用户名: 密码: 验证码:
质子交换膜用芳香族聚合物的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)具有高效率、高能量密度和环境友好等特点,在便携式电源领域中具有广阔的应用前景。质子交换膜(PEM)是DMFC的关键材料之一。DMFC中广泛使用的Nafion?膜具有良好的热稳定性、优异的化学稳定性和较高的电导率,但是其昂贵的成本和较差的阻醇性能阻碍了DMFC的进一步发展与应用。因此,低成本且高阻醇性的质子交换膜材料成为人们研究的热点。
     通过磺化反应制备了不同磺化程度(DS)的磺化杂萘联苯聚醚酮(SPPEK),采用傅立叶红外光谱(FTIR)、核磁共振(NMR)和热重分析(TGA)对SPPEK进行了表征。考察了SPPEK膜的主要性能,结果表明SPPEK膜的吸水率、溶胀度、质子电导率和甲醇渗透性均随着DS的增大而逐渐增大,但甲醇渗透系数明显低于Nafion~(?)117膜。采用DS为0.85的SPPEK与磷钨酸(PWA)共混制备了SPPEK/PWA复合膜,PWA的引入在提高电导率的同时也增大了甲醇渗透性,但与Nafion~(?)117膜相比复合膜的仍具有较好的阻醇性能。DMFC测试表明,SPPEK/PWA复合膜的电池性能不如Nafion~(?)117膜,而且PWA的引入并没有改善复合膜的电池性能。
     通过缩合反应合成了2-(对氨基苯基)苯并(1,3)噁唑-5-胺(APBA)单体,利用L16(43)正交实验优化了合成工艺参数。通过FTIR、NMR和元素分析确定了单体的结构,高效液相色谱(HPLC)测试表明单体纯度达到98.20%。采用1,4,5,8-萘四酸二酐(NTDA)、2,2′-联苯二胺双磺酸(BDSA)和APBA为单体,通过高温一步聚合法合成了含有噁唑环的新型磺化聚酰亚胺(SPI-X),通过调节二胺单体的比例控制磺化程度。研究了SPI-X膜的吸水率、溶胀度、热稳定性、质子电导率和甲醇渗透性能。结果表明,随着APBA含量的增加,SPI-X膜的电导率有所降低,但是阻醇性能得到改善,甲醇渗透性系数明显低于Nafion~(?)117膜。
     合成了4,4'-二(间胺基苯氧基)-3,3'-联苯双磺酸(mBAPBDS)单体,证实了单体具有预计的分子结构,单体纯度为92.15%。通过mBAPBDS、NTDA和四种不同结构的非磺化二胺单体共聚,合成了一系列新型磺化聚酰亚胺(SPIs)。TGA分析表明磺酸基团的分解温度在300℃以上,说明得到的SPIs具有出色的热稳定性。
     采用流延法制备了SPIs膜,离子交换容量(IEC)控制在1.87-2.49mmol/g之间,且与理论值基本一致,说明酰亚胺化比较完全。随IEC值的增加,SPIs膜的室温电导率逐渐增大,最高可达到8.65×10-3S/cm,接近于相同条件下Nafion~(?)117膜的电导率(9.80×10-3S/cm)。当IEC值在2.00mmol/g左右时,SPIs膜具有适当的吸水率和较好的尺寸稳定性,另外mBAPBDS的高碱性和柔顺的分子结构使得SPIs膜的水解稳定性和氧化稳定性也得到了明显的改善。甲醇渗透性测试表明,SPIs膜的甲醇渗透系数均明显低于Nafion~(?)117膜,且具有较高的选择性(Φ),其中mBAPB系列和ODA系列膜的选择性约为Nafion~(?)117膜的3倍。
     采用选择性较高的Ic (4/1)和Id (4/1)膜制备膜电极,并组装成DMFC进行性能测试。结果表明,由Ic (4/1)和Id (4/1)膜组装的DMFC开路电压均高于Nafion~(?)117膜,电池性能虽然高于SPPEK/PWA复合膜,但与Nafion~(?)117膜相比还具有一定的差距,这是由于芳香族聚合物质子交换膜的膜电极制备工艺和测试条件没有进行优化的缘故。
Direct methanol fuel cells (DMFCs) have attracted considerable attention as a portable energy system because of their high efficiency, high energy density, low emissions and environmental friendship. Proton exchange membrane (PEM) is one of the key components of DMFC system. Nafion? membranes are the state-of-the-art PEMs because of their good thermal stability and excellent chemical stability, as well as high proton conductivity. However, high cost and high methanol permeability of Nafion~(?)117 membrane have limited the development and application of DMFC. Therefore, many efforts have been done in the development of PEM materials with low cost and low methanol permeability.
     Sulfonated poly(phthalazinone ether ketone) (SPPEK) with various degrees of sulfonation (DS) were prepared and characterized by FTIR, NMR and TG analysis. It was found that the water uptake, swelling ratio, proton conductivity and methanol permeability of SPPEK membrane increased with DS level. In comparison with Nafion~(?)117 membrane, SPPEK membrane displayed good methanol-impeding property. SPPEK membrane with a DS level of 0.85 was chosen to prepare composite membrane with phosphotungstic (PWA). The incorporation of PWA resulted in higher proton conductivity, while sacrificing methanol-impeding property, however, the methanol permeability coefficient (Pm) of SPPEK/PWA composite membrane was still lower than that of Nafion~(?)117 membrane. The DMFC performance of SPPEK/PWA composite membranes was not as good as Nafion~(?)117 membrane and was not improved due to the incorporation of PWA.
