用户名: 密码: 验证码:
镁、锡基金属间化合物纳米颗粒的制备及储能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益短缺和温室效应的加剧,未来能源经济的结构重整是不可避免的。能量储存作为能源经济产业链中的重要一环正越来越受到世界各国政府的重视。氢气储存由于与未来的能源经济相关而成为研究热点之一。为了使氢气在诸如汽车推进系统等方面得到实际应用,现存的以气瓶为主的储氢技术必须得到拓展。由于高的重量比容量、体积比容量和低的操作压力,金属氢化物粉末提供了一条解决氢气储存的有效途径。此外,由于在各种化学电源中的优异表现,锂离子电池作为便携式电源在电子消费品市场得到广泛应用。然而,目前主要采用的电极材料(正极为LiCoO_2,负极为碳基材料)由于多年改进已接近其理论能量密度,满足更高能量密度的要求的唯一出路就是寻找新的电极材料。
     本文采用一种物理气相沉积方法(直流电弧放电法)系列化制备了镁基和锡基金属间化合物纳米粒子。制备的主要特点在于以金属微米粉压制的复合块体靶材为原料,在活性气体(氢或甲烷)和惰性气体(Ar)混合气氛中蒸发块体靶材,经冷凝和钝化过程获得合金纳米颗粒。这种制备方法克服了镁基、锡基合金由于其体系中组元间熔点差异大,采用传统的熔炼方法不易合金化的困难。另外,通过此种制备方法可以实现金属间化合物纳米颗粒的原位合成,降低了制造成本,提高了材料的实用性。针对纳米粒子腐蚀性能难于表征的问题,采用间接的比较分析方法,即以Sn微米颗粒作为粘结剂与不同核/壳类型的Mg纳米粒子混合压制成Sn/Mg纳米复合物试样,通过其电化学腐蚀性能的对比,间接考察了Mg纳米粒子的抗腐蚀特性。
     以Miedema半经验模型和比热随温度变化的经验公式为基础,结合基本热力学关系式,对Sn-Fe、Sn-Ni、Mg-Ni和Mg-Cu纳米粒子体系的有效形成热及其随温度的变化进行了计算,对这些体系中的金属间化合物相的形成规律进行了解释。研究结果表明,根据此热力学模型得到的对生成相的预测与实验结果吻合较好。
     在惰性气氛下制备的镁基纳米粒子呈六边形晶体惯态,粒度分布范围50-400 nm;在CH_4气氛下制备的镁基纳米粒子外层为非晶碳层,粒度分布范围为20-100 nm。所有样品的氧化过程分两步进行,分别对应于纳米粒子外层和内核的氧化。动电位极化结果表明,在CH_4气氛下制备的Mg/C纳米复合粒子由于碳的介入具有相对较好的抗腐蚀性能。对于镁基储氢体系,制备了Mg-Ni、Mg-Cu和Mg-Ni-Sn三个体系的纳米粒子,采用传统的测量体积法考察了其气态储氢性能。对Mg-Ni体系而言,Mg_2Ni和MgNi_2两种金属间化合物与Mg、Ni、和MgO共存于纳米粒子中;在一次吸放氢循环后(活化过程),Mg-Ni纳米粒子呈现出优异的吸氢动力学性能;在氢化处理过程后,由于存在相的转变过程,Mg_2Ni相成为主相;在吸放氢循环后,纳米颗粒粒度进一步减小,这与吸放氢循环过程中的体积膨胀/收缩造成的纳米粒子的碎裂有关;在523,573和623 K的温度下,Mg-Ni纳米粒子的最大吸氢量分别为1.75,2.21,和2.77 wt.%。对于Mg-Cu纳米粒子体系,由Mg_2Cu,MgCu_2,Mg和MgO等四个相组成;在经过几次吸放氢循环后,纳米粒子的粒度减小;在573,598和623 K的温度下Mg-Cu纳米粒子的最大吸氢容量分别为1.92,1.98和2.05 wt.%。为了考察Sn组元的影响,采用同样的方法制备了Mg_(2-x)Sn_xNi(x=0,0.1,0.2)纳米粒子,制备的纳米粒子呈现出复杂的多相结构;在首次氢化过程中,Sn的掺杂明显改善了纳米粒子的吸氢动力学性能;随着Sn组元含量的增加,由P-C-I曲线吸氢平衡压力计算得到的焓值下降,表明Sn的掺杂可以使氢化物的稳定性降低。
     制备了Sn-Fe、Sn-Ni,Sn-Mg及碳包覆Sn-Fe等四个体系纳米粒子,并制成模拟电池考察了其电化学性能。对于碳包覆Sn-Fe纳米粒子,TEM结果显示Sn-Fe纳米粒子分散在由纳米碳组成的导电基体中;电极的电化学性能测试表明,由不含碳的纳米粒子制备的电极的初始电容量为562.1 mAh/g,而用碳包覆纳米粒子制备的电极的初始电容量为385.3 mAh/g;得益于适宜的活性/惰性组元微结构,碳包覆纳米粒子电极呈现出较好的电化学循环性能;30次循环后,不含碳的Sn-Fe纳米粒子电极中的FeSn_2相分解为Fe和Sn,而碳包覆Sn-Fe纳米粒子电极中未发现相分解现象。Sn-Ni纳米粒子电极的初始电容量(186.6 mAh/g)比Sn-Fe纳米粒子电极的低,但其循环性能优于后者;30次循环后,Sn-Ni纳米粒子电极未发现相分解现象。Sn-Mg纳米粒子中存在Mg_2Sn相和少量的单质Mg和Sn相;Sn-Mg纳米粒子电极的初始电容量达到430 mAh/g;在放、充电曲线上,在0.2-0.3 V和0.5-0.75 V的电压范围内分别观察到两个明显的电压平台,分别对应着Li和Mg_2Sn的合金化和去合金化过程。
With the growing shortage of fossil fuels and acceleration of global warming, energy economy has to be restructured in the future. Energy storage, an important role in the whole chain, deserves more and more attention from worldwide governments. Hydrogen storage has been one of hot research topics chiefly because of its relevance to the energy economy of the future. For utility applications, such as vehicle propulsion, existing hydrogen storage technology (gas cylinders) will have to be expanded. It is currently thought that metal hydride alloys in the powder form will provide a solution to this problem because of their gravimetric and volumetric storage capacities and safe operating pressures. In addition, Li-ion batteries are currently used as portable power sources in the consumer electronic market for its excellent performances among the chemical power sources. However, the materials (LiCoO_2 for the anode and carbon-based materials for the cathode) is claimed to have already achieved an energy density close to the theoretical limit. The only way to meet demand for even more power is to find a new electrode material.
     Mg-based and Sn-based compound nanoparticles were fabricated by a physical vapor condensation method (DC arc discharge). The compressed targets based micrometer powders were used as materials, then the targets were evaporated in a mixture of active gases (H_2 or CH_4) and inert gas (Ar). After condensation and passivation process, compound nanoparticles were obtained. It partly overcomed the difficulties in melting master alloys because of the large difference between Mg/Sn and the other element. Additionally, compound nanoparticles can be prepared in situ by this method, which may be accompanied by a reduction of cost and the improvement of practicality. In view of the difficulties in evaluating the corrosion properties of Mg nanoparticles, a indirect method was adopted in the present work, ie the binding material (pure conductive tin powders) was used to form various Mg/Sn composites and the corrosion properties of nanoparticles were evaluated indirectly by comparing those composite samples each other.
     Based on Miedema semi-empirical model and an empirical specific heat equation, the effective heat of formation and its temperature dependence were calculated to explain phase formation in binary Sn-Fe, Sn-Ni, Mg-Ni and Ni-Cu nanoparticles systems. It is shown that predictions of primary phase based on the thermodynamic model have good agreements with the experimental observations.
