用户名: 密码: 验证码:
芜菁邹缩病毒复制酶小亚基P28在重复侵染排斥中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重复侵染排斥(Superinfection exclusion)或同源排斥(Homologous interference)是指已经成功侵染的病毒能够排斥相同或者亲缘关系相近的病毒再次侵染的现象。重复侵染排斥现象在动物病毒和植物病毒中广泛存在,在农业生产中常用来防治某些植物病毒的危害,即预先接种了病毒温和株系的作物可以抵抗或者减轻与之亲源关系相近的强毒株系的侵染和危害,因此又被称为交义保护(Cross protection)。白1929年重复侵染排斥现象被发现以来,很多研究报道试图解释这一现象,但到目前为l止其分子机制尚不清楚。芜菁皱缩病毒(Turnip crinkle virus, TCV)是番茄丛矮病毒科(Tombusviridae)麝香石竹斑驳病毒属(Carmovirus)成员,属ss(+) RNA病毒,基因组大小为4054nt,可以系统侵染拟南芥、本生烟等植物。在本研究中,采用TCV和拟南芥侵染体系,尝试分析了TCV不同突变体病毒之间重复侵染排斥的分子机理。
     为了探究TCV在侵染拟南芥过程中重复侵染排斥现象的分子机理,在TCV外壳蛋白编码框终止密码子之后分别整合9段不同的21nt核苷酸片段,构建了TCV病毒的9种突变体病毒。将这9种TCV突变体病毒重复侵染野生型和dcl2/dcl4突变株拟南芥,实验结果表明在TCV不同突变体侵染过程中存在着重复侵染排斥现象,而基因沉默机制并不是TCV突变体之间重复侵染排斥的主要原因。TCV和碎米荠褪绿斑点病毒(CCFV).香石竹斑驳病毒(CarMV)进行的重复侵染实验证明,TCV与亲缘关系近的CCFV病毒之间也存在着重复侵染排斥现象,但不排斥同源关系较远的CarMV。为了进一步明确TCV不同突变体病毒之间重复侵染排斥的关键蛋白,将瞬时表达TCV编码的各个蛋白的农杆菌与含TCV-GFP重组病毒的农杆菌混合后注射本生烟,结果证明TCV复制酶小亚基P28蛋白能够抑制TCV病毒的复制。进一步的实验证明,P28蛋白能够在植物细胞内形成大聚合物并排斥了TCV病毒的侵染,但瞬时表达的P28蛋白并不影响TCV病毒正常表达自己的复制酶小亚基。利用两种不同启动子分别瞬时表达P28GFP蛋白和P28Mcherry蛋白,证明P28具有捕获不同来源P28单体并形成聚合体的功能,这表明P28蛋白很可能是通过捕获TCV病毒表达的复制酶小亚基,使其不能发挥作用,从而抑制TCV病毒的复制。通过半变性SDS聚丙烯酰胺凝胶电泳实验,证明TCV复制酶小亚基P28在病毒侵染过程中也能够形成大的聚合物,这进一步佐证了P28蛋白是TCV重复侵染排斥现象的关键蛋白,在TCV侵染过程中存在两种不同的状态,其形成的不具有复制能力的聚合体能够捕捉二次侵染的TCV表达的P28,导致其无法进行复制。综上所述,TCV突变体之间存在重复侵染排斥,复制酶小亚基P28是这种重复侵染排斥的关键蛋白,通过形成聚合物捕捉二次侵染的TCV表达的P28排斥其侵染。
     甜菜黑色焦枯病毒(Beet black scorch virus, BBSV)是番茄丛矮病毒科坏死病毒属(Necrovirus)成员,也是ss (+) RNA病毒,基因组大小为3644nt。本实验室前期的研究证明,BBSV外壳蛋白(Coat protein, CP)能够定位于细胞核,N末端4KRNKGGKKSR13碱性氨基酸富集区是其细胞核定位信号,对这些碱性氨基酸的突变会影响BBSV病毒粒体的形成以及其在本生烟中的系统运动。
     为了深入研究外壳蛋白N末端碱性氨基酸在BBSV侵染过程中的功能,针对这些碱性氨基酸进行了一系列的点突变和缺失突变,并对这些突变体病毒的复制能力、病毒粒体稳定性和系统运动能力进行了检测。通过本生烟原生质体侵染实验,证明在外壳蛋白N末端引入的突变并不显著影响BBSV基因组RNA的复制和外壳蛋白的表达。通过纯化这些突变体的病毒粒体和进行RNase保护实验,证明这些突变体病毒粒体的形成和稳定性都不同程度的降低,说明外壳蛋白N末端的碱性氨基酸参与了BBSV病毒粒体装配和稳定性。外壳蛋白和基因组RNA体外结合实验显示,N末端的碱性氨基酸与病毒基因组RNA的结合有关,其中4KR5为关键氨基酸。通过侵染性实验,证明这些包装缺失突变体病毒系统侵染本生烟的能力也受到不同程度的影响。综上所述,BBSV外壳蛋白N末端的碱性氨基酸不仅是核定位信号,还是外壳蛋白和基因组RNA结合的关键区域,也影响BBSV病毒粒体的装配和稳定性,BBSV系统侵染本生烟需要完整的和稳定的病毒粒体。
Superinfection exclusion (SE) or Homologous interference is a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or a closely related virus. SE has been described for various viruses, including important vertebrte, invertebrte, and plant pathogens. Indeed, SE, which is commonly referred to as "cross-protection", has also been used as a protective measure by purposely infecting plants with mild isolates of a virus to reduce infection and losses due to more severe isolates. Since its first report in1929, cross-protection has been explained in various ways, but unfortunately, its molecular mechanism is still unclear. In this report, I adopted the Turnip crinkle virus (TCV)-Arabidopsis system as a model to study cross-protection. TCV is a small icosahedral virus with a monopartite, positive sense RNA genome of4,054nucleotides (nt) that belongs to the Carmoviruss genus, in the Tombusviridae family and has an extensive host range including Arabidopsis and N. benthamiana.