     The diamine monomer, 2-(4-aminophenyl)benzo(1,3)oxazol-5-amine (APBA), was synthesized by condensation reaction. Various factors controlling the reaction were analyzed by L16 (43) orthogonal experiments. The structure of APBA was determined by FTIR, NMR and element analysis. The HPLC test indicated that the purity of the monomer reached 98.20%. A series of newl naphthalenic sulfonated polyimides (SPI-X) were synthesized using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 2,2'-benzidinedisulfonic acid (BDSA) by one-step high temperature polymerization method. The sulfonated degree of SPI-X membranes was controlled through adjusting the molar ratio of BDSA to the non-sulfonated diamines. The water uptake, swelling ratio, proton conductivity and methanol permeability of SPI-X membranes were also investigated. The proton conductivity of SPI-X membranes decreased with APBA content, but methanol permeability of SPI-X membranes improved compared with Nafion~(?)117.
     The sulfonated diamines, 4,4'-bis(3-aminophenoxy)biphenyl-3,3'-disulfonic acid (mBAPBDS) was successfully synthesized and characterized. The mBAPBDS was used together with NTDA and common nonsulfonated diamines to prepare a series of sulfonated polyimides (SPIs). TG analysis indicated that the SPI copolymers displayed good thermally stability with the decomposition temperature of above 300℃.
     The IEC value of SPI membranes prepared by solution casting method was 1.87-2.49mmol/g. The experimental results confirmed the assumption of complete imidization. Proton conductivity of SPIs membranes increased with DS level. The optimal proton conductivity of 8.65×10-3S/cm at room temperature was comparable to that (9.80×10-3S/cm) of Nafion~(?)117 membrane. It was also found that SPI membranes with IEC of 2.00mmol/g displayed adequate water uptake and good dimensional stability. The improved hydrolysis stability and oxidative stability of SPI membranes could be attributed to the high basicity of mBAPBDS and flexible main chain of polymer. Methanol permeability test showed that the SPIs membrane had much lower methanol permeability coefficient and thus much higher selectivity (Φ) value compared with Nafion~(?)117 membranes. TheΦvalues of SPIs membranes based on mBAPB and ODA increased to three times as compared with Nafion~(?)117 membranes.
     The Ic(4/1) and Id(4/1) membranes with high selectivity were used to prepare membrane electrode assembly (MEA). The performance of MEA was then tested in a DMFC. The results showed the open circuit voltage (OCV) of DMFC equipped with Ic(4/1) and Id(4/1) membranes was higher than that of Nafion~(?)117 membrane, however, their maximal power density was not as good as Nafion~(?)117 membrane because of non-optimized preparation conditions of MEA based on aromatic polymer electrolyte membranes.
引文
1衣宝廉.燃料电池-原理·技术·应用.化学工业出版社, 2003: 1~2.
    2毛宗强.燃料电池.化学工业出版社, 2003: 1~5
    3杜宇平,陈红雨,冯书丽等.质子交换膜燃料电池发展现状.电池工业. 2002, 7(5): 266~271
    4符显珠,李俊,卢成慧等.直接甲醇燃料电池质子膜研究进展.化学进展. 2004, 16(1): 77~82
    5 W. Z. Li, W. J. Zhou, H. Q. Li. Nano-Structured Pt-Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell. Electrochimica Acta. 2004, 49(7): 1045~1055
    6 L. H. Jiang, G. Q. Sun, X. S. Zhao, et al. Preparation of Supported Pt-Ru/C Electrocatalyst for Direct Methanol Fuel Cells. Electrochimica Acta. 2005, 50(12): 2371~2376
    7 N. Munichandraiah, K. M. Grath, G. K. S. Prakash, et al. A Potentiometric Method of Monitoring Methanol Crossover through Polymer Electrolyte Membranes of Direct Methanol Fuel Cells. Journal of Power Sources. 2003,117(1-2): 98~101
    8 V. M. Barragan, C. R. Bauza, J. P. G. Villaluenga, et al. Transport of Methanol and Water through Nafion Membranes. Journal of Power Sources. 2004, 130(1-2): 22~29
    9于景荣,邢丹敏,刘富强等.燃料电池用质子交换膜的研究进展.电化学. 2001, 4(7): 385~395
    10 K .B. Prater. The Renaissance of the Solid Polymer Fuel Cell. Journal of Power Sources. 1990, 29: 239~250
    11 M. Wakizoe, O. A. Velev, S. Srinivasan. Analysis of Proton Exchange Membrane Fuel Cell Performance with Alternate Membranes. Electrochimica Acta. 1995, 40(3): 335~344