     Various Mg-based nanoparticles were prepared by evaporating bulk magnesium. It is shown that the Mg-based nanoparticles produced in inert atmospheres have hexangular crystal habits with particles' sizes ranging from 50 to 400 nm, while the nanoparticles produced in CH_4 atmosphere have amorphous carbon out layers with particles' sizes among 20-100 nm. Two-steps oxidation process can be confirmed for all samples, which may be attributed to the oxidations of out layer and core of nanoparticle. Potentiodynamic polarization results indicate that Mg/C nanoparticles prepared in CH_4 atmosphere exhibit better corrosion resistance properties due to its peculiar carbon doping. For Mg-based hydrogen storage, Mg-Ni, Mg-Cu, and Mg-Sn-Ni nanoparticles were synthesized by arc discharge in a mixture of argon and hydrogen atmosphere and gas hydrogen properties were explored by by a volumetric method. The intermetallic compounds of Mg_2Ni and MgNi_2 formed with existence of Mg, Ni, and MgO in Mg-Ni nanoparticles. After one cycle of hydrogen absorption/desorption process (activation treatment), Mg-Ni nanoparticles exhibited excellent hydrogen absorption kinetic properties. Mg_2Ni phase became the main phase by a phase transformation during the hydrogen treatments. The phenomenon of refinement of grain size in the nanoparticle was also observed after the hydrogen absorption/desorption processes, which was attributed the break of nanoparticles caused by volume expansion/shrinkage during cycling. Maximum hydrogen absorption contents are 1.75, 2.21 and 2.77 wt. % at 523, 573 and 623 K, respectively. As to Mg-Cu system, four phases (Mg_2Cu, MgCu_2, Mg and MgO) were detected in the as-prepared Mg-Cu nanoparticles. It was found that the sizes of nanoparticles were diminished after several cycles of hydrogen absorption-desorption. Measured Pressure-Composition-Isotherms (P-C-I) curves demonstrated that the hydrogen absorption contents were 1.92, 1.98 and 2.05 wt. % at 573, 598 and 623 K, respectively. In order to explore the effect of Sn-doping, Mg_(2-x)Sn_xNi (x =0, 0.1, 0.2) nanoparticles were synthesized by the same method. It is found that the as-prepared nanoparticles exhibit multiphase complex structure. In the first hydriding process, the kinetics properties were improved with the increase of Sn content. After one hydriding/dehydriding cycle, the samples display fast hydrogen absorption kinetics. Based on measured pressure-composition isotherms (P-C-I) curves, the formation enthalpy of hydrides obtained from the equilibrium plateau pressures decreases with increasing Sn content, implying Sn-doping can weaken the stability of hydrides.
     Four system nanoparticles, i.e. Sn-Fe, Sn-Ni, Sn-Mg and C-coated Sn-Fe nanoparticles, were synthesized by the same method and lithium storage properties were studied by model cell. As to Sn-Fe system, the electrochemical properties of electrodes based on Sn-Fe nanoparticles and its corresponding carbon-coated nanoparticles were studied. For carbon-coated nanoparticles, it is found that Sn-Fe nanoparticles (the "active" phase) dispersed in an electrically conductive matrix of nanometer-sized carbon with poor crystallization (the "inactive" phase). The electrochemical testing of the electrodes suggests that the initial capacity is 562.1 mAh/g of electrode based on Sn-Fe nanoparticles, while it is 385.3 mAh/g for its corresponding carbon-coated nanoparticles. The electrode based carbon-coated nanoparticles exhibits better cycling stability compared to its corresponding carbon-free sample, which is tightly associated with the appropriate active/inactive microstructure. According to XRD analysis, FeSn_2 decomposes to Fe and Sn completely for carbon-free sample after 30 cycling, and it is adverse in the carbon-coated sample. Compared with Fe-Sn carbon-free electrode, Sn-Ni electrode displays low initial capacity (186.6 mAh/g), but better cycling stability is obtained. After 30 cycles, there is no clear evidence to support the decomposition of Ni_3Sn_4 in Sn-Ni electrode. Compound Mg_2Sn was generated and coexisted with residual phases of Mg and Sn in nanoparticles. The initial capacity of Mg_2Sn electrode reaches 430 mAh/g. Two visible plateaus at 0.2-0.3 and 0.5-0.75 V were observed in the discharge/charge curves, which can be attributed to alloying/dealloying reactions between Li and Mg_2Sn, respectively.
引文
[1] Schlapbach L, Züttel A. Hydrogen storage-materials for mobile applications. Nature,2001, 414:23-31.
    
