-456.
    [80]Trabbic-Carlson K., Liu L., Kim B., et al. Expression and purification of recombinant proteins from Escherichia coli:Comparison of an elastin-like polypeptide fusion with an oligohistidine fusion[J]. Protein Sci,2004,13(12):3274-3284.
    [81]招丽婵,程安春,汪铭书,等.鸭瘟病毒dUTPase基因克隆、原核表达及在病毒感染宿主亚细胞中的定位分析[J].畜牧兽医学报,2008,39(8):1087-1093.
    [82]吴春涛,王建华,侯艳梅,等.牛疱疹病毒1型gB基因的原核表达及产物的抗原性分析[J].中国兽医科学,2006,36(7):523-528.
    [83]Weerasinghe C. U., Learmonth G. S., Gilkerson J. R., et al. Equine herpesvirus 1 glycoprotein D expressed in E. coli provides partial protection against equine herpesvirus infection in mice and elicits virus-neutralizing antibodies in the horse[J]. Vet Immunol Immunopathol,2006, 111(1-2):59-66.
    [84]Cai M. S., Cheng A. C, Wang M. S., et al. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene[J]. Intervirology,2009,52(5):266-278.
    [85]安乃荔.应用硫氧环蛋白促进外源蛋白在大肠杆菌中的可溶性表达[M].1999,130-135.
    [86]Swartz J. R. Advances in Escherichia coli production of therapeutic proteins[J]. Curr Opin Biotechnol,2001,12(2):195-201.
    [87]贾海波,周莉,汪洋.斜带石斑鱼生长催乳素基因全长cDNA的克隆、表达及其免疫荧光分析[J].高技术通讯,2004,14(4):76-82.
    [88]刘岳龙,秦爱建,金文杰,等.鸡贫血病毒VP1基因在大肠杆菌中的高效表达及其生物学特性的初步分析[J].病毒学报,2002,18(1):61-65.
    [89]Chen S. P., Ellis T. M., Lee M. C., et al. Comparison of sensitivity and specificity in three commercial foot-and-mouth disease virus non-structural protein ELISA kits with swine sera in Taiwan[J]. Vet Microbiol,2007,119(2-4):164-172.
    [90]Gutierrez G., Alvarez I., Fondevila N., et al. Detection of bovine leukemia virus specific antibodies using recombinant p24-ELlSA[J]. Vet Microbiol,2009,137(3-4):224-234.
    [91]Liu H. J., Kuo L. C., Hu Y. C., et al. Development of an ELISA for detection of antibodies to avian reovirus in chickens[J]. J Virol Methods,2002,102(1-2):129-138.
    [92]Paweska J. T., van Vuren P. J., Kemp A., et al. Recombinant nucleocapsid-based ELISA for detection of IgG antibody to Rift Valley fever virus in African buffalo[J]. Vet Microbiol,2008, 127(1-2):21-28.
    [93]朱立平,陈学清.免疫学常用试验方法[M].2000,352-356.
    [94]Bhanushali J. K., Gilbert J. M.,McDougald L. R. Simple method to purify chicken immunoglobulin G[J]. Poult Sci,1994,73(7):1158-1161.
    [95]Akter S., Islam M. A., Hossain M. T., et al. Characterization and pathogenicity of duck plague virus isolated from natural outbreaks in ducks of Bangladesh[J]. Bangl.J.Vet.Med,2004, 2(2):107-111.
    [96]Wolf K., Burke C. N.,Quimby M. C. Duck viral enteritis:microtiter plate isolation and neutralization test using the duck embryo fibroblast cell line[J]. Avian Dis,1974,18(3):427-434.
    [97]Qi X., Yang X., Cheng A., et al. Intestinal mucosal immune response against virulent duck enteritis virus infection in ducklings[J]. Res Vet Sci,2009,87(2):218-225.
    [98]Yang X., Qi X., Cheng A., et al. Intestinal mucosal immune response in ducklings following oral immunisation with an attenuated Duck enteritis virus vaccine[J]. Vet J,2010,185(2):199-203.
    [99]Levy D., Deshayes L., Parodi A. L., et al. Bovine leukemia virus-specific antibodies in French cattle.111. Prevalence of the BLV-gp 51 radioimmunoassay for the detection of BLV-infected animals[J], Int J Cancer,1980,25(1):147-152.