    12龚春丽,管蓉,杨世芳等.聚合物质子传导电解质膜的研究进展.高分子材料科学与工程. 2005, 21(2): 42~45
    13 M. Rikukawa, K. Sanui. Proton Conducting Polymer Electrolyte MembranesBased on Hydrocarbon Polymers. Progress in Polymer Science. 2000, 25: 1463~1502
    14 T. A. Zawodzinski, M. Neeman, L. O. Sillerud, et al. Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes Journal of Physical Chemistry. 1991, 95(15): 6040~6044
    15 D. L. Handlin, J. Macknight, E. L. Thomas. Critical Evaluation of Electron Microscopy of Ionomers. Macromolecules. 1981, 14: 795~801
    16 K. T. Adjemian, S. J. Lee, S. Srinivasan, et al. Silicon Oxide Nafion Composite Membranes for Proton Exchange Membrane Fuel Cell Operation at 80~140℃. Journal of the Electrochemical Society. 2002, 149 (3): A256~A261
    17刘永浩,衣宝廉,张华民.质子交换膜燃料电池用Nafion/SiO2复合膜.电源技术. 2005, 29 (2): 92~95
    18 B. Baradie, J. P. Dodelet, D. Guay. Hybrid Nafion-Inorganic Membrane with Potential Applications for Polymer Electrolyte Fuel Cells. Journal of Electroanalytical Chemistry. 2000, 489: 101~105
    19杨武斌,朱红,王明等.纳米氧化物/Nafion复合膜的制备与性能研究.功能材料. 2007, 38(12): 2077~2078, 2083
    20 P. Costamagna, C. Yang, A. B. Bocarsly, et al. Nafion115/Zirconium Phosphate Composite Membranes for Operation of PEMFCs above 100℃. Electrochimica Acta. 2002, 47: 1023~1033
    21 Y. Chris, S. Srinivasan, A. B. Bocarsly, et al. A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes. Journal of Membrance Science. 2004, 237: 145~161
    22 C. Yang, P. Costamagna, S. Srinivasan, et al. Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 2001, 103: 1~9
    23 B. Tazi, O. Savadogo. Parameters of PEM Fuel-Cells Based on New Membranes Fabricated from Nafion?, Silicotungstic Acid and Thiophene. Electrochimica Acta. 2000, 45: 4329~4339
    24 V. Tricoli. Proton and Methanol Transport in Poly(Perfluorosulfonate) Membranes Containing Cs+ and H+ Cations. Journal of the ElectrochemicalSociety. 1998, 145(11): 3798~3801
    25吴洪,王宇新,王世昌.聚偏氟乙烯/Nafion?共混膜的制备及阻醇质子导电性能研究.高分子学报. 2002, 4: 540~543
    26 S. W. Choi, Y. Z. Fu, Y. R. Ahn, et al. Nafion-Impregnated Electrospun Polyvinylidene Fluoride Composite Membranes for Direct Methanol Fuel Cells. Journal of Power Sources. 2008, 180: 167~171
    27 J. C. Lin, M. Ouyang, J. M. Fenton, et al. Study of Blend Membranes Consisting of Nafion and Vinylidene Fluoride-Hexafluoropropylene Copolymer. Journal of Applied Polymer Science. 1998, 70: 121~127
    28 N. P. Chen, L. Hong. Proton-Conducting Membrane Composed of Sulfonated Polystyrene Microspheres, Poly(Vinylpyrrolidone) and Poly (Vinylidene Fluoride). Solid State Ionics. 2002, 146(3-4): 377~385
    29 D. H. Jung, S. Y. Cho, et al. Preparation and Performance of a Nafion/Montmorillonite Nanocomposite Membrane for Directmet Methanol Fuel Cell. Journal of Power Sources. 2003, 118: 205~211
    30 W. Lee, H. Kim, T. K. Kim, et al. Nafion Based Organic/Inorganic Composite Membrane for Air-Breathing Direct Methanol Fuel Cells. Journal of Membrane Science. 2007, 292: 29~34
    31 L. J. Hobson, Y. Nakano, H. Ozu, et al. Targeting Improved DMFC Performance. Journal of Power Sources. 2002, 104: 79~84
    32 E. B. Easton, B. L. Langsdorf, J. A. Hughes, et al. Characteristics of Polypyrrole/Nafion Composite Membranes in a Direct Methanol Fuel Cell. Journal of the Electrochemical Society. 2003, 150(10): C735~C739
    33 L. Li, Y. M. Zhang, J. F. Drillet, et al. Preparation and Characterization of Pt Direct Deposition Onpolypyrrole Modified Nafion Composite Membranes Fordirect Methanol Fuel Cell Applications. Chemical Engineering Journal. 2007, 133: 113~119
    34 H. Akita, M. Iguchi, M. Ichikawa, et al. Composite Polymer Membrane, Method for Producing the Same and Solid Polymer Electrolyte Membrane. EP1085590, 2001
    35 B. G. Choi, H. Park, H. S. Im, et al. Influence of Oxidation State of Polyaniline on Physicochemical and Transport Properties of Nafion/Polyaniline Composite Membrane for DMFC. Journal of MembraneScience. 2008, 324: 102~110