    [2] ZUttel A. Hydrogen storage and distribution systems. Mitig Adapt Strat Glob Change,2007, 12:343-365.
    
    [3] Reilly J J, Wiswall R H. The reaction of hydrogen with alloys of magnesium and nickeland the formation of Mg_2NiH_4. Inorganic Chemistry, 1968, 7:2254-2256.
    
    [4] Yuan H T, Yang H B, Zhou Z X, et al. Pressure-composition isotherms of the Mg_2Ni_(0.75)Fe_(0.25)-Mgsystem synthesized by replacement-diffusion method. Journal of Alloys and Compounds,1997, 260:256-259.
    
    [5] Lin C K, Wang C K, Lee P Y, et al. The effect of Ti additions on the hydrogen absorptionproperties of mechanically alloyed Mg_2Ni powders. Materials Science and Engineering A,2007, 449-451:1102-1106.
    
    [6] Nohara S, Hamasaki K, Zhang S G. Electrochemical characteristics of an amorphousMg_(0.9)V_(0.1)Ni alloy prepared by mechanical alloying. Journal of Alloys and Compounds, 1998,280 (1-2):104-106.
    
    [7] Spassov T, Koster U. Hydrogenation of amorphous and nanocrystalline Mg-based alloys.Journal of Alloys and Compounds, 1999, 287 (1-2):243-250.
    
    [8] Zhang Y S, Yang H B, Yuan H T, et al. Dehydriding properties of ternary Mg_2Ni_(1-x)Zr_x hydridessynthesized by ball milling and annealing. Journal of Alloys and Compounds, 1998,269(1-2):278-283.
    
    [9] Li Q, Chou K C, Lin Q, et al. Influence of the initial hydrogen pressure on the hydridingkinetics of the Mg_(2-x)Al_xNi (x=0, 0. 1) alloys. International Journal of Hydrogen Energy,2004, 29:1383-1388.
    
    [10] Gasiorowski A, Iwasieczko W, Skoryna D, et al. Hydriding properties of nanocrystallineMg_(2-x)M_xNi alloys synthesized by mechanical alloying (M=Mn, Al). Journal of Alloys andCompounds, 2004, 364:283-288.
    
    [11] Tsushio Y, Enoki H, Akiba E. Hydrogenation properties of MgNi_(0.86)Ml_(0.03)(M1=Cr, Fe, Co,Mn) alloys. Journal of Alloys and Compounds, 1998, 281:301-305.
    
    [12] Li L Q, Saita I, Saito K, et al.. Hydriding combustion synthesis of hydrogen storagealloys of Mg-Ni-Cu system. Intermetallics, 2002, 10 (10):927-932.
    
    [13]杨化滨.三元Mg_2Ni_(0.75)M_(0.25)合金体系的性能研究:(博士学位论文).天津:南开大学,1998.
    
    [14] Cui N, Luan B, Zhao H J, et al. Effects of yttrium additions on the electrode performance of magnesium-based hydrogen storage alloys. Journal of Alloys and Compounds, 1996, 233:236-240.
    [15] Yuan H T, Yang E D, Yang H B, et al. Characteristics of Mg_(2-x)Ti_xNi_(1-y)Cuy-H_2 (0    [16] Si T Z, Zhang Q A. Phase structures and electrochemical properties of the laser sintered LaNi_5 - x wt. % Mg_2Ni composites. Journal of Alloys and Compouds, 2006, 414 (1-2) :317-321.
    [17] Grigorova E, Khristov M, Khrussanova M, et al. Addition of 3d-metals with formation of nanocomposites as a way to improve the hydrogenation characteristics of Mg_2Ni. Journal of Alloys and Compouds, 2006, 414:298-301.
    [18] Vermeulen P, van Thiel E F, Notten P H, et al. Ternary MgTiX-Alloys: A Promising Route towards Low-Temperature, High-Capacity, Hydrogen-Storage Materials. Chemistry A European Journal, 2007, 13:9892-9898.
    [19] Wang X L, Haraikawa N, Suda S. A study of the surface composition and structure of fluorinated Mg-based alloys. Journal of Alloys and Compouds, 1995, 231 (1-2):397-402.
    [20] Hampton M D, Juturu R, Lomness J. The activation of Mg_2Ni for initial hydrogen uptake by treatment with water vapor. International Journal of Hydrogen Energy, 1999, 24 (10):981-988.
    [21] Hampton M D, Lomness J K, Giannuzzi L A. Surface study of liquid water treated and water vapor treated Mg_(2:35)Ni alloy. International Journal of Hydrogen Energy, 2002, 27 (1):79-83.
    [22] Ivanov E, Konstanchuk I, Stepanov A, et al. Magnesium mechanical alloys for hydrogen storage. Journal of the Less Common Metals, 1987, 131 (1-2):25-29.
    [23] Imamura H, Sakasai N, Kajii Y. Hydrogen absorption of Mg-Based composites prepared by mechanical milling: Factors affecting its characteristics. Journal of Alloys and Compounds, 1996, 232:218-223.
    [24] Akiyama T, Isogai H, Yagi J, et al. Hydriding combustion synthesis for the production of hydrogen storage alloy. Journal of Alloys and Compouds, 1997, 252:L1-L4.
    [25] Li L Q, Akiyama T, Yagi J. Effect of hydrogen pressure on the combustion synthesis of Mg_2NiH_4. Intermetallics, 1999, 7:201-205.
    [26] Tomohiro A, Negishi T, Saito K, et al. Operating conditions of hydriding combustion synthesis of pure Mg_2NiH_4. Materials Transactions, 2001, 42 (8):1748-1752.
    [27] Shao H Y, Liu T, Li X G, Zhang L F. Preparation of Mg_2Ni intermetallic compound from nanoparticles. Scripta Materialia, 2003, 49:595-599.
    [28] Shao H Y, Xu H R, Wang Y T, Li X G. Preparation and hydrogen storage properties of Mg_2Ni intermetallic nanoparticles. Nanotechnology, 2004, 15:269-274.
    [29] Andrievski R A. Hydrogen in nanostructures. Physics-Uspekhi, 2007, 50 (7):691-704.
    [30] Janflen S, Natter H, Hempelmann R, et al. Hydrogen diffusion in nanocrystalline Pd by means of quasielastic neutron scattering. Nanostructured Materials, 1997, 9:579-582.
    [31] Chang B J, Jee H K, Kyung S L Electrode characteristics of nanostructured Ti-Fe and ZrCr_2 type metal hydride prepared by mechanical alloying. Nanostructured Materials, 1997, 8 (8):1093-1104.
    [32] Zaluski L, Zaluska A, Strom-Olsen J O. Nanocrystalline metal hydride. Journal of Alloys and Compouds, 1997, 253-254:70-79.
    [33] Bryden K J, Ying J Y. Electrodeposition synthesis and hydrogen absorption properties of nanostructured palladium-iron alloys. Nanostructed Materials, 1997, 9 (1) :485-488.
    [34] Gennari F C, Castro F J, Urretavizcaya G. Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. Journal of Alloys and Compouds, 2001, 321 (1):46-53.
    [35] Jurczyk M, Smardz L, Okonska I, et al. Nanoscale Mg-based materials for hydrogen storage. International Journal of Hydrogen Energy, 2008, 33:374-380.
    [36] Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled Mg_2H-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds, 1999, 292:247-252.
    [37] Uchida H H, Wulz H G, Fromm E. Catalytic effect of nickel, iron and palladium on hydriding titanium and storage materials. Journal of the Less Common Metals, 1991, 172-174:1076-1083.
    [38] Zaluski L, Zaluska A, Tessier P, et al. Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg_2Ni, LaNi_5 and FeTi. Journal of Alloys and Compounds, 1995, 217:295-300.
    [39] Zaluska A, Zaluski L. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999, 288:217-225.
    [40] Hanada N, Ichikawa T, Fujii H. Catalytic Effect of nanoparticle 3d-Transition metals on hydrogen storage properties in magnesium hydride MgH_2 prepared by mechanical milling. Journal of Physical Chemistry B, 2005, 109 (15):7188-7194.
    [41] Fujii H, Orimo S, Ikeda K. Cooperative hydriding properties in a nanostructured Mg_2Ni-H system. Journal of Alloys and Compounds, 1997, 253-254:80-83.
    [42] Zaluska A, Zakuski L, Strom-Olsen J O. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg_2Ni. Journal of Alloys and Compounds, 1999, 289:197-206.
    [43] Ouyang L Z, Wang H, Zhu M, et al. Microst ructure of MmM_5/Mg multi-layer films prepared by magnetron sputtering. Journal of Alloys and Compounds, 2005, 404-406:485-489.
    [44] Orimo S, Fujii H, Ikeda K. Notable hydriding properties of a nanostructured composite material of the Mg-Ni-H system synt hesized by reactive mechanical grinding. Acta Materialia, 1997, 45:331-341.
    