     To unravel the molecular mechanism of cross-protection, a series of TCV variants were designed by inserting21nt long oligo nucleotides of different sequences immediately after the CP open reading frame. By inoculating WT and dcl2/dcl4Arabidopsis plants with nine TCV variants, I found that one variant excluded other TCV derivatives during co-infection and showed that plant antiviral gene silencing does not play an important role in TCV cross-protection. Then super-inoculation experiments were conducted between TCV, CCFV(Cardamine chlorotic fleck virus) and CarMV (Carnation mottle virus), As expected from previous studies, I found that cross-protection only occurred closely related viruses. To determine whether exclusion was conferred by an individual TCV protein, I assessed the potential of each TCV protein to repress TCV replication by agrobacterium infiltrations. The results revealed that TCV-encoded P28, which is required for replication, exerts a highly specific and potent repression of TCV replication. By confocal microscopy observations, I was able to demonstrate that P28repressed TCV replication and formed multi-molecular aggregates as large as cell nuclei. Strikingly, the repression of TCV replication by P28did not abolish the translation of P28from the TCV genome. Then I adapted two different promoters for transcription of the mRNA of P28-GFP and P28-Mcherry fusion proteins. The results revealed that P28was able to interfere with P28translation from another source to inhibit TCV replication. Furthermore, semi-denatuirng gel electrophoresis results indicated that P28formed large, SDS-resistant aggregates during TCV infection. These results prompted the hypothesis in which P28plays opposite roles at different stages of the TCV multiplication cycle. First, P28functions in replication of the "protecting" virus early in infection and second, later in infection P28forms large nonfunctional aggregates that sequester P28encoded by subsequently infecting TCV to prevent replication of the second virus. In general, the first portion of my thesis succeeded in unraveling a mechanism for Cross-protection between TCV variants and demonstrated that P28plays an important role by forming large aggregates that inhibit subsequent invasion of different virus strains.
     Beet black scorch virus (BBSV) is a small single-stranded, positive-sense RNA plant virus belonging to the genus Necrovirus, in the Tombusviridae family. The28nm icosahedral particle encapsidate the3,644nucleotide (nt) monopartite genomic RNA. In a previous study, we identified a motif4KRNKGGKKSR13rich in K and R residues, in the N terminus of the BBSV coat protein. This motif mediates nuclear localization of the CP, and our experiments lead to a model that the K/R-rich motif has an important role in BBSV long distance movement.
     To further assess the functions of the basic amino acid residues in this motif, a series of mutants were generated by either replacing one or more basic amino acids with alanines (A) or deleting the complete motif. The resulting mutants were exhaustively examined for their replication competence, particle assembly, and systemic spread. First, replication of the mutants was tested in protoplasts, but none of the mutants compromised BBSV RNA replication appreciably. However, the mutants showed varying degrees of assembly defects and stability of BBSV virions, as determined by virus purification and RNase protection assays. These experiments demonstrated that all basic residues within the N-terminal region of the BBSV CP are required for ensure proper assembly of BBSV virions. Furthermore, I was able to determine that4KR5are the two most critical residues required for RNA-CP interactions and virion assembly. These results were further confirmed in vitro by assessing RNA-binding activities of the mutated CPs. I also demonstrated the indispensability of assembled virions for BBSV systemic infections in N. benthamiana by showing that defects in virion assembly/stability caused by the various CP mutants correlated with abundance of virus RNAs in systemically infected leaves. In summary, the N-terminal basic domain of BBSV CP is essential for nuclear localization, efficient CP-RNA interactions and virion stability, and intact virions are required for viral systemic spread.
引文
1. Abel, PP., Nelson, R., De, B., Hoffmann, N., Rogers, S., Fraley, R., and Beachy, R. (1986). Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science 232,738-743.
    2. Aguilar, I., Sanchez, F., and Ponz, F. (2000). Different.forms of interference between two Tobamoviruses in two different hosts. Plant Pathol.49,659-665.
    3. Annamalai, P., Apte, S., Wilkens, S., and Rao, A.L.N. (2005). Deletion of highly conserved arginine-rich RNA binding motif in Cowpea chlorotic mottle virus capsid protein results in virion structural alterations and RNA packaging constraints. J.Virol.79,3277-3288.
    4. Annamalai, P., and Rao, A.L.N. (2005). Dispensability of 3'tRNA-like sequence for packaging Cowpea chlorotic mottle virus genomic RNAs. Virology 332,650-658.
    5. Anne E.Simon, H.E., Richard, P.Johnson, Stephen H.Howell (1988). Identification of regions affecting virulence, RNA processing and infectivity in the virulent satellite of Turnip crinkle virus. EMBO J.7,2645-2651.
    6. Asmira Damayanti, T., Tsukaguchi, S., Mise, K., and Okuno, T. (2003). Cis-acting elements required for efficient packaging of Brome mosaic virus RNA 3 in barley protoplasts. J. Virol.77, 9979-9986.
    7. Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., Braun, L., Bergdoll, M., Hakimi, M.A., Lagrange, T., et al. (2010). Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev.24,904-915.
    8. Barker, H., and Harrison, B.D. (1978). Double infection, interference and superinfection in protoplasts exposed to two strains of Raspberry ringspot virus. J. Gen. Virol.40,647-658.
    9. Bazzini, A.A., Asurmendi, S., Hopp, H.E., and Beachy, R.N. (2006). Tobacco mosaic virus (TMV) and Potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J. Gen. Virol.87,1005-1012.