    [100]Arriaga de Morilla C., Paniagua R., Ruiz-Navarrete A., et al. Comparison of dot enzyme-linked immunosorbent assay (Dot-ELISA), passive haemagglutination test (PHT) and thin layer immunoassay (TIA) in the diagnosis of natural or experimental Fasciola hepatica infections in sheep[J].Vet Parasitol,1989,30(3):197-203.
    [101]Llames L., Goyache J., Domenech A., et al. Rapid detection of specific polyclonal and monoclonal antibodies against bovine leukemia virus[J]. J Virol Methods,1999,82(2):129-136.
    [102]Toro H.,Kaleta E. F. Absence of neutralising antibodies to duck plague virus in the commercial duck and goose populations in West Germany (1980-1985)[J]. Avian Pathol,1986,15(1):57-62.
    [103]Alvarado J. F., Dolz G., Herrero M. V., et al. Comparison of the serum neutralization test and a competitive enzyme-linked immunosorbent assay for the detection of antibodies to vesicular stomatitis virus New Jersey and vesicular stomatitis virus Indiana[J]. J Vet Diagn Invest,2002, 14(3):240-242.
    [104]Chao Y. P., Law W., Chen P. T., et al. High production of heterologous proteins in Escherichia coli using the thermo-regulated T7 expression system[J]. Appl Microbiol Biotechnol,2002, 58(4):446-453.
    [105]王光华,独军政,丛国正,等.猪口蹄疫病毒VP1结构蛋白抗体间接ELISA方法的建立[J].生物工程学报,2007,23(5):961-966.
    [106]Buchner J., Pastan J.,Brinkmann U A method for increasing the yield of properly folded recombinant fusion proteins:single-chain immunotoxins from renaturation of bacterial inclusion bodies[J]. Anal Biochem,1992,205(2):263-270.
    [107]姜焱.伪狂犬病病毒上海株gE-/gI-/GFP+/LacZ+缺失株的构建及其免疫原性初步研究[D].南京农业大学,2002.
    [108]Kleine T, Bartsch S., Blaser J., et al. Preparation of active recombinant TIMP-1 from Escherichia coli inclusion bodies and complex formation with the recombinant catalytic domain of PMNL-collagenase[J]. Biochemistry,1993,32(51):14125-14131.
    [109]Richardson L. S., Yolken R. H., Belshe R. B., et al. Enzyme-linked immunosorbent assay for measurement of serological response to respiratory syncytial virus infection[J]. Infect Immun, 1978,20(3):660-664.
    [110]Mohan S. B., Warren R. C.,Richardson M. D. Sero-diagnosis of invasive aspergillosis:attempts to determine antigen and antibody relevance to infection[J]. Mycopathologia,1980,70(1):37-41.
    [111]Ao J. Q., Wang J. W., Chen X. H., et al. Expression of pseudorabies virus gE epitopes in Pichia pastoris and its utilization in an indirect PRV gE-ELISA[J]. J Virol Methods,2003, 114(2):145-150.
    [112]Alonso A., Gomes M. P. D., Martins M. A., et al. Detection of foot-and-mouth disease virus infection-associated antigen antibodies:comparison of the enzyme-linked immunosorbent assay and agar gel immunodiffusion tests[J]. Preventive Veterinary Medicine,1990,9(3):223-240.
    [1]3]万美梅,孙彦伟,林乃锋.免疫组织化学技术在兽医诊断中的应用[J].动物医学进展,2008,(06):94-97.
    [114]Islam M. R., Nessa J.,Halder K. M. Detection of duck plague virus antigen in tissues by immunoperoxidase staining[J]. Avian Pathol,1993,22(2):389-393.
    [115]Islam M. R.,Khan M. A. An immunocytochemical study on the sequential tissue distribution of duck plague virus[J]. Avian Pathol,1995,24(1):189-194.
    [116]Shawky S. Target cells for duck enteritis virus in lymphoid organs[J]. Avian Pathol,2000, 29(6):609-616.
    [117]徐超,程安春,汪铭书,等.间接酶免疫组化检测DPV在感染鸭体内细胞定位的研究和应用[J].中国兽医学报,2007,27(5):640-644.