    
    [45] Zhu M, Zhu W H , Gao Y, et al. The effect of Mg content on microst ructure and hydrogen absorption properties of mechanical alloyed MmNi_(3.5)(CoAlMn)_(1.5)Mg. Materials Science and Engineering A, 2000, 286:130-134.
    
    [46] Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydridingreaction of Mg-Ni thin films. Applied Physics Letters, 2007, 90 (2):021917.
    
    [47] Tran T D, Feikert J H, Song X, et al. Commercial carbonaceous materials as lithiumintercalation anodes. Journal of the Electrochemical Society, 1995, 142(10):3297-3302.
    
    [48] Dey A N. Electrochemical alloying of lithium in organic electrolytes. Journal of theElectrochemical Society, 1971 118 (10):1547-1549.
    
    [49] Hatchard T D, Dahn J R. Study of the electrochemical performance of sputtered Si_(1-x)Sn_xfilms. Journal of the Electrochemical Society, 2004, 151 (10):A1628-A16351.
    
    [50] Noriyuki T, Ryuji O, Masahisa F, et al. Study on the anode behavior of Sn and Sn_2Cualloy thin-film electrodes. Journal of Power Sources, 2002, 107 (1):48-451.
    
    [51] Hamon Y, Brousse T, Jousse F, et al. Aluminum negative electrode in lithium ionbatteries. Journal of Power Sources, 2001, 97-98:185-187.
    
    [52] Dailly A, Ghanbaja J, Willmann P, et al. Electrochemical intercalation of lithium intographite-antimony composites synthesized by reduction of a SbCl_5-graphiteintercalation compound by gaseous caesium. Journal of Power Sources, 2004, 125:70-76.
    
    [53] Trifonova A, Wachtler M, Winter M, et al. Sn-Sb and Sn-Bi alloys as anode materialsfor lithium-ion batteries. Ionics, 2002, 8:321-328.
    
    [54]周恒辉,慈云祥,刘吕炎.锂离子电池电极材料研究进展.化学进展,1998,10(1):85-94.
    
    [55] Ren J G, He X M, Wang L, et al. Nanometer copper-tin alloy anode material for lithium-ionbatteries. Electrochimica Acta, 2007, 52:2447-2452.
    
    [56] Thackeray M M, Vaughey J T, Kahaian A J, et al. Intermetalic insertion electrodesderived from NiAs-, Ni_2In-, and Li_2CuSn-type structure for lithium-ion batteries.Electrochemistry Communications, 1999, 1 (3-4):111-115.
    
    [57] Kepler K D, Vaughey J T, Thackeray M M. Copper-tin anodes for rechargeable lithiumbatteries: an example of the matrix effect in an intermetallic system. Journal of PowerSources, 1999, 81-82 (1):383-387.
    
    [58] Tamura N, Ohshita R, Yonezu I, et al. Study on the anode behavior of Sn and Sn-Cu alloythin-film electrodes. Journal of Power Sources, 2002, 107 (1):48-55.
    
    [59] Beattie S D, Dahn J R. Single bath pulsed electrodeposition of copper-tin alloy negativeelectrodes for lithium-ion batteries. Journal of The Electrochemical Society, 2003,150 (7):A894-A898.
    
    [60] Ehrlich G M, Durand C, Chen X, et al. Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries. Journal of The Electrochemical Society, 2000, 147 (3):886-891.
    
    [61] Lee H Y, Jang S W, Lee S M, et al. Lithium storage properties of nanocrystalline Ni_3Sn_4 alloys prepared by mechanical alloying. Journal of Power Sources, 2002, 112 (1):8-12.
    
    [62]程新群,史鹏飞,郑书发.锂离子电池中电沉积锡镍合金电极的嵌锂性能.哈尔滨工业大学学 报,2005,37(2):264-267.
    
    [63] Hitomi M, Toshiyuki M, Mohamed M, et al. Structural and morphological modificationsof a nanosized 62 atom percent Sn-Ni thin film anode during reaction with lithium.Journal of The Electrochemical Society, 2005, 152 (3) :A560-A565.
    
    [64] Ou Mao, Dahn J R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-Ionbatteries: II.The Sn-Fe system. Journal of The Electrochemical Society, 1999, 146(2):405-413.
    
    [65] Ou Mao, R. A. Dunlap, J. R. Dahn. Mechanically Alloyed Sn-Fe(-C) Powders as AnodeMaterials for Li-Ion Batteries II. The Sn-Fe System. Journal of The ElectrochemicalSociety, 1999, 146 (2):414-422.
    
    [66] Zhang C Q, Tu J P, Huang X H, et al. Preparation and electrochemical performances ofnanoscale FeSn_2 as anode material for lithium ion batteries. Journal of Alloys andCompounds, 2008, 457:81-85.
    
    [67] Kim H, Kim Y J, Kim D G, et al. Mechanochemical synthesis and electrochemicalcharacteristics of Mg_2Sn as an anode material for Li-ion batteries. Solid State Ionics,2001, 144:41-49.
    
    [68] Roberts G A, Cairns E J, Reimer J A. An electrochemical and XRD study of lithiuminsertion into mechanically alloyed magnesium stannide. Journal of The ElectrochemicalSociety, 2003, 150:A912-A916.
    
    [69] Sakauchi H, Maeta H, Kubota M, et al. Mg_2Sn as a new lithium storage intermetalliccompound. Electrochemistry, 2000, 68:632-635.
    