    10. Beachy, R.N. (1997). Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr. Opin. Biotechnol.8,215-220.
    11. Beachy, R.N., Loesch-Fries, S., and Turner, N.E. (1990). Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol.28,451-472.
    12. Bertolotti-Ciarlet, A., White, L.J., Chen, R., Prasad, B.V.V., and Estes, M.K. (2002). Structural requirements for the assembly of norwalk virus-like particles. J.Virol.76,4044-4055.
    13. Bitterlin, M.W., and Gonsalves, D. (1988). Serological grouping of Tomato ringspot virus isolates:Implications for diagnosis and cross-protection. Phytopathology 78,278-285.
    14. Broadbent, L., and Heathcote, G.D. (1958). Properties and host range of Turnip crinkle, rosette and yellow mosaic viruses. Ann. Appl. Biol.46,585-592.
    15. Calhoun, S.L., and Rao, A.L.N. (2008). Functional analysis of Brome mosaic virus coat protein RNA-interacting domains. Arch. Virol.153,231-245.
    16. Cao, Y., Cai, Z., Ding, Q., Li, D., Han, C., Yu, J., and Liu, Y. (2002). The complete nucleotide sequence of Beet black scorch virus (BBSV), a new member of the genus Necrovirus. Arch. Virol.147,2431-2435.
    17. Cao, Y.H., Yuan, X.F., Wang, X.X., Guo, L.H., and Cai, Z.N., Han, C.G., Li, D.W., Yu, J.L. (2006). Effect on viral pathogenicity of Beet black scorch virus coat protein. Prog. Biochem. Biophys.33,127-134.
    18. Cardoso, J.M., Felix, M.R., Oliveira, S., and Clara, M.I. (2004). A Tobacco necrosis virus D isolate from Olea europaea L.:viral characterization and coat protein sequence analysis. Arch. Virol.149,1129-1138.
    19. Carrington, J.C., Heaton, L.A., Zuidema, D., Hillman, B.I., and Morris, T.J. (1989). The genome structure of Turnip crinkle virus. Virology 170,219-226.
    20. Carrington, J.C., Morris, T.J., Stockley, P.G., and Harrison, S.C. (1987). Structure and assembly of Turnip crinkle virus:IV. Analysis of the coat protein gene and implications of the subunit primary structure. J. Mol. Biol.194,265-276.
    21. Catalano, C.E., and Catalano, C. (2005). Viral genome packaging machines. In viral genome packaging machines:genetics, structure, and mechanism (Springer US), pp.1-4.
    22. Chamberlain, E.E., Atkinson, J.D., and Hunter, J.A. (1964). Cross-protection between strains of Apple mosaic virus. NEW. ZEAL. J. AGR. RES.7,480-490.
    23. Cillo, F., Finetti-Sialer, M.M., Papanice, M.A., and Gallitelli, D. (2004). Analysis of mechanisms involved in the Cucumber mosaic virus Satellite RNA-mediated transgenic resistance in tomato plants. Mol. Plant. Microbe. Interact.17,98-108.
    24. Culver, J.N. (1996). Tobamovirus Cross Protection Using a Potexvirus Vector. Virology 226, 228-235.
    25. Cuozzo, M., O'Connell, K.M., Kaniewski, W., Fang, R.-X., Chua, N.-H., and Turner, N.E. (1988). Viral protection in transgenic tobacco plants expressing the Cucumber mosaic virus coat protein or its antisense RNA. Nat. Biotech.6,549-557.
    26. Curtis, M.D., and Grossniklaus, U. (2003). A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol.133,462-469.
    27. Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C., and Voinnet, O. (2006). Hierarchical action and inhibition of plant Dicer-Like proteins in antiviral defense. Science 313,68-71.
    28. Diaz-Pendon, J.A., Li, F., Li, W.-X., and Ding, S.-W. (2007). Suppression of antiviral silencing by Cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19,2053-2063.
    29. Dietrich, C., and Maiss, E. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J. Gen. Virol.84,2871-2876.
    30. Dolja, V.V., Haldeman-Cahill, R., Montgomery, A.E., Vandenbosch, K.A., and Carrington, J.C. (1995). Capsid protein determinants involved in cell-to-cell and long distance movement of Tobacco etch potyvirus. Virology 206,1007-1016.
    31. Doreste, V., Ramos, P.L., Enriquez, G.A., Rodriguez, R., Peral, R., and Pujol, M. (2002). Transgenic potato plants expressing the Potato virus X (PVX) coat protein gene developed resistance to the viral infection. Phytoparasitica 30,177-185.
    32. Ellenberg, P., Linero, F.N., and Scolaro, L.A. (2007). Superinfection exclusion in BHK-21 cells persistently infected with Junin virus. J. Gen. Virol.88,2730-2739.
    33. Fagoaga, C., Lopez, C., Mendoza, A., Moreno, P., Navarro, L., Flores, R., and Peria, L. (2006). Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic mexican lime. Plant Mol. Biol.60,153-165.
    34. Felix, M.R., Cardoso, J.M.S., Oliveira, S., and Clara, M.I.E. (2005). Viral properties, primary structure and phylogenetic analysis of the coat protein of an Olive latent virus 1 isolate from Olea europaea L. Virus Res.108,195-198.
    35. Ferreira, S.A., Pitz, K.Y., Manshardt, R., Zee, F., Fitch, M., and Gonsalves, D. (2002). Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Dis.86,101-105.
    36. Fitch, M.M.M., Manshardt, R.M., Gonsalves, D., Slightom, J.L., and Sanford, J.C. (1992). Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Nat. Biotech.10,1466-1472.
    37. Fletcher, J.T. (1978). The use of avirulent virus strains to protect plants against the effects of virulent strains. Ann. Appl. Biol.89,110-114.