    [118]程安春,韩晓英,朱德康,等.间接免疫荧光染色检测石蜡切片中的鸭病毒性肠炎病毒和抗原定位[J].中国兽医学报,2008,28(8):871-875.
    [119]徐耀基,黄引贤.应用琼脂凝胶沉淀试验检测鹅鸭病料中的鸭瘟病毒[J].中国畜禽传染病,1992,(04):30-31.
    [120]Malmarugan S.,Sulochana S. Comparison of Dot-ELISA passive haemagglutination test for the detection of antibodies to duck plague[J]. Indian Veterinary Journal,2002,79(7):648-651.
    [121]Lu L. T., Cheng A. C., Wang M. S., et al. Polyclonal antibody against the DPV UL46M protein can be a diagnostic candidate[J]. Virol J,2010,7(83).
    [122]李凯年.用PCR诊断水禽的鸭瘟[J].中国家禽,2002,24(2):50.
    [123]Cheng A. C, Wang M. S., Liu F., et al. The preliminary application of PCR in research of clinical diagnosis and mechanisms of immunity and pathogeny of duck plague virus (DPV)[J]. Chinese journal of virology,2004,20(4):364-370.
    [124]Hansen W. R., Nashold S. W., Docherty D. E., et al. Diagnosis of duck plague in waterfowl by polymerase chain reaction[J]. Avian Dis,2000,44(2):266-274.
    [12习索化夷,汤承,岳华,等.实时荧光定量TaqMan-PCR检测鸭瘟病毒方法的建立[J].中国预防兽医学报,2006,28(3):332-335,340.
    [126]Qi X. F., Yang X. Y., Cheng A. C., et al. The pathogenesis of duck virus enteritis in experimentally infected ducks:a quantitative time-course study using TaqMan polymerase chain reaction[J]. Avian Pathol,2008,37(3):307-310.
    [127]Bibor-Hardy V., Dagenais A.,Simard R. In situ localization of the major capsid protein during lytic infection by herpes simplex virus[J]. J Gen Virol,1985,66897-901.
    [128]Matsuoka T..Tavassoli M. A modified method for application of indirect immunofluorescent staining for factor Ⅷ/vWF to capillary endothelia[J]. Am J Med Sci,1988,296(2):107-110.
    [129]Shen F. X., Ma G.P., Cheng A. C., et al. Development and application of an indirect immunohistochemical method for the detection of duck plague virus vaccine antigens in paraffin sections and localization in the vaccinated duckling tissues[J]. Poult Sci,2010,89(9):1915-1923.
    [130]Li C., Shen C., Cheng A., et al. Development and application of an indirect immunoperoxidase assay for the detection of Duck swollen head hemorrhagic disease virus antigen in Pekin ducks (Anas platyrhynchos)[J]. J Vet Diagn Invest,2010,22(1):10-19.
    [131]Fernandez de Marco M., Salguero F. J., Bautista M. J., et al. An immunohistochemical study of the tonsils in pigs with acute African swine fever virus infection[J]. Research in veterinary science,2007,83(2):198-203.
    [132]王伯,李玉松,黄高.病理学技术[M].2001.
    [133]茹国美.4种抗原修复方法对免疫组化结果的影响[J].现代中西医结合杂志,2006,(24):3370.
    [134]李科,杨红,徐钢.不同抗原修复液对免疫组化结果的影响[J].中国组织化学与细胞化学杂志,2006,(01):110-112.
    [135]许益民.免疫过氧化物酶染色方法[M].2001.
    [136]张舍郁,程安春,汪铭书,等.问接免疫荧光检测石蜡切片中鸭肿头出血症病毒及抗原定位方法的初步建立[J].中国农业科学,2008,41(3):868-874.
    [137]Konch C., Upadhyaya T. N., Goswami S., et al. Studies on the incidence and pathology of naturally occurring duck plague in Assam[J]. Indian Journal of Veterinary Pathology,2009, 33(2):213-215.
    []38]程安春,廖永洪,朱德康,等.检测石蜡切片中鸭病毒性肠炎病毒间接原位PCR方法的建立[J].中国农业科学,2008,41(12):4365-4371.