    [70] Larcher D, Prakash A S, Saint J, et al. Electrochemical reactivity of Mg-Sn phaseswith metallic lithium. Chemistry of Materials, 2004, 16:5502-5511.
    
    [71] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high capacitylithium-ion storage material. Science, 1997, 276 (1):1395-1397.
    
    [72] Naichao Li, Martin C R. A high-rate high-capacity nanostructured Sn-based anodeprepared using Sol-Gel template synthesis. Journal of The Electrochemical Society, 2001,148 (2):A164-A170.
    
    [73] Zhao J S, Wang L, He X M, et al. A Si-SnSb/pyrolytic PAN composite anode for lithium-ionbatteries. Electrochimica Acta, 2008, 53:7048-7053.
    
    [74] Sun Z B, .Wang X D, Li X P, et al. Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries. Journal of Power Sources, 2008, 182:353-358.
    
    [75] Weydanz W J, Wohlfahrt-Mehrens M, Huggins R A. A room temperature study of the binary lithium - silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. Journal of Power Sources, 1999, 81-82:237-242.
    
    [76]文钟晟,谢晓华,王可等.锂离子电池中高容量硅铝/碳复合负极材料的制备与性能研究.无机材 料学报,2005,20(1):139-143。
    
    [77] Suresh P ,Shukla A K, Shivashankar S A, et al. Rechargeable lithium cells with dendrite-free electrodeposited lithium on aluminum as negative electrode. Journal of Power Sources, 2004, 132:166-171.
    
    [78] Machill S, Rahner D. Studies of Al-Al_3Ni eutectic mixtures as insertion anodes in rechargeable lithium batteries, Journal of Power Sources, 1997, 68:506-509.
    
    [79]秦海英,谢健,糜建立,涂健,赵新兵.FeSb_2纳米棒的溶剂热合成与电化学脱嵌锂性能.物理化学 学报,2006,22(12):1555-1559.
    
    [80] Yang J, Takeda Y, Imanishi N, et al. Ultraf ine Sn and SnSb_(0.14) powders for lithium storagematrices in lithium-ion batteries. Journal of The Electrochemical Society, 1999, 146(11):4009-4013.
    
    [81] Zhao H L, Yin C L, Guo H, et al. Microcrystalline SnSb alloy powder as lithium storagematerial for rechargeable lithium-ion batteries. Electrochemical and Solid-StateLetters, 2006, 9 (6):A281-A284.
    
    [82] Chen Z H, Chevrier V, Christensen L, et al. Design of amorphous alloy electrodes forLi-ion batteries: A big challenge. Electrochemical and Solid State Letters, 2004, 7(10):A310-A314.
    
    [83] Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated in elastic hollowcarbon spheres for high-performance anode material in lithium-ion batteries. AdvancedMaterials, 2008, 20:1160-1165.
    
    [84] Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance inlithium-ion batteries. Journal of Power Sources, 1997, 68(1):87-90.
    
    [85] Larcher D, Masquelier C, Bonnin D, et al. Effect of particle size on lithiumintercalation into α -Fe_2O_3. Journal of The Electrochemical Society, 2003,150:A133-A139.
    
    [86] Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe_3O_4-based Cunano-architectured electrodes for lithium-ion battery applications. Nature materials,2006, 5:567-573.
    
    [87] Whitehead A H, Elliott J M, Owen J R. Nanostructured tin for use as a negative electrodematerial in Li-ion batteries. Journal of Power Sources, 1999, 81-82 (5):33-38.
    [88] Gleiter H. Nanocrystalline materials. Progress in Materials Science, 1989, 33 (4):223-315.
    