    38. Folimonova, S.Y. (2012). Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J.Virol.86,5554-5561.
    39. Folimonova, S.Y. (2013). Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol.4,76.
    40. Folimonova, S.Y., Robertson, C.J., Shilts, T., Folimonov, A.S., Hilf, M.E., Garnsey, S.M., and Dawson, W.O. (2010). Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. J.Virol.84,1314-1325.
    41. Formella, S., Jehle, C., Sauder, C., Staeheli, P., and Schwemmle, M. (2000). Sequence variability of Borna disease virus:Resistance to superinfection may contribute to high genome stability in persistently tnfected cells. J.Virol.74,7878-7883.
    42. Gafny, R., Lapidot, M., Berna, A., Holt, C.A., Deom, C.M., and Beachy, R.N. (1992). Effects of terminal deletion mutations on function of the movement protein of Tobacco mosaic virus. Virology 757,499-507.
    43. Gal-On, A., Katsir, P. and Yongzang, W (2000). Genetic engineering of attenuated viral cdna of Zucchini yellow mosaic virus for protection of cucurbits. Acta. Hort.510,343-347.
    44. Gal-On, A., and Shiboleth, Y.M. (2006). Cross-Protection. In natural resistance mechanisms of plants to viruses, G. Loebenstein, and J. Carr, eds. (Springer Netherlands), pp.261-288.
    45. Golemboski, D.B., Lomonossoff, G.P., and Zaitlin, M. (1990). Plants transformed with a Tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. U S A 87,6311-6315.
    46. Gonzalez-Vazquez, M., Ayala, J., Garcia-Arenal, F., and Fraile, A. (2008). Occurrence of Beet black scorch virus infecting sugar beet in Europe. Plant Dis.93,21-24.
    47. Goregaoker, S.P., Eckhardt, L.G., and Culver, J.N. (2000). Tobacco mosaic virus replicase-mediated cross-protection:Contributions of RNA and protein-derived mechanisms. Virology 273,267-275.
    48. Guo, L.H., Cao, Y.H., Li, D.W., Niu, S.N., Cai, Z.N., Han, C.G., Zhai, Y.F., and Yu, J.L. (2005). Analysis of nucleotide sequences and multimeric forms of a novel satellite RNA associated with Beet black scorch virus. J.Virol.79,3664-3674.
    49. Hacker, D.L., Petty, I.T.D., Wei, N., and Morris, T.J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186,1-8.
    50. Halfmann, R., and Lindquist, S. (2008). Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis. JoVE 17, e838.
    51. Hall, J.S., French, R., Hein, G.L., Morris, T.J., and Stenger, D.C. (2001). Three distinct mechanisms facilitate genetic isolation of sympatric Wheat streak mosaic virus Lineages. Virology 282,230-236.
    52. Heaton, L.A., Lee, T.C., Wei, N., and Morris, T.J. (1991). Point mutations in the Turnip crinkle virus capsid protein affect the symptoms expressed by Nicotiana benthamiana. Virology 183, 143-150.
    53. Hilf, M.E., Mavrodieva, V.A., and Garnsey, S.M. (2005). Genetic marker analysis of a global collection of isolates of Citrus tristeza virus:Characterization and distribution of CTV genotypes and association with symptoms. Phytopathology 95,909-917.
    54. Hoekema, A., Huisman, M.J., Molendijk, L., van den Elzen, P.J.M., and Cornelissen, B.J.C. (1989). The genetic engineering of two commercial potato cultivars for resistance to Potato virus X. Nat. Biotech.7,273-278.
    55. Huang, I.C., Li, W., Sui, J., Marasco, W., Choe, H., and Farzan, M. (2008). Influenza A Virus neuraminidase limits viral super infection. J.Virol.82,4834-4843.
    56. Hughes, J.d.A., and Ollennu, L.A.A. (1994). Mild strain protection of cocoa in Ghana against Cocoa swollen shoot virus-a review. Plant Pathol.43,442-457.
    57. Ichiki, T.U., Nagaoka, E.N., Hagiwara, K., Uchikawa, K., Tsuda, S., and Omura, T. (2005). Integration of mutations responsible for the attenuated phenotype of Pepper mild mottle virus strains results in a symptomless cross-protecting strain. Arch. Virol.150,2009-2020.
    58. Ivanov, K.I., and Makinen, K. (2012). Coat proteins, host factors and plant viral replication. Curr. Opin. Virol.2,712-718.
    59. Li, J., Li, M., Li, C., Gao, Y., Li, D.W., Han, C.G., and Yu, J.L. (2008). Effects on the local symptoms of subgenomic RNAs expressions and their translational products of Tobacco necrosis virus A Chinese isolate. Chin. Sci. Bull.53,1682-1690.
    60. Jin, H., and Zhu, J.K. (2010). A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes. Genes Dev.24,853-856.
    61. John P. Carr, L.E.M., George P. Lomonossoff, Mary E. Sekiya, and Milton Zaitlin (1992). Resistance to Tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Mol. Plant. Microbe. Interact.5,397-404.
    62. Jones, A.L., Johansen, I.E., Bean, S.J., Bach, I., and Maule, A.J. (1998). Specificity of resistance to Pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (Nib) gene. J. Gen. Virol.79,3129-3137.
    63. Jong-Won Oh, Q.K., Chuanzheng Song, Clifford D. Carpenter, and Anne E. Simon (1995). Open reading frames of Turnip crinkle virus involved in satellite symptom expression and incompatibility with Arabidopsis thaliana Ecotype Dijon. Mol. Plant. Microbe. Interact.8, 979-987.
    64. Kameya-Iwaki, M., Tochihara, H., Hanada, K., and Torigoe, H. (1992). Attenuated isolate of Watermelon mosaic virus (WMV-2) and its cross protection against virulent isolate. Annals of the Phytopathological Society of Japan 58,491-494.