    [139]程安春,廖永洪,朱德康,等.原位杂交检测人工感染鸭体内鸭瘟病毒的复制[J].病毒学报,2008,24(1):72-75.
    [140]蔡文琴,王波坛.实用免疫细胞化学与核酸分子杂交技术[J].四川科学技术出版社,1994.
    [141]Luzzago C, Frigerio M., Tolari F., et al. Indirect immunohistochemistry on skin biopsy for the detection of persistently infected cattle with bovine viral diarrhoea virus in Italian dairy herds[J]. New Microbiol,2006,29(2):127-131.
    [142]Salguero F. J., Sanchez-Cordon P. J., Nunez A., et al. Histopathological and ultrastructural changes associated with herpesvirus infection in waterfowl[J]. Avian Pathol,2002, 31(2):133-140.
    [143]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株感染鸭胚成纤维细胞的超微结构观察[J].中国兽医学报,2005,25(6):632-635.
    [144]贾仁勇,程安春,汪铭书,等.鸭肠炎病毒CHv强毒株超微结构研究[J].病毒学报,2007,23(3):202-206.
    []45]袁桂萍,程安春,汪铭书,等.鸭病毒性肠炎病毒强毒株的形态发生学与超微病理学研究[J].病毒学报,2004,20(4):326-332.
    [146]Proctor S. J. Pathogenesis of duck plague in the bursa of Fabricius, thymus, and spleen[J]. Am J Vet Res,1976,37(4):427-431.
    [147]Kato A., Liu Z., Minowa A., et al. Herpes simplex virus 1 protein kinase Us3 and major tegument protein UL47 reciprocally regulate their subcellular localization in infected cells[J]. J Virol,2011, 85(18):9599-9613.
    [148]Shen H. B.,Chou K. C. Virus-PLoc:a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells[J]. Biopolymers,2007,85(3):233-240.
    [149]Foster T. P., Chouljenko V. N..Kousoulas K. G. Functional and physical interactions of the herpes simplex virus type 1 UL20 membrane protein with glycoprotein K[J]. J Virol,2008, 82(13):6310-6323.
    [150]Nair R.,Rost B. Better prediction of sub-cellular localization by combining evolutionary and structural information[J]. Proteins,2003,53(4):917-930.
    [151]Zhu Z.,Schaffer P. A. Intracellular localization of the herpes simplex virus type 1 major transcriptional regulatory protein, ICP4, is affected by ICP27[J]. J Virol,1995,69(1):49-59.
    [152]柳忠辉,吕昌龙.免疫学常用实验技术[M].2002.
    [153]Chou K. C.,Shen H. B. Cell-PLoc:a package of Web servers for predicting subcellular localization of proteins in various organisms[J]. Nat Protoc,2008,3(2):153-162.
    [154]Zhao L. C., Cheng A. C., Wang M. S., et al. Identification and characterization of duck enteritis virus dUTPase gene[J]. Avian Dis,2008,52(2):324-331.
    [155]徐超,李欣然,信洪一,等.鸭瘟病毒gC基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(12):1038-1044.
    [156]Han X. J., Wang J. W.,Ma B. Cloning and sequence of glycoprotein H gene of duck plague virus[J]. Agricultural Sciences in China,2006,5(5):397-402.
    [157]Li H. X., Liu S. W., Han Z. X., et al. Comparative analysis of the genes UL1 through UL7 of the duck enteritis virus and other herpesviruses of the subfamily alphaherpesvirinae[J]. Genet Mol Biol,2009,32(1):121-128.
    [158]Liu S., Chen S., Li H., et al. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV)[J]. Gene,2007,401(1-2):88-96.
    [159]Li H., Liu S.,Kong X. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV):a proof for the classification of DEV[J]. Virus Genes,2006, 33(2):221-227.
    [160]An R., Li H., Han Z., et al. The UL31 to UL35 gene sequences of Duck enteritis virus correspond to their homologs in herpes simplex virus 1 [J]. Acta Virol,2008,52(1):23-30.
    [161]Zhao Y., Wang J. W., Ma B., et al. Molecular analysis of duck enteritis virus US3, US4, and US5 gene[J]. Virus Genes,2009,38(2):289-294.