    [89] Poirier E, Chahine R, Tessier A, et al. Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples. Review of Scientific Instruments, 2005, 76:055101.
    [90] Graetz J, Reilly J J. Nanoscale energy storage materials produced hydrogen-driven metallurgical reaction. Advanced Engineering Materials, 2005, 7:597-601.
    [91] Berube V, Radtke G, Dresselhaus M, et al. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. International Journal of Energy Research, 2007, 31:637-663.
    [92] Bobet J L, Akiba E, Nakamura Y, et al. Study of Mg-M (M=Co, Ni and Fe) mixture elaborated by reactive mechanical alloying-hydrogen sorption properties. International Journal of Hydrogen Energy, 2000, 25:987-996.
    [93] David E. An overview of advanced materials for hydrogen storage. Journal of Materials Processing Technology, 2005, 162-163:169-177.
    [94] Jurczyk M, Okonska 1, IwasieczkoW, et al. Thermodynamic and electrochemical properties of nanocrystalline Mg_2Cu-type hydrogen storage materials. Journal of Alloys and Compouds, 2007, 429:316-320.
    [95] Baril G, Pebere N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corrosion Science, 2001, 43:471-484.
    [96] Zhang W G, Li L, Yao S W, et al. Corrosion protection properties of lacquer coatings on steel modified by carbon black nanoparticles in NaCl solution. Corrosion Science, 2007, 49:654-661.
    [97] Chung K H, Hsiao L Y, Lin Y S, et al. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams. Acta Biomaterialia, 2008, 4:717-724.
    [98] Dong X L, Zhang Z D, Xiao Q F, et al. Characterization of ultrafine c-Fe(C), a-Fe(C) and Fe_3C particles synthesized by arc-discharge in methane. Journal of Materials Science, 1998, 33:1915-1919.
    [99]Dong X L, Zhang Z D, Jin S R, et al. Surface characterizations of ultrafine Ni particles. Nanostructured Materials, 1998, 10 (4):585-592.
    [100] Dong X L, Zhang Z D, Chuang Y C, et al. Characterization of ultrafine Fe-Co particles and Fe-Co(C) nanocapsules. Physical Review B, 1999, 60:3017-3020.
    [101] Dai H J, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters, 1996, 260:471-475.
    [102]Saito Y, Yoshikawa T, Okuda M, et al. Carbon nanocapsules encaging metals and carbides. Journal of Physics and Chemistry of Solids, 1993, 54 (12):1849-1860.
    [103] Robtson J. Diamond-like amorphous carbon. Materials Science and Engineering R, 2002, 37:129-281.
    [104] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 2000, 61 (20):14095-14107.
    [105] Kiang C H, Endo M, Ajayan P M, et al. Size effects in carbon nanotubes. Physical Review Letters, 1998, 81:1869-1872.
    [106] Song M R, Chen M, Zhang Z J. Preparation and characterization of Mg nanoparticles. Materials Characterization, 2008, 59:514-518.
    [107] Suzin Y, Buettner L C, Leduc C A. Characterizing the ignition process of activated carbon. Carbon, 1999, 37:335-346.
    [108] Shah S N, Davies D E. The anodic behaviour of tin in alkaline solutions—1.0-1 M sodium borate solution. Electrochimica Acta, 1963, 8 (9):663-678.
    [109] Kapusta S D, Hackerman N. Anodic passivation of tin in slightly alkaline solutions. Electrochimica Acta, 1980, 25 (12):1625-1639.
    [110] Pugh M, Warner L M, Gabe D R. Some passivation studies on tin electrodes in alkaline solutions. Corrosion Science, 1967, 7 (12):807-820.
    [111] Grigorova E, Khristov M, Khrussanova M, et al. Effect of additives on the hydrogen sorption properties of mechanically alloyed composites based on Mg and Mg_2Ni. International Journal of Hydrogen Energy, 2005, 30 (10) :1099-1105.
    [112] Feng Y, Jiao L F, Yuan H T, et al. Effect of Al and Ce substitutions of the electrochemical properties of amorphous MgNi-based alloy electrodes. International Journal of Hydrogen Energy, 2007, 32 (12):1701-1706.
    [113] Terzieva M, Khruesanova M, Peshev P. Hydriding and dehydriding characteristics of Mg-LaNi_5 composite materials prepared by mechanical alloying. Journal of Alloys and Compounds, 1998, 267:235-239.
    [114] Sun D, Enoki H, Bououdina M, et al. Phase components and hydriding properties of the sintered Mg-xwt. % LaNi_5(x=20-50) composites. Journal of Alloys and Compounds, 1999, 282:252-257.
    [115] Saita I, Li L Q, Saito K, et al. Hydriding combustion synthesis of Mg_2NiH_4. Journal of Alloys and Compounds, 2003, 356-357:490-493.
    [116]Liang G, Boily S, Huot J, et al. Mechanical alloying and hydrogen absorption properties of the Mg-Ni system. Journal of Alloys and Compounds, 1998, 267:302-306.
    [117] Si T Z, Liu D M, Zhang Q A. Structural and electrochemical properties of MgNi-based alloys with Ti, Pt and Pd additives. International Journal of Hydrogen Energy, 2007, 32:4917-4924.
    [118] Jacob M H G, Spencerb P J. A critical thermodynamic evaluation of the system Mg-Ni. CALPHAD, 1998, 22 (4):513-525.
    [119] Yu S, Li D M, Sun H P, et al. Microanalysis of single-phase A1N nanocrystals and A1N-A1 nanocomposites prepared by DC arc-discharge. Journal of Crystal Growth, 1998, 183 (3):284 288
    [120] Selvatn P, Viswanathan B, Srinivasan V. XPS and XAES studies on hydrogen storage magnesium-based alloys. International Journal of Hydrogen Energy, 1989, 14 (12):899-902.
    [121] Gertsman V Y, Birringer R. On the room-temperature grain growth in nanocrystalline copper. Scripta Metallurgica et Materialia, 30 (5):577-581.
    [122] Gleiter H. Nanostructured materials: basic concepts and Microstructure. Acta materialia, 2000, 48 (1).1-29.
    [123] Schwarz R B, Khachaturyan A G. Thermodynamics of open two-phase systems with coherent interfaces. Physical Review Letters, 1995, 74:2523-2526.
    [124] Kuji T, Nakano H, Aizawa T. Hydrogen absorption and electrochemical properties of Mg_(2-x)Ni (x=0-0.5) alloys prepared by bulk mechanical alloying. Journal of Alloys and Compounds, 2002, 330-336:590-596.
    [125] Tong Y Q, Ouyang L Z, Zhu M. Effect of Ni on Mg based hydrogen storage alloy Mg_3Nd. Rare Metals, 2006, 25:289-294.
    [126] Reilly J J, Wiswall R H. The reaction of hydrogen with alloys of magnesium and copper. Inorganic Chemistry, 1967, 6:2220-2223.
    [127] Liang G. Synthesis and hydrogen storage properties of Mg-based alloys. Journal of Alloys and Compounds, 2004, 370:123-128.