    65. Karpf, A.R., Lenches, E., Strauss, E.G., Strauss, J.H., and Brown, D.T. (1997). Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J.Virol.71,7119-7123.
    66. Kim, S.J., Lee, S.J., Kim, B.D., and Paek, K.H. (1997). Satellite-RNA-mediated resistance to Cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Rep.16,825-830.
    67. King, A.M.Q., Adams, M.J., Eric B. Carstens, and Lefkowitz, E.J. (2011). Virus taxonomy:Ninth report of the international committee on taxonomy of viruses (San Diego:Elsevier Inc).
    68. Koenig, R., and Valizadeh, J. (2008). Molecular and serological characterization of an Iranian isolate of Beet black scorch virus. Arch. Virol.153,1397-1400.
    69. Komar, V., Vigne, E., Demangeat, G., Lemaire, O., and Fuchs, M. (2008). Cross-Protection as control strategy against Grapevine fanleaf virus in naturally infected vineyards. Plant Dis.92, 1689-1694.
    70. Kondo, T., Kasai, K., Yamashita, K., and Ishitani, M. (2007). Selection and discrimination of an attenuated strain of Chinese yam necrotic mosaic virus for cross-protection. J. G, P. P.73, 152-155.
    71. Koo, J.C., Asurmendi, S., Bick, J., Woodford-Thomas, T., and Beachy, R.N. (2004). Ecdysone agonist-inducible expression of a coat protein gene from Tobacco mosaic virus confers viral resistance in transgenic Arabidopsis. Plant J.37,439-448.
    72. Kosaka Y, F.T. (1993). Attenuated isolates of Soybean mosaic virus derived at a low temperature. Plant Dis.77,882-886
    73. Kotlizky, G., Katz, A., van der Laak, J., Boyko, V., Lapidot, M., Beachy, R.N., Heinlein, M., and Epel, B.L. (2001). A dysfunctional movement protein of Tobacco mosaic virus interferes with targeting of wild-type movement protein to microtubules. Mol. Plant. Microbe. Interact.14, 895-904.
    74. Kouassi, N.K., Chen, L., Sire, C., Bangratz-Reyser, M., Beachy, R.N., Fauquet, C.M., and Brugidou, C. (2.006). Expression of Rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch. Virol.151,2111-2122.
    75. Kubota, K., Tsuda, S., Tamai, A., and Meshi, T. (2003). Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J.Virol.77,11016-11026.
    76. Kumar, S., Raj, S.K., Sharma, A.K., and Varma, H.N. (2012). Genetic transformation and development of Cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Sci. Hortic.134,40-45.
    77. Kurihara, Y., and Watanabe, Y. (2003). Cross-protection in Arabidopsis against crucifer tobamovirus Cg by an attenuated strain of the virus. Mol. Plant Pathol.4,259-269.
    78. Kuti, J.O., and Moline, H.E. (1986). Effects of inoculation with a mild strain of Tomato aspermy virus on the growth and yield of tomatoes and the potential for cross protection. J. Phytopathology 115,56-60.
    79. Lan, P., Yeh, W.-B., Tsai, C.-W., and Lin, N.-S. (2010). A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Mol. Plant. Microbe. Interact.23,903-914.
    80. Lapidot, M., Gafny, R., Ding, B., Wolf, S., Lucas, W.J., and Beachy, R.N. (1993). A dysfunctional movement protein of Tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J.4,959-970.
    81. Lee, L., Kaplan, I.B., Ripoll, D.R., Liang, D., Palukaitis, P., and Gray, S.M. (2005a). A surface loop of the Potato leafroll virus coat protein is involved in virion assembly, systemic movement, and aphid transmission. J. Virol.79,1207-1214.
    82. Lee, S.-K., and Hacker, D.L. (2001). In vitro analysis of an RNA binding site within the N-terminal 30 amino acids of the Southern cowpea mosaic virus coat protein. Virology 286, 317-327.
    83. Lee, Y.-M., Tscherne, D.M., Yun, S.-I., Frolov, I., and Rice, C.M. (2005b). Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J. Virol.79,3231-3242.
    84. Li, H., and Roossinck, M.J. (2004). Genetic bottlenecks reduce population variation in an experimental RNA virus population. J. Virol.78,10582-10587.
    85. Lin, S.-S., Henriques, R., Wu, H.-W., Niu, Q.-W., Yeh, S.-D., and Chua, N.-H. (2007a). Strategies and mechanisms of plant virus resistance. Plant Biotechnol. Rep.125-134.
    86. Lin, S.-S., Wu, H.-W., Jan, F.-J., Hou, R.F., and Yeh, S.-D. (2007b). Modifications of the helper component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection. Phytopathology 97,287-296.
    87. Mahmood, T., and Rush, C.M. (1999). Evidence of cross-protection between Beet soilborne mosaic virus and Beet necrotic yellow vein virus in sugar beet. Plant Dis.83,521-526.
    88. Marshall, D., and Schneemann, A. (2001). Specific packaging of Nodaviral RNA2 requires the N-terminus of the capsid protein. Virology 285,165-175.
    89. McKinney, H.H. (1929). Mosaic diseases in the canary islands, west africa and gibraltar. J. Agric. Res.39,577-578.
    90. Molnar, A., Havelda, Z., Dalmay, T., Szutorisz, H., and Burgyan, J. (1997). Complete nucleotide sequence of Tobacco necrosis virus strain DH and genes required for RNA replication and virus movement. J. Gen. Virol.78 (Pt 6),1235-1239.
    91. Monsion, B., Froissart, R., Michalakis, Y., and Blanc, S. (2008). Large bottleneck size in Cauliflower mosaic virus populations during host plant colonization. PLoS Pathog.4, el000174.