    36 W. C. Choi, J. D. Kim, S. I. Woo. Modification of Proton Conducting Membrane for Reducing Methanol Crossover in a Direct Methanol Fuel Cell. Journal of Power Sources. 2001, 96: 411~414
    37 S. R. Yoon, G. H. Hwang, W. I. Dho, et al. Modification of Polymer Electrlyte Membranes for DMFC Using Pd Films Formed by Sputtering. Journal of Power Sources. 2002, 106(1-2): 215~223
    38 Z. Q. Ma, P. Cheng, T. S. Zhao. A Palladium-Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells. Journal of Membrane Science. 2003, 215(1-2): 327~336
    39 L. J. Hobon, H. Ozu, M. Yamaguchi, et al. Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells. Journal of the Electrochemical Society. 2001, 148(10): A1185~A1190
    40 R. B. Hodgdon. Polyelectrolytes Prepared form Perfluoroalkylaryl Macromolecules. Journal of Polymer Science Part A. 1968, 6: 171~197
    41 P. D. Beattie, F. P. Orfino, V. I. Basura, et al. Ionic Conductivity of Proton Exchange Membranes. Journal of Electroanalytical Chemistry. 2001, 503: 45~56
    42 V. I. Basura, C. Chuy, P. D. Beattie, et al. Effect of Equivalentweight on Electrochemical Mass Transport Properties of Oxygen in Proton Exchange Membranes Based on Sulfonatedα,β,β-Trifluorostyrene(BAM) and Sulfonated Styrene(Ethylene-Butylene)-Styrene Triblock (DAIS-Analytical) Copolymers. Journal of Electroanalytical Chemistry. 2001, 501: 77~88
    43 D. A. Boysen, C. R. I. Chisholm, S. M. Haile, et al. Polymer Solid Acid Composite Membranes for Fuel Cell Applications. Journal of the Electrochemical Society. 2000, 147: 3610~3614
    44 J. A. Horsfall, K. V. Lovell. Synthesis and Characterization of Sulfonic Acid Containing Ion Exchange Membranes Based on Hydrocarbon and Fluorocarbon Polymers. European Polymer Journal. 2002, 38: 1671~1682
    45 T. Lehtinen, G. Sundholm, S. Holmberg, et al. Electrochemical Characterization of PVDF-Based Proton Conducting Membranes for Fuel Cells. Electrochimica Acta. 1998, 43: 1881~1890
    46 G. G. Kumar, D. N. Leea, P. Kim, et al. Characterization of PVDF-HFP/Nafion/AlO(OH)n Composite Membranes for Direct Methanol Fuel Cell. European Polymer Journal. 2008, 44: 2225~2230
    47 M. V. Rouilly, E. R. Kotz, O. Haas, et al. Proton Exchange Membranes Prepared by Simultaneous Rediation Grafting of Styrene onto Teflon-FEP Films: Synthesis and Characterization. Journal of Membrane Science. 1993, 81: 89~95
    48 T. Hatanaka, N. Hasegawa, A. Kamiya, et al. Cell Performances of Direct Methanol Fuel Cells With Grafted Membranes. Fuel. 2002, 81(17): 2173~2176
    49 M. Patri, V. R. Hande, S. Phadnis, et al. Radiation-Grafted Solid Polymer Electrolyte Membrane: Studies of Fluorinated Ethylene Propylene (FEP) Copolymer-g-Acrylic Acid Grafted Membranes and their Sulfonated Derivatives. Polymers for Advanced Technologies. 2004, 15(8): 485~489
    50 F. N. Buchi, B. Gupta, O. Haas, et al. Performance of Differently Cross-Linked, Partially Fluorinated Proton Exchange Membranes in Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society. 1995, 142: 3044~3048
    51 W. Lee, A. Shibasaki, K. Saito, et al. Proton Transport through Polyethylene Tetrafluoroethylene: Copolymer-Based Membrane Containing Sulfonic Acid Group Prepared by RIGP. Journal of the Electrochemical Society. 1996, 143: 2795~2799
    52 K. Scott, W. M. Taama, P. Argyropoulos. Performance of the Direct Methanol Fuel Cell with Radiation-Grafted Polymer Membranes. Journal of Membrane Science. 2000, 171: 119~130
    53 F. N. Buchi, B. Gupta, O. Haas, et al. Performance of Differently Cross-Linked, Partially Fluorinated Proton Exchange Membranes in Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society. 1995, 142: 3044~3048
    54 R. He, Q. Li, G. Xiao, et al. Proton Conductivity of Phosphoric Acid Doped Polybenzimidazole and its Composites with Inorganic Proton Conductors. Journal of Membrane Science. 2003, 226: 169~184
    55 D. J. Jones, J. Roziere. Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications. Journalof Membrane Science. 2001, 185: 41~58
    56 M. B. Gieselman, J. R. Reynolds. Water Soluble Polybenzimidazole Based Polyelectrolytes. Macromolecules. 1992, 25: 4832~4834.