    [128] Jurczyk M, Okonska I, Iwasieczko W, et al. Thermodynamic and electrochemical properties of nanocrystalline Mg_2Cu-type hydrogen storage materials. Journal of Alloys and Compounds, 2007, 429:316-320.
    [129] Li L Q, Akiyamab T, Yagi J I. Reaction mechanism of hydriding combustion synthesis of Mg_2NiH_4. Intermetallics, 1999, 7:671-677.
    [130] Saita I, Toshima T, Tanda S, et al. Hydriding chemical vapor deposition of metal hydride nano-fibers. Materials Transactions, 2006, 47:931-934.
    [131] Saita I, Toshima T, Tanda S, et al. Hydrogen storage property of MgH_2 synthesized by hydriding chemical vapor deposition. Journal of Alloys and Compounds, 2007, 446-447:80-83.
    [132] Ueda T T, Tsukahara M, Kamiya Y, et al. Preparation and hydrogen storage properties of Mg-Ni-Mg_2Ni laminate composites. Journal of Alloys and Compounds, 2005, 386:253-257.
    [133] Takeichi N, Tanaka K, Tanaka H, et al. Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure. Journal of Alloys and Compounds, 2007, 446-447:543-548.
    [134] Orimo S I, Fujii H. Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: a review. Intermetallics, 1998, 6:185-192.
    [135] Zhou S H, Wang Y, Shi F G, et al. Modeling of thermodynamic properties and phase equilibria for the Cu-Mg binary system. JPEDAV, 2007, 28:158-166.
    [136] Shao H Y, Wang Y T, Xu H R, et al. Preparation and hydrogen storage properties of nanostructured Mg_2Cu alloy. Journal of Solid State Chemistry, 2005, 178:2211-2217.
    [137] Wong W L E., Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Composites Science and Technology, 2007, 67:1541-1552.
    [138] Stampfer J F, Holley C E, Suttle J F. The magnesium-hydrogen system. Journal of the American Chemical Society, 1960, 82:3504-3508.
    [139] Tsushio Y, Akiba E. Hydrogenation properties of Mg-based Laves phase alloys. Journal of Alloys and Compounds, 1998, 269:219-223.
    [140] Xu Y H, Chen C P, Wang X L, et al. The analysis of the two discharge plateaus for Ti-Ni-based metal hydride electrode alloys. Journal of Power Sources, 2002, 112:105-108.
    [141] McGuiness P J, Zhang X J, Forsyth H, et al. Disproportionation in Nd_(16)Fe_(76)B_8-type hydrides. Journal of the Less Common Metals, 1989, 162:379-87.
    [142] Karty A, Grunzweig-Genossar J, Rudman P S. Hydriding and dehydriding kinetics of Mg in Mg/Mg_2Cu eutectic alloy: sweep method. Journal of Applied Physics, 1979, 50:7200-7209.
    [143] Kohno T, Kanda M. Effect of partial substitution on hydrogen storage properties of Mg_2Ni alloy. Journal of The Electrochemical Society, 1997, 144:2384-2388.
    [144] Hirata T, Matsumoto T, Amano M, et al. Dehydriding reaction kinetics in the improved intermetallic Mg_2Ni-H system. Journal of the Less Common Metals, 1983, 89 (1):85-91.
    [145] Halussermann U, Blomqvist H, Noreus D. Bonding and stability of the hydrogen storage material Mg_2NiH_4. Inorganic Chemistry, 2002, 41:3684-3692.
    [146] Laurencelle F, Dehouche Z, Goyette J. Hydrogen sorption cycling performance of LaNi_(4.8)Sn_(0.2). Journal of Alloys and Compounds, 2006, 424:266-271.
    [147] Khyzhun O Y, Lototsky M V, Riabov A B, et al. Sn-containing (La, Mm)Ni_(5-x)Sn_xH_(5 6) intermetallic hydrides: thermodynamic, structural and kinetic properties. Journal of Alloys and Compounds, 2003, 356-357:773-778.
    [148] Wei F S, Lei Y Q, Chen L X, et al. Influence of rapid quenching on the microstructure and electrochemical properties of Co-free LaNi_(1.92)Sn_(0.33) hydrogen storage electrode alloy. International Journal of Hydrogen Energy, 2007, 32:2935-2942.
    [149] Guo J, Huang C K, Yang K, et al. The effects of Sn element on hydrogen storage characteristics of Mg_(2-x)Sn_xNi(x=0, 0.05, 0.1, 0.15, 0.2) alloys. Materials Research Society Symposium-Proceedings, 2007, 971:0971-Z07-01.
    [150] Imamura H, Yoshihara K, Yoo M, et al. Dehydriding of Sn/MgH_2 nanocomposite formed by ball milling of MgHv with Sn. International Journal of Hydrogen Energy, 2007, 32:4191-4194.
    [151] Drenchev N, Spassov T, Bliznakov S. Influence of tin on the electrochemical and gas phase hydrogen sorption in Mg_(2-x)Sn_xNi (x = 0, 0. 1, 0. 3). Journal of Alloys and Compounds, 2008, 450:288-292.
    [152] Fu Q J, Tsang S C. Tin and tin-titanium as catalyst components for reversible hydrogen storage of sodium aluminium hydride. Fuel, 2006, 85:2141-2147.
    [153] Takaguchi Y, Tanaka K. Hydriding-dehydriding characteristics of NdNi_5 and effects of Sn-substitution. Journal of Alloys and Compounds, 2000, 297:73-80.
    [154] Gross K J, Spatz P, Zuttel A, et al. Mechanically milled Mg composites for hydrogen storage-The transition to a steady state composition. Journal of Alloys and Compounds, 1996, 240:206-213.
    [155] Nomura K, Akiba E, Ono S. Kinetics of the reaction between Mg_2Ni and hydrogen. International Journal of Hydrogen Energy, 1981, 6 (3):295-303.
    [156] Scholtus N A, Hall W K. Hysteresis in the Palladium-Hydrogen System. Journal of Chemical Physics, 1963, 39:868-870.
    [157] Flanagan T B, Oates W A. The effect of hysteresis on the phase diagram of Pd-H. Journal of the Less Common Metals, 1983, 92 (1):131-142.
    [158] Kuji T, Oates W A, Bowerman B S, et al. The partial excess thermodynamic properties of hydrogen in palladium. Journal of Physics F, 1983, 13:1785-1800.
    [159] Song M Y, Park H R. Pressure - composition isotherms in the Mg_2Ni-H system. Journal of Alloys and Compounds, 1998, 270:164-167.
    [160] Nakano H, Wakao S. Substitution effect of elements in Zr-based alloys with Laves phase for nickel-hydride battery. Journal of Alloys and Compounds, 1995, 231:587-593.
    [161] Sato T, Blomqvist H, Noreus D. Attempts to improve Mg_2Ni hydrogen storage by aluminium addition. Journal of Alloys and Compounds, 2003, 356-357:494-496.
    [162] Nohara S, Hamasaki K, Zhang S G, et al. Electrochemical characteristics of an amorphous Mg_(0.9)V_(0.1)Ni alloy prepared by mechanical alloying. Journal of Alloys and Compounds, 1998, 280:104-106.
    [163] Mao O, Turner R L, Courtney I A, et al. Active/Inactive nanocomposites as anodes for Li-ion batteries. Electrochemical and Solid-State Letters, 1999, 2 (1):3-5.
    [164] Hari Kumar K C, Wollants P, Delaey L. Thermodynamic evaluation of Fe-Sn phase diagram. Calphad, 1996, 20:139-49.
    