    92. Morris, T.J., and Carrington, J.C. (1988). Carnation mottle virus and viruses with similar properties. In the plant viruses, R. Koenig, ed. (Springer US), pp.73-112.
    93. Natsuaki, T. (2011). Studies on molecular mechanisms of viral attenuation and cross protection. J. G. P. P.77,354-357.
    94. Nishiguchi, M. (2007). Basic studies on attenuated viruses. J. G. P. P.73,418-420.
    95. Novaes, Q.S., and Rezende, J.A.M. (2005). Protection between strains of Passion fruit woodiness virus in sunnhemp. Fitopatologia Brasileira 30,307-311.
    96. Oda, Y., Saeki, K., Takahashi, Y., Maeda, T., Naitow, H., Tsukihara, T., and Fukuyama, K. (2000). Crystal structure of Tobacco necrosis virus at 2.25 A resolution. J. Mol. Biol.300, 153-169.
    97. Pantaleo, V., Grieco, F., Di Franco, A., and Martelli, G.P. (2006). The role of the C-terminal region of Olive latent virus 1 coat protein in host systemic infection. Arch. Virol.151, 1973-1983.
    98. Powers, J.G., Sit, T.L., Qu, F., Morris, T.J., Kim, K.-H., and Lommel, S.A. (2008). A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement. Mol. Plant. Microbe. Interact.21,879-890.
    99. Pu, H., Li, J., Li, D., Han, C., and Yu, J. (2013). Identification of an internal RNA element essential for replication and translational enhancement of Tobacco Necrosis Virus Ac. PLoS ONE 8, e57938.
    100. Qu, F., and Morris, T.J. (2005). Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett.579,5958-5964.
    101. Qu, F., Ren, T., and Morris, T.J. (2003). The coat protein of Turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J.Virol.77,511-522.
    102. Ramirez, S., Perez-del-Pulgar, S., Carrion, J.A., Coto-Llerena, M., Mensa, L., Dragun, J., Garcia-Valdecasas, J.C., Navasa, M., and Forns, X. (2010). Hepatitis C virus superinfection of liver grafts:a detailed analysis of early exclusion of non-dominant virus strains. J. Gen. Virol.91, 1183-1188.
    103. Rao, A.L.N. (2006). Genome packaging by spherical plant RNA viruses. Annu. Rev. Phytopathol. 44,61-87.
    104. Ratcliff, F., Harrison, B.D., and Baulcombe, D.C. (1997). A similarity between viral defense and gene silencing in plants. Science 276,1558-1560.
    105. Ratcliff, F.G., MacFarlane, S.A., and Baulcombe, D.C. (1999). Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant cell 11,1207-1215.
    106. Ravelonandro, M., Briard, P., Glasa, M. and Adam, S (2008). The ability of a mild isolate of Plum pox virus to cross-protect against sharka virus. Acta. Hort.,281-286.
    107. Reade, R., Kakani, K., and Rochon, D.A. (2010). A highly basic KGKXGK sequence in the RNA-binding domain of the Cucumber necrosis virus coat protein is associated with encapsidation of full-length CNV RNA during infection. Virology 403,181-188.
    108. Reguera, J., Carreira, A., Riolobos, L., Almendral, J.M., and Mateu, M.G. (2004). Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid. Proc. Natl. Acad. Sci. U S A 101,2724-2729.
    109. Sacristan, S., Malpica, J.M., Fraile, A., and Garcia-Arenal, F. (2003). Estimation of population bottlenecks during systemic movement of Tobacco mosaic virus in tobacco plants. J.Virol.77, 9906-9911.
    110. Saito, T., Yamanaka, K., and Okada, Y. (1990). Long-distance movement and viral assembly of Tobacco mosaic virus mutants. Virology 176,329-336.
    111. Salaman, R.N. (1933). Protective inoculation against a plant virus. Nature 131,468-468.
    112. Sasaki, J., and Taniguchi, K. (2003). The 5'-end sequence of the genome of aichi virus, a picornavirus, contains an element critical for viral RNA encapsidation. J. Virol.77,3542-3548.
    113. Satheshkumar, P.S., Lokesh, G.L., Murthy, M.R.N., and Savithri, H.S. (2005). The role of arginine-rich motif and (3-annulus in the assembly and stability of Sesbania mosaic virus capsids. J. Mol. Biol.353,447-458.
    114. Satyanarayana, T., Gowda, S., Ayllon, M.A., and Dawson, W.O. (2003). Frameshift mutations in infectious cDNA clones of Citrus tristeza virus:a strategy to minimize the toxicity of viral sequences to Escherichia coli. Virology 313,481-491.
    115. Schaller, T., Appel, N., Koutsoudakis, G., Kallis, S., Lohmann, V., Pietschmann, T., and Bartenschlager, R. (2007). Analysis of Hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J.Virol.81,4591-4603.
    116. Schneemann, A. (2006). The structural and functional role of RNA in icosahedral virus assembly. Annu. Rev. Microbiol.60,51-67.
    117. Schneider, W.L., and Roossinck, M.J. (2001). Genetic diversity in RNA virus quasispecies is controlled by Host-virus interactions. J.Virol.75,6566-6571.
    118. Schwartz, M., Chen, J., Janda, M., Sullivan, M., den Boon, J., and Ahlquist, P. (2002). A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell 9,505-514.
    119. Schwartz, M., Chen, J., Lee, W.-M., Janda, M., and Ahlquist, P. (2004). Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. Proc. Natl. Acad. Sci. USA 101,11263-11268.
    120. Shigetou, N., Kaishu, L., Gonsalves, C., Gonsalves, D., and Slightom, J.L. (1991). Expression of the gene encoding the coat protein of Cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107,181-188.