    [162]Hu Y, Zhou H., Yu Z., el al. Characterization of the genes encoding complete US 10, SORF3, and US2 proteins from duck enteritis virus[J]. Virus Genes,2009,38(2):295-301.
    [163]Baudet A. E. R. F. Mortality in ducks in the Netherlands caused by a filtrable virus:fowl plague[J]. Tijdschr Diergeneeskd,1923,50:455-459.
    [164]Arbuckle M.1.,Stow N. D. A mutational analysis of the DNA-binding domain of the herpes simplex virus type 1 UL9 protein[J]. J Gen Virol,1993,74 (Pt 7):1349-1355.
    [165]Lukasiak S., Breuhahn K., Schiller C, et al. Quantitative analysis of gene expression relative to 18S rRNA in carcinoma samples using the LightCycler instrument and a SYBR Greenl-based assay:determining FAT10 mRNA levels in hepatocellular carcinoma[J]. Methods Mol Biol,2008, 429:59-72.
    [166]李琦涵,姜莉.人类疱疹病毒的病原生物学[M].化学工业出版社,2009.
    [167]Funk C. J., Braunagel S. C.,Rohrmann G.F. Baculovirus structure[M]. The baculoviruses. Plenum Press, New York, NY,1997,7-32.
    [168]Rock D. L., Hagemoser W. A., Osorio F. A., et al. Transcription from the pseudorabies virus genome during latent infection. Brief report[J]. Arch Virol,1988,98(1-2):99-106.
    [169]Chen J. X., Zhu X. X.,Silverstein S. Mutational analysis of the sequence encoding ICP0 from herpes simplex virus type 1[J]. Virology,1991,180(1):207-220.
    [170]Flanagan W. M., Papavassiliou A. G., Rice M., et al. Analysis of the herpes simplex virus type 1 promoter controlling the expression of UL38, a true late gene involved in capsid assembly[J]. J Virol,1991,65(2):769-786.
    [171]Steffy K. R.,Weir J. P. Mutational analysis of two herpes simplex virus type 1 late promoters[J]. J Virol,1991,65(12):6454-6460.
    [172]Romanelli M. G., Mavromara-Nazos P., Spector D., et al. Mutational analysis of the 1CP4 binding sites in the 5'transcribed noncoding domains of the herpes simplex virus 1 UL 49.5 gamma 2 gene[J]. J Virol,1992,66(8):4855-4863.
    [173]Li B. W., Rush A. C., Tan J., et al. Quantitative analysis of gender-regulated transcripts in the filarial nematode Brugia malayi by real-time RT-PCR[J]. Mol Biochem Parasitol,2004, 137(2):329-337.
    [174]Livak K. J.,Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25(4):402-408.
    [175]韩俊英,曾瑞萍.荧光定量PCR技术及其应用[J].国外医学(遗传学分册),2000,23(3):117-120.
    [176]Kubista M., Andrade J. M., Bengtsson M., et al. The real-time polymerase chain reaction[J]. Mol Aspects Med,2006,27(2-3):95-125.
    [177]Pinzani P., Lind K., Malentacchi F., et al. Prostate-specific antigen mRNA and protein levels in laser microdissected cells of human prostate measured by real-time reverse transcriptase-quantitative polymerase chain reaction and immuno-quantitative polymerase chain reaction[J]. Hum Pathol,2008,39(10):1474-1482.
    [178]Feldman L., Rixon F. J., Jean J. H.,et al. Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled[J]. Virology,1979,97(2):316-327.
    [179]寸禅.HSVI立即早期基因研究进展[J].国外医学.病毒学分册,2003,(05):129-132.
    []80]寸韡,张莹,刘龙丁,等.单纯疱疹Ⅰ型病毒即刻早期基因上游调控序列分析[J].生物化学与生物物理进展,2006,33(1):77-82.
    [181]Spear P., Roizman B.,In Tooze J. Molecular Biology of Tumor Viruses, Part Ⅱ, DNA Tumor Viruses,2nd edn[M].Cold Spring Harbor Laboratory,1980.
    [182]Weir J. P.,R.. N. P. The use of B-galactosidase as a marker gene to define the regulatory sequences of the herpes simplex virus type 1 glycoprotein C gene in recombinant herpesviruses[J]. Nucleic Acids Research,1988,16(26):10267-10282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700