    [165] 王焜,陆文聪,陈念贻等. 铁和液体锡相互作用的研究. 上海金属,2004,26:23-26.
    
    [166] Stefanescu D M (chairman). ASM Handbook: Casting. 9th Edition, Vol.15. Detroit: ASM International, 1988.
    [167] Dong X L, Zhang Z D, Jin S R, et al. Characterization and magnetic properties of Fe-Co ultrafine particles. Journal of Magnetism and Magnetic Materials, 2000, 210:143-149.
    [168] Dong X L, Zhang Z D, Zhao X G, et al. The preparation and characterization of ultrafine Fe-Ni particles. Journal of Materials Research, 1999, 14:398-406.
    [169] Li X G, Chiba A, Takahashi S, et al. Preparation, oxidation and magnetic properties of Fe-Cr ultrafine powders by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials, 1997, 173:101-108.
    [170] Liu T, Leng Y H, Li X G. Preparation and characteristics of Fe_3Al nanoparticles by hydrogen plasma-metal reaction. Solid State Communications, 2003, 125:391-394.
    [171] Hirai K, Ichitsubo T, Uda T, et al. Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries. Acta Materialia, 2008, 56:1539-1545.
    [172] Courtney I A, Dahn J R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of The Electrochemical Society, 1997, 144 (6):2045-2052.
    [173] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta, 1999, 45:31-50.
    [174] Wachtler M, Winter M, Besenhard J O. Anodic materials for rechargeable Li-batteries. Journal of Power Sources, 2002, 105:151-160.
    [175] Mukaibo H, Momma T, Osaka T. Changes of electro-deposited Sn-Ni alloy thin film for Li ion battery anodes during charge discharge cycling. Journal of Power Sources, 2005, 146:457-463.
    [176] Amadei I, Panero S, Scrosati B, et al. The Ni_3Sn_4 intermetallic as a novel electrode in Li cells. Journal of Power Sources, 2005, 143:227-230.
    [177] Crosnier O, Broussea T, Devauxb X, et al. New anode systems for Li ion cells. Journal of Power Sources, 2001, 94:169-174.
    [178] Liu H S, Wang J, Jin Z P. Thermodynamic optimization of the Ni-Sn binary system. CALPHAD, 2004, 28:363-370.
    [179] Hassoun J, Panero S, Scrosati B. Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium ion batteries. Journal of Power Sources, 2006, 160:1336-1341.
    [180] Li J Z, Li H, Wang Z X, et al. The interaction between SnO anode and electrolytes. Journal of Power Sources, 1999, 81-82:346-351.
    [181] Ning L J, Wu Y P, Fang S B, et al. Materials prepared for lithium ion batteries by mechanochemical methods. Journal of Power Sources, 2004, 133:229-242.
    [182]Valvo M, Lafont U, Simonin L, et al. Sn-Co compound for Li-ion battery made via advanced electrospraying. Journal of Power Sources, 2007, 174:428-434.
    [183] Urretavizcaya G, Meyer G O. Metastable hexagonal Mg_2Sn obtained by mechanical alloying. Journal of Alloys and Compounds, 2002, 339:211-215.
    [184] Clark C R, Wright C, Suryanrayana C, et al. Synthesis of Mg_2X (X=Si, Ge, or Sn) intermetallics by mechanical alloying. Materials Letters, 1997, 33:71-75.
    [185] Kim H, Choi J, Sohn H J, er al. The insertion mechanism of lithium into Mg_2Si anode material for Li-ion batteries. Journal of The Electrochemical Society, 1999, 14b (12):4401-4405.
    [186] Song S W, Striebel K A, Reade R P, et al. Electrochemical Studies of nanoncrystalline Mg_2Si thin film electrodes prepared by pulsed laser deposition. Journal of The Electrochemical Society, 2003, 150 (1):A121-A127.
    [187] Aurbach D, Markovsky B, Weissmann I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999, 45:67-86.
    [188] Chang Y C, Jong J H, Fey G T K. Kinetic characterization of the electrochemical intercalation of lithium ions into graphite electrodes. Journal of The Electrochemical Society, 2000, 147 (6):2033-2038.
    [189] Kang Y M, Park S C, Kang Y S, et al. The improvement of the cycle life of Li_(2.6)Co_(0.4)N as an anode of Li-ion secondary battery. Solid State Ionics, 2003, 156:263-273.
    [190] Miedema A R. On the heat of formation of solid alloys-II. Journal of the Less Common Metals, 1976, 46 (1): 67-83.
    [191] Boom R, De Boer F R, Miedema A R. On the heat of formation of solid alloys-II. Journal of the Less Common Metals, 1976, 46 (2): 271-284.
    [192] Miedema A R, De Chatel P F, De Boer F R. Cohesion in alloys-fundamentals of a semi-empirical model. Physica B+C, 1980, 100: 1-28.
    [193] Bene R W. First nucleation rule for solid-state nucleation in metal-metal thin-film systems. Applied Physics Letters, 1982, 41 (6):529-531.
    [194] Tsaur B Y, Lau S S, Mayer J W, et al. Sequence of phase formation in planar metal-Si reaction couples. Applied Physics Letters, 1981, 38 (11): 922-924.
    [195] Shim J Y, Kwak J S, Chi E J, et al. Formation of amorphous and crystalline phases, and phase transition by solid-state reaction in Zr/Si multilayer thin films. Thin Solid Films, 1995, 269:102-107.
    [196] Moore H J, Olson D L, Noufi R. Use of the effective heat of formation model to determine phase formation sequences of In-Se, Ga-Se, Cu-Se, and Ga-In Multilayer Thin Films. Journal of Electronic Materials, 1998, 27:1334-1340.
    [197] Laik A, Bhanumurthy K, Kale G B. Intermetallics in the Zr-Al diffusion zone. Intermetallics, 2004, 12 (1):69-74.
    
    
    [198] Xu L, Cui Y Y, Hao Y L, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Materials Science and Engineering A, 2006, 435:638-647.
    
    [199] Pretorius R, Marais i K, Theron C C. Prediction of silicidc first phase and phase sequence from heats of formation. Materials Science and Engineering R, 1993, 10:1-83.
    
    [200] Pretorius R, Vredenberg A M, Saris F W. Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule. Journal of Applied Physics, 1991, 70 (7): 3636-3646.
    
    [201]黄国生,许志宏.金属间化合物的热容估算式.科学通报,1988,23:1793-1795.
    
    [202] Likhachev V N, Vinogradov G A, Alymov M I. Anomalous heat capacity of nanoparticles.Physics Letters A, 2006,357:236-239.
    
    [203] Wang B X, Zhou L P, Peng X F. Surface and size effects on the specific heat capacityof nanoparticles. International Journal of Thermophysics, 2006, 27:139-151.
    
    [204] Turi T, Erb U. Thermal expansion and heat capacity of porosity-free nanocrystallinematerials. Materials Science and Engineering A, 1995, 204 (3):34-38.
    
    [205] Meyer R, Lewis L J, Prakash S, et al. Vibrational properties of nanoscale materials:From nanoparticles to nanocrystalline materials. Physical Review B, 2003, 68:104303.
    
    [206]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993.
    
    [207]陈锋,杨章远,许志宏.金属间化合物热容计算的新经验公式.化学通报,1997,12:49-50.
    
    [208]张邦维,胡望宇,舒小林。嵌入原子方法理论及其在材料科学中的应用-原子尺子度材料设计理 论.长沙:湖南大学出版社,2002.
    
    [209] Thompson C V. On the role of diffusion in phase selection during reactions atinterfaces. J Mater Res, 1992, 7 (2):367-373.
    
    [210] Bene R W. A kinetic model for solid-state silicide nucleation. Journal of AppliedPhysics, 1987, 61 (5):1826-1833.
    
    [211] Pretorius R, de Reus R, Vredenberg A M, et al. Use of the effective heat of formationrule for predicting phase formation sequence in Al-Ni systems. Materials Letters, 1990,9 (2):494-499.
    
    [212] Liu B X, Lai W S, Zhang Q. Irradiation induced amorphization in metallic multilayersand calculation of glass-forming ability from atomistic potential in the binary metalsystems. Materials Science and Engineering R, 2000, 29:1-48
    
    [213] Nizhenko V I. Free surface energy as a criterion for the sequence of intermetalliclayer formation in reaction couples. Powder Metallurgy and Metal Ceramics, 2004,43:5-6.
    
    [214]张福田.分子界面化学基础.上海:上海科学技术文献出版社,2006.
    
    [215] Tyson W R, Miller W A. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surface Science, 1977, 62 (1):267-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700