    121. Siegel, A. (1959). Mutual exclusion of strains of Tobacco mosaic virus. Virology 8,470-477.
    122. Simon, A.E., Roossinck, M.J., and Havelda, Z. (2004). Plant virus satellite and defective interfering rnas:new paradigms for a new century. Annu. Rev. Phytopathol.42,415-437.
    123. Singh, M., and Singh, R.P. (1995). Host dependent cross-protection between PVYN, PVY, and PVA in potato cultivars and Solarium brachycarpum. Canadian J. Plant Pathol.17,82-86.
    124. Soards, A.J., Murphy, A.M., Palukaitis, P., and Carr, J.P. (2002). Virulence and differential local and systemic spread of Cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol. Plant. Microbe. Interact.15,647-653.
    125. Steck, F.T., and Rubin, H. (1966). The mechanism of interference between an Avion leukosis virus and Rous sarcoma virus:Ⅱ. Early steps of infection by RSV of cells under conditions of interference. Virology 29,642-653.
    126. Takahashi, T., Sugawara, T., Yamatsuta, T., Isogai, M., Natsuaki, T., and Yoshikawa, N. (2007). Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow fluorescent proteins in coinfected plants. Phytopathology 97, 1200-1206.
    127. Taschner, P.E.M., Van Marie, G., Brederode, F.T., Turner, N.E., and Bol, J.F. (1994). Plants transformed with a mutant Alfalfa mosaic virus coat protein gene are resistant to the mutant but not to wild-type virus. Virology 203,269-276.
    128. Tenllado, F., and Bol, J.F. (2000). Genetic dissection of the multiple functions of Alfalfa mosaic virus coat protein in viral RNA replication, encapsidation, and movement. Virology 268,29-40.
    129. Tian, Z., Qiu, J., Yu, J., Han, C., and Liu, W. (2009). Competition between Cucumber mosaic virus subgroup Ⅰ and Ⅱ isolates in tobacco. J. Phytopathol.157,457-464.
    130. Tien, P., and Wu, G. (1991). Satellite RNA for the biocontrol of plant disease. In advances in virus research, F.A.M. Karl Maramorosch, and J.S. Aaron, eds. (Academic Press), pp.321-339.
    131. Tien, P.O., Zhang, X., Qiu, B., Qin, B., and Wu, G. (1987). Satellite RNA for the control of plant diseases caused by Cucumber mosaic virus. Ann. Appl. Biol. 111,143-152.
    132. Tomlinson, J.A., and Shepherd, R.J. (1978). Studies on mutagenesis and cross-protection of Cauliflower mosaic virus. Ann. Appl. Biol.90,223-231.
    133.Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H.-H. (1987). A set of plant expression vectors for transcriptional and translational fusions. Nucleic. Acids. Res.15,5890.
    134. Tripathi, S., Suzuki, J.Y., Ferreira, S.A., and Gonsalves, D. (2008). Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol. Plant Pathol.9,269-280.
    135. Tscherne, D.M., Evans, M.J., MacDonald, M.R., and Rice, C.M. (2008). Transdominant inhibition of bovine viral diarrhea virus entry. J.Virol.82,2427-2436.
    136. Tsuda, S., Kubota, K., Kanda, A., Ohki, T., and Meshi, T. (2007). Pathogenicity of Pepper mild mottle virus is controlled by the RNA silencing suppression activity of its replication protein but not the viral accumulation. Phytopathology 97,4] 2-420.
    137. Turner, N.E., O'Connell, K.M., Nelson, R.S., Sanders, P.R., Beachy, R.N., Fraley, R.T., and Shah, D.M. (1987). Expression of Alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants. EMBO J.6,8.
    138. Valkonen, J.P.T., Rajamaki, M.-L., and Kekarainen, T. (2002). Mapping of viral genomic regions important in cross-protection between strains of a potyvirus. Mol. Plant. Microbe. Interact.15,683-692.
    139. Van Dun, C.M.P., and Bol, J.F. (1988). Transgenic tobacco plants accumulating Tobacco rattle virus coat protein resist infection with Tobacco rattle virus and Pea early browning virus. Virology 767,649-652.
    140. van Dun, C.M.P., Overduin, B., van Vloten-Doting, L., and Bol, J.F. (1988). Transgenic tobacco expressing Tobacco streak virus or mutated Alfalfa mosaic virus coat protein does not cross-protect against Alfalfa mosaic virus infection. Virology 164,383-389.
    141. Vigne, E., Marmonier, A., Komar, V., Lemaire, O., and Fuchs, M. (2009). Genetic structure and variability of virus populations in cross-protected grapevines superinfected by Grapevine fanleaf virus. Virus Res.144,154-162.
    142. Wang, J., and Simon, A.E. (1997). Analysis of the two subgenomic RNA promoters for Turnip crinkle virus in vitro. Virology 232,174-186.
    143. Wang, M., and Gonsalves, D. (1992). Artificial induction and evaluation of a mild isolate of Tomato spotted wilt virus. J. Phytopathol.135,233-244.
    144. Wang, X., Zhang, Y., Xu, J., Shi, L., Fan, H., Han, C., Li, D., and Yu, J. (2012). The R-rich motif of Beet black scorch virus P7a movement protein is important for the nuclear localization, nucleolar targeting and viral infectivity. Virus Res.167,207-218.
    145. Weiland, J.J., Larson, R.L., Freeman, T.P., and Edwards, M.C. (2006). First report of Beet black scorch virus in the United States. Plant Dis.90,828.
    146. Weiland, J.J., Van Winkle, D., Edwards, M.C., Larson, R.L., Shelver, W.L., Freeman, T.P., and Liu, H.-Y. (2007). Characterization of a U.S. isolate of Beet black scorch virus. Phytopathology 97,1245-1254.