    57 J. T. Wang, R. F. Savinell, J. S. Wainright, et al. A H2/O2 Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte. Electrochimica Acta. 1996, 41(2): 193~197
    58 J. T. Wang, J. S. Wainright, R. F. Savinell, et al. A Direct Methanol Fuel Cell using Acid Doped Polybenzimidazole as Polymer Electrolyte. Journal of Applied Electrochemistry. 1996, 26: 751~756
    59 P. Staiti, M. Minutoli, S. Hocevar. Membranes Based on Phosphotungstic Acid and Polybenzimidazole for Fuel Cell Application. Journal of Power Sources. 2000, 90: 231~235
    60 P. Staiti, M. Minutoli. Influence of Composition and Acid Treatment on Proton Conduction of Composite Polybenzimidazole Membranes. Journal of Power Sources. 2001, 94: 9~13
    61 M. David, G. Hans, M. Oscar. Prous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Ptoton-Conducting Solid Electrolytes. Chemistry of Materials. 2004, 16: 604~607
    62 X. Glipa, E. Haddad, M. Jones, et al. Synthesis and Characterisation of Sulfonated Polybenzimidazole: A Highly Conducting Proton Exchange Polymer. Solid State Ionics. 1997, 97: 323~331
    63 J. M. Bae, I. Honma, M. Murata, et al. Properties of Selected Sulfonated Polymers as Proton-Conducting Electrolytes for Polymer Electrolyte Fuel Cells. Solid State Ionics. 2002, 147: 189~194
    64 M. Kawahara, M. Rikukawa, K. Sanui, et al. Synthesis and Proton Conductivity of Sulfopropylated Poly(Benzimidazole) Films. Solid State Ionics. 2000, 136-137: 1193~1196
    65 M. Ueda, H. Toyota, T. Ouehi, et al. Synthesis and Characterization of Aromatie Poly(Ether Sulfone)s Coniaining Pendant Sodium Sulfonate Groups. Jounal of Polymer Seience Part A. 1993, 31(4): 853~858
    66 F. Wang, T. L. Chen, J. P. Xu. Synthesis of Poly(Ether Ether Ketone)s Containing Sodium Sulfonate Groups as Gas Dehumidifieation Membrane Material. Macromoleeular Rapid Communieations. 1998, 19(2): 135~137
    67 F. Wang, T. L. Chen, J. P. Xu. Sodium Sulfonate-Functionalized Poly(Ether Ether Ketone)s. Macromolecular Chemistry and Physies. 1998, 199(7): 1421~1426
    68 F. Wang, J. K. Li, T. L. Chen, et al. Synthesis of Poly(Ether Ether Ketone)s with High Content of Sodium Sulfonate Groups and its Membrane Characteristics. Polymer. 1999, 40(3): 795~799
    69 Y. S. Kim, M. A. Hickner, L. M. Dong, et al. Sulfonated Poly(Arylene Ether Sulfone) Copolymer Proton Exchange Membranes: Composition and Morphology Effects on the Methanol Permeability. Journal of Membrane Science. 2004, 243(1-2): 317~326
    70 C. G. Cho, Y. S. Kim, X. Yu, et al. Synthesis and Characterization of Poly(Arylene Ether Sulfone) Copolymers with Sulfonimide Side Groups for a Proton-Exchange Membrane. Journal of Polymer Science Part A. 2006,44 (20) : 6007~6014
    71 Y. X. Li, F. Wang, J. Yang, et al. Synthesis and Characterization of Controlled Molecular Weight Disulfonated Poly(Arylene Ether Sulfone) Copolymers and their Applications to Proton Exchange Membranes. Polymer. 2006, 47(11): 4210~4217
    72 K. B. Wiles, C. M. DeDiego, J. DeAbajo, et al. Directly Copolymerized Partially Fluorinated Disulfonated Poly(Arylene Ether Sulfone) Random Copolymers for Fuel Cell Systems: Synthesis, Fabrication and Characterization of Membranes and Membrane-Electrode Assemblies for Fuel Cell Applications. Journal of Membrane Science. 2007, 294(1-2): 22~29
    73 A. Noshay, L. M. Robeson. Sulfonated polysulfone. Journal of Applied. Polymer Science. 1976, 20(7), 1885~1903
    74 P. Xing, G. P. Robertson, M. D. Guiver, et al. Synthesis and Characterization of Sulfonated Poly(Ether Ether Ketone) for Proton Exchange Membranes. Journal of Membrane Science. 2004, 229: 95~106
    75 S. L. Zhong, X. J. Cui, H. L. Cai, et al. Crosslinked Sulfonated Poly(Ether Ether Ketone) Proton Exchange Membranes for Direct Methanol Fuel Cell Applications. Journal of Power Sources. 2007, 164(1): 65~72
    76 S. L. Zhong, X. J. Cui, T. Z. Fu, et al. Modification of Sulfonated Poly(EtherEther Ketone) Proton Exchange Membrane for Reducing Methanol Crossover. Journal of Power Sources. 2008, 180(1): 23~28
    77 J. K. Lee, W. Li, A. Manthiram. Sulfonated Poly(Ether Ether Ketone) as an Ionomer for Direct Methanol Fuel Cell Electrodes. Journal of Power Sources. 2008, 180(1): 56~62
    78 L. Li, L. Xu, Y. X. Wang. Study on the Preparation and Properties of Sulfonated Phenolphthalein Poly(Ether Sulfone) Membranes. Acta Polymerica Sinica. 2003, (4): 465~468
    79 H. Dai, R. Guan, C. H. Li, et al. Development and Characterization of Sulfonated Poly(Ether Sulfone) for Proton Exchange Membrane Materials. Solid State Ionics. 2007, 178(5-6): 339~345
    80 L. Li, Y. X. Wang. Sulfonated Polyethersulfone Cardo Membranes for Direct Methanol Fuel Cell. Journal of Membrane Science. 2005, 246(2): 167~172
    81 J. V. Gasa, R. A. Weiss, M. T. Shaw. Structured Polymer Electrolyte Blends Based on Sulfonated Polyetherketoneketone (SPEKK) and a Poly(Ether Imide) (PEI). Journal of Membrane Science. 2008, 320(1-2): 215~223
    82 V. Ramani, S. Swier, M. T. Shaw, et al. Membranes and Meas Based on Sulfonated Poly(Ether Ketone Ketone) and Heteropolyacids for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society. 2008, 155(6): B532~B537
    83 S. Swier, Y. S. Chun, J. Gasa, et al. Sulfonated Poly(Ether Ketone Ketone) Ionomers as Proton Exchange Membranes. Polymer Engineering and Science. 2005, 45(8): 1081~1091
    84 S. Swier, V. Ramani, J. M. Fenton, et al. Polymer Blends Based on Sulfonated Poly(Ether Ketone Ketone) and Poly(Ether Sulfone) as Proton Exchange Membranes for Fuel Cells. Journal of Membrane Science. 2005, 256(1-2): 122~133
    85蹇锡高,孟跃中,郑海滨等.含二氮杂萘酮结构新型聚芳醚砜及其制备.中国专利, 93109179.9, 1993.
    86蹇锡高,陈平,廖功雄等.含二氮杂萘酮结构新型聚芳醚系列新型高聚物的合成及性能.高分子学报. 2003(4): 469~475
    87 Y. J. Li, X. G. Jian, S. J. Liu. Synthesis and Properties of NovelPoly(Phthalazinone Ether Ketone Ketone). Journal of Applied Polymer Science. 2001, 82(4): 823~826
    88 G. Y. Xiao, G. M. Sun, D. Y. Yan, et al. Synthesis of Sulfonated Poly(Phthalazinone Ether Sulfone)s by Direct Polymerization. Polymer. 2002, 43: 5335~5339
    89 G. Y. Xiao, G. M. Sun, D. Y. Yan. Polyelectrolytes for Fuel Cells Made of Sulfonated Poly(Phthalazinone Ether Ketone)s. Macromoleeular Rapid Communieations. 2002, 23: 488~492
    90 Y. L. Chen, Y. Z. Meng, X. H. Li, et al. Poly(Phthalazinone Ether Ketone) Ionomers Synthesized via N-C Coupling Reaction for Fuel Cell Applications. Macromolecules. 2005, 38(24): 10007~10013
    91 Y. L. Chen, Y. Z. Meng, A. S. Hay. Novel Synthesis of Sulfonated Poly(Phthalazinone Ether Ketone) Used as a Proton Exchange Membrane via N-C Coupling Reaction. Macromolecules. 2005, 38(9): 3564~3566
    92 S. H. Tian, D. Shu, Y. L. Chen, et al. Preparation and Properties of Novel Sulfonated Poly(Phthalazinone Ether Ketone) Based PEM for PEM Fuel Cell Application. Journal of Power Sources. 2006, 158(1): 88~93
    93 S. H. Zhang, X. G. Jian, G. Q. Wang, et al. Synthesis of Poly(Phthalazinone Ether Ketone) Containing Sodium Sulfonate Groups via Direct Polymerization. Chinese Chemical Letters. 2002, 13(10): 926~928
    94 Y. Gao, P. R. Gilles, D. G. Michael, et al. Direct Copolymerization of Sulfonated Poly(Phthalazinone Arylene Ether)s for Proton exchange membrane Materials. Journal of Polymer Science Part A. 2003, 41: 2731~2742
    95 Y. Gao, G. P. Robertson, M. D. Guiver, et al. Synthesis and Characterization of Sulfonated Poly(Phthalazinone Ether Ketone) for Proton Exchange Membrane Materials. Journal of Polymer Science Part A. 2003, 41: 497~507
    96 Y. Gao, P. R. Gilles, D. G. Michael, et al. Sulfonation of Poly(Phthalazinones) with Fuming Sulfuric Acid Mixtures for Proton Exchange Membrane Materials. Journal of Membrane Science. 2003, 227: 39~50
    97 X. L. Zhu, Y. F. Liang, H. Y. Pan, et al. Synthesis and Properties of Novel H-Bonded Composite Membranes from Sulfonated Poly(PhthalazinoneEther)s for PEMFC. Journal of Membrane Science. 2008, 312(1-2): 59~65
    98 H. N. Deng, Y. X. Wang. Preparation and Properties of Proton Conducting Composite Membranes From Sulfonated Poly(Phthalazinone Ether Keton) and Phosphotungstic Acid. Acta Physico-Chimica Sinica. 2007, 23(8): 1235~1240
    99 H. N. Deng, Y. X. Wang. Sulfonated Poly(Phthalazinones) Membranes for Direct Methanol Fuel Cell. Acta Physico-Chimica Sinica. 2007, 2(2): 187~191
    100 Y. M. Sun, T. C. Wu, H. C. Lee, et al. Sulfonated Poly(Phthalazinone Ether Ketone) for Proton Exchange Membranes in Direct Methanol Fuel Cells. Journal of Membrane Science. 2005, 265: 108~114
    101 Y. H. Su, Y. L. Liu, Y. M. Sun, et al. Proton Exchange Membranes Modified With Sulfonated Silica Nanoparticles for Direct Methanol Fuel Cells. Journal of Membrane Science. 2007, 296(1-2): 21~28
    102 Y. H. Su, Y. L. Liu, Y. M. Sun, et al. Using Silica Nanoparticles for Modifying Sulfonated Poly(Phthalazinone Ether Ketone) Membrane for Direct Methanol Fuel Cell: A Significant Improvement on Cell Performance. Journal of Power Sources. 2006, 155(2): 111~117
    103 H. W. Zhang, B. K. Zhu, Y. Y. Xu. Composite Membranes of Sulfonated Poly(Phthalazinone Ether Ketone) Doped with 12-Phosphotungstic Acid (H3PW12O40) for Proton Exchange Membranes. Solid State Ionics. 2006, 177(13-14): 1123~1128
    104 H. W. Zhang, B. K. Zhu, Y.Y. Xu. Modified Sulfonated Poly(Phthalazinone Ether Ketone) Membranes with Inorganic Particles for Potential Applications in PEMFCs. Journal of Applied Polymer Science. 2006, 102: 3972~3977
    105 H. W. Zhang, Z. T. Zhou. Modified Poly(Phthalazinone Ether Ketone) Membranes for Direct Methanol Fuel Cell. Polymers for Advanced Technologies. 2008, 19(5): 425~431
    106 H. W. Zhang, C. H. Du, Y. Y. Xu, et al. Hybrid Proton Exchange Membranes Based on Sulfonated Poly(Phthalazinone Ether Ketone) and Zirconium Hydrogen Phosphate. Polymers for Advanced Technologies. 2007, 18(5): 373~378
    107王彦,史国芳.聚酰亚胺的发展和应用.航空材料学报. 1994, 14(l): 56~62
    108 W. Essafi, G. Gebel, R. Mercier. Sulfonated Polyimide Ionomers: A Structural Study. Macromolecules. 2004, 37, 1431~1440
    109 C. Genies, R. Mercier, B. Sillion, et al. Stability Study of Sulfonated Phthalic and Naphthalenic Polyimide Structures in Aqueous Medium. Polymer. 2001, 42: 5097~5105
    110 C. Genies, R. Mercier, B. Sillion, et al. Soluble Sulfonated Naphthalenic Polyimides as Materials for Proton Exchange Membranes. Polymer. 2001, 42: 359~373
    111 N. Gunduz, J. E. McGrath. Synthesis and Characterization of Sulfonated Polyimides. Polymeric Preprints. 2000, 41(1): 182~183
    112 N. Gunduz, T. Y. Inan, E. Yildiz, et al. Sulfonated Six-Membered Ring Polyimides as Proton Exchange Membranes: Synthesis and Characterization. Polymeric Materials Science and Engineering. 2001, 84: 911~912
    113 Y. T. Hong, B. Einsta, Y. S. Kim, et al. Synthesis and Characterization of Sulfonated Polyimides Based on Six-Membered Ring as Proton Exchange Membrane. Polymeric Preprints. 2002, 43(1): 666~667
    114 E. Vallejo, G. Pourcelly, C. Gavach, et al. Sulfonated Polyimides as Proton Conductor Exchange Membranes: Physicochemical Properties and Separation H+/M2+ by Electrodialysis Comparison with Perfluorosulfonic Membrane. Journal of Membrane Science. 1999, 160(1): 127~137
    115 K. Miyatake, N. Asano, M. Watanabe. Synthesis and Properties of Novel Sulfonated Polyimides Containing 1,5-Naphthylene Moieties. Journal of Polymer Science Parta A. 2003, 41: 3901~3907
    116 K. Miyatake, H. Zhou, M. Watanabe. Proton Conductive Polyimide Electrolytes Containing Fluorenyl Groups: Synthesis, Properties, and Branching Effect. Macromolecules. 2004, 37: 4956~4960
    117 K. Miyatake, H. Zhou, T. Matsuo, et al. Proton Conductive Polyimide Electrolytes Containing Trifluoromethyl Groups Macromolecules 2004, 37: 4961~4966
    118 Y. Zhang, M. H. Litt, R. F. Savinell, et al. Molecular Design Considerations in the Synthesis of High Conductivity PEMs for Fuel Cells. PolymericPreprints. 1999, 40(2): 480~481
    119 H. Kim, M. Litt. Synthesis and Characterization of Sulfonated Polyimides for Fuel Cell Applications. Polymeric Preprints. 2001, 42(2): 486~487
    120 J. H. Fang, X. Guo, S. Harada, et al. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application: Synthesis, Proton Conductivity and Water Stability of Polyimides from 4,4'-Diaminodiphenyl Ether-2,2'-Disulfonic Acid. Macromolecules. 2002, 35: 9022~9028
    121 F. X. Zhai, X. X. Guo, J. H. Fang, et al. Synthesis and Properties of Novel Sulfonated Polyimide Membranes for Direct Methanol Fuel Cell Application. Journal of Membrane Science. 2007, 296 (1-2): 102~109
    122 J. H. Fang, X. X. Guo, H. J. Xu, et al. Sulfonated Polyimides: Synthesis, Proton Conductivity and Water Stability. Journal of Power Sources. 2006, 159(1): 4~11
    123 X. Guo, J. H. Fang, T. Watari, et al. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application 2: Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-Aminophenyl)fluorene-2,7- Disulfonic Acid. Macromolecules. 2002, 35: 6707~6713
    124 K. Okamoto. Sulfonated Polyimides for Polymer Electrolyte Membrane Fuel Cell. Journal of Photopolymer Science and Technology. 2003, 16(2): 247~254
    125 T. Watari, J. H. Fang, K. Tanaka, et al. Synthesis, Water Stability and Proton Conductivity of Novel Sulfonated Polyimides from 4,4'-Bis(4-Aminophenoxy) Biphenyl-3,3'-Disulfonic Acid. Journal of Membrane Science. 2004, 230: 111~120
    126 T. Watari, J. H. Fang, K. Tanaka, et al. Synthesis of Sulfonated Polyimides from Novel Sulfonated Diamines and their Proton Conductivity and Water Durability. Kagaku Kougaku Ronbunshu. 2003, 29: 165~169
    127 T. Watari, H. Y. Wang, K. Kuwahara, et al. Water Vapor Sorption and Diffusion Properties of Sulfonated Polyimide Membranes. Journal of Membrane Science. 2003, 219(1-2): 137~147
    128 X. Guo, J. H. Fang, T. Watari, et al. Synthesis and Properties of Novel Sulfonated Polyimides from 2,2'-Bis(4-Aminophenoxy) Biphenyl-5,5- Disulfonic Acid. Journal of Polymer Science Part A. 2004, 42: 1432~1440
    129 Y. Yin, S. W. Chen, X. X. Guo, et al. Structure-property relationship of polyimides derived from sulfonated diamine. High Performance Polymers. 2006, 18(5), 617~635.
    130 B. Kruczek, T. Matsuura. Development and Characterization of Homogeneous Membranes from High Molecular Weight Sulfonated Polyphenylene Oxide. Journal of Membrane Science. 1998, 146(2): 263~275
    131 B. Kosmala, J. Schauer. Ion-Exchange Membranes Prepared by Blending Sulfonated Poly(2,6-Dimethyl-1,4-Phenylene Oxide) with Polybenzimida- zole. Journal of Applied Polymer Science. 2002, 85(5): 1118~1127
    132 J. Kerres, W. Cui, R. Disson, et al. Development and Characterization of Crosslinked Ionomer Membranes Based upon Sulfinated and Sulfonated PSU. Journal of Membrane Science. 1998, 139: 211~225
    133吴洪.直接甲醇燃料电池阻醇质子导电膜的研究.天津大学博士学位论文. 2000: 37~39
    134 L. Li, J. Zhang, Y. X. Wang. Sulfonated Polyether Ether Ketone Membranes Cured With Different Methods for Direct Methnol Fuel Cells. Journal of Membrane Science. 2003, 226: 159~167
    135 F. Q. Liu, B. L. Yi, D. M. Xin, et al. Nafion117/PTFE Composite Membranes for Fuel Cell Applications. Journal of Membrane Science. 2003, 212(l-2): 213~223
    136 K. D. Kreuer. On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells. Journal of Membrane Science. 2001: 185: 29~39
    137 O. Yamada, Y. Yin, K. Tanaka, et al. Polymer Electrolyte Fuel Cells Based on Main-Chain-Type Sulfonated Polyimides. Electrochimica Acta. 2005, 50: 2655~2659
    138 J. Kim, B. Kim, B. Jung. Proton Conductivities and Methanol Permeabilities of Membranes Made from Partially Sulfonated Polystyrene-Block- Poly(Ethylene-Ran-Butylene)-Block-Polystyrene Copolymers. Journal of Membrane Science. 2002, 207(1): 129~137
    139李磊,许莉,王宇新.磷钨酸/磺化聚醚醚酮质子导电复合膜.高等学校化学学报. 2004, 25: 388~390
    140 U. L. Stangar, N. Groselj, B. Orel, et al. Structure of and InteractionsBetween P/SiWA Keggin Nanocrystals Dispersed in an Rganically Modified Electrolyte Membrane. Chemistry of Materials. 2001, 12(12): 3745~3753
    141 H. H. Wasserman, F. J. Vinick. Mechanism of the Robinson-Gabriel Synthesis of Oxazoles. Journal of Organic Chemistry. 1973, 13(38): 2407~2408
    142 F. Wang, J. R. Hauske. Solid-Phase Synthesis of Benzoxazoles via Mitsunobu Reaction. Tetrahedron Letters. 1997, 38: 6529~6532
    143 Y. H. So, J. M. Zaleski, C. Murlick, et al. Synthesis and Photophysical Properties of Some Benzoxazole and Benzothiazole Compounds. Macromolecules. 1996, 29(8): 2783~2795
    144方开泰,马长兴.正交与均匀设计实验.科学出版社, 2001, 43~45
    145王葆仁.有机合成反应.科学出版社. 1991: 1304~1309
    146 T.艾歇尔, S.豪普特曼.杂环化学.李润涛,葛海梅,王欣.化学工业出版社. 2005: 109~111
    147 D. Sek, A. Wanie, E. Schabbalcerzak. Investigation of Polyimides Containing Naphthalene Units. 2. Model Compounds Synthesis. Journal of Polymer Science Part A. 1995, 33: 547~554
    148 D. Sek, A. Wanie, E. Schabbalcerzak. Investigation of Polyimides Containing Naphthalene Units. 3. Influence of Monomers Structure on Polymers Properties. Journal of Polymer Science Part A. 1997, 35(3): 539~545
    149丁孟贤.聚酰亚胺-化学、结构与性能的关系及材料.科学出版社. 2006: 408~413
    150 X. H. Ye, H. Bai, W. S. Winston-Ho. Synthesis and Characterization of New Sulfonated Polyimides as Proton-Exchange Membranes for Fuel Cells. Journal of Membrane Science. 2006, 279(1-2): 570~577
    151 M. Rodgers, Y. Yang, S. Holdcroft. A Study of Linear Versus Angled Rigid Rod Polymers for Proton Conducting Membranes using Sulfonated Polyimides. European Polymer Journal. 2006, 42: 1075~1085
    152张华.现代有机波谱分析.化学工业出版社. 2005, 98~108, 151
    153 J. H. Fang, X. X. Guo, H. J. Xu, et al. Sulfonated Polyimides: Synthesis, Proton Conductivity and Water Stability. Journal of Power sources. 2006, 159: 4~11
    154 Y. Yin, Y. Suto, T. Sakabe, et al. Water Stability of Sulfonated Polyimide Membrane. Macromolecules. 2006, 39: 118~119
    155 B. R. Einsla, Y. Hong, Y. S. Kim, et al. Sulfonated Naphthalene Dianhydride Based Polyimide Copolymers for