    147. Wen, F., Lister, R.M., and Fattouh, F.A. (1991). Cross-protection among strains of Barley yellow dwarf virus. J. Gen. Virol.72,791-799.
    148. Wen, Y., Lim, G.X.-Y., and Wong, S.-M. (2013). Profiling of genes related to cross protection and competition for NbTOM1 by HLSV and TMV. PLoS ONE 8, e73725.
    149. White, K.A., Skuzeski. J.M.. Li. W., Wei, N., and Morris, T.J. (1995). Immunodetection, expression strategy and complementation of Turnip crinkle virus p28 and p88 replication components. Virology 211,525-534.
    150. Xi, D., Li, J., Han. C., Li. D., Yu. J., and Zhou, X. (2008). Complete nucleotide sequence of a new strain of Tobacco necrosis virus A infecting soybean in China and infectivity of its full-length cDNA clone. Virus Genes 36,259-266.
    151. Xie, Z., Allen; E., Wilken, A., and Carrington, J.C. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102,12984-12989.
    152. Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., and Carrington, J.C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, el04.
    153. Xu, J., Wang, X., Shi, L., Zhou, Y., Li, D., Han, C., Zhang, Z., and Yu, J. (2012). Two distinct sites are essential for virulent infection and support of variant satellite RNA replication in spontaneous Beet black scorch virus variants. J. Gen. Virol.93,2718-2728.
    154. Ye, J., Quing, L., and Zhou, X.-P. (2006). Cross-protection mediated by a BC1 deletion DNA associated with Tomato yellow leaf curl China virus. J. Zhejiang Univ.32,479-482.
    155. Yi, G., Vaughan, R.C., Yarbrough, I., Dharmaiah, S., and Kao, C.C. (2009). RNA binding by the Brome mosaic virus capsid protein and the regulation of viral RNA accumulation. J. Mol. Biol. 397,314-326.
    156. Yuan, X., Cao, Y., Xi, D., Guo, L., Han, C., Li, D., Zhai, Y., and Yu, J. (2006). Analysis of the subgenomic RNAs and the small open reading frames of Beet black scorch virus. J. Gen. Virol. 87,3077-3086.
    157. Zhang, X., Zhang, X., Singh, J., Li, D., and Qu, F. (2012). Temperature-dependent survival of Turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J. Virol.86,6847-6854.
    158. Zhang, Y., Li, J., Pu, H., Jin, J., Zhang, X., Chen, M., Wang, B., Han, C., Yu, J., and Li, D. (2010). Development of Tobacco necrosis virus A as a vector for efficient and stable expression of FMDV VP1 peptides. Plant Biotechnol. J.8,506-523.
    159. Zhang, Y., Zhang, X., Niu, S., Han, C., Yu, J., and Li, D. (2011). Nuclear localization of Beet black scorch virus capsid protein and its interaction with importin a. Virus Res.155,307-315.
    160. Ziebell, H., and Carr, J.P. (2009). Effects of dicer-like endoribonucleases 2 and 4 on infection of Arabidopsis thaliana by Cucumber mosaic virus and a mutant virus lacking the 2b counter-defence protein gene. J. Gen. Virol.90,2288-2292.
    161. Ziebell, H., and Carr, J.P. (2010). Chapter 6-Cross-Protection:A century of mystery, in advances in virus research, P.C. John, and L. Gad, eds. (Academic Press), pp.211-264.
    162. Ziebell, H., Payne, T., Berry, J.O., Walsh, J.A., and Carr, J.P. (2007). A Cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. J. Gen. Virol.88,2862-2871.
    163. Ziegler-Graff, V., Guilford, P.J., and Baulcombe, D.C. (1991). Tobacco rattle virus RNA-129K gene product potentiates viral movement and also affects symptom induction in tobacco. Virology 182,145-155.
    164. Zinnen, T.M., and Fulton, R.W. (1986). Cross-protection between Sunn-hemp mosaic and Tobacco mosaic viruses. J. Gen. Virol.67,1679-1687.
    165. Zou, G., Zhang, B., Lim, P.-Y., Yuan, Z., Bernard, K.A., and Shi, P.-Y. (2009). Exclusion of West nile virus superinfection through RNA replication. J.Virol.83,11765-11776.
    166.刘杰贤(1995).甜菜黑色焦枯病毒研究初报.中国甜菜 3,30-31.
    167.原雪峰(2005).甜菜黑色焦枯病毒基因功能及表达策略研究.中国农业大学博士学位论文.
    168.崔星明(1988).一种侵染甜菜的球形病毒.新疆石河子农学院院报10,73-78.
    169.张艳敬(2010).烟草坏死病毒属两种病毒外壳蛋白的亚细胞定位及其与本生烟蛋白的相互作用.中国农业大学博士学位论文.
    170.李江(2008).烟草坏死病毒A的基因功能研究及其表达载体构建.中国农业大学博十学位论文.
    171.曹云鹤(2002).甜菜黑色焦枯病毒全长侵染性cDNA克隆的构建及外壳蛋白与致病性关系的初步研究.中国农业大学博十学位论文.
    172.蒲恒(2013).烟草坏死病毒A复制和翻译调控元件及外壳蛋白的功能研究.中国农业大学博十学位论文.
    173.曹琦,濮祖芹(1986).复合侵染的大豆病株中的烟草坏死病毒及卫星病毒的初步研究.南京农业大学学报9,124.
    174.王献兵(2009).植物中抗病毒沉默诱导与抑制的机制研究.中国农业大学博十学位论文.
    175.蔡祝南(1993).甜菜黑色焦枯型病原,cDNA合成,光生物素标记及探针制备.北京农业大学学报19,112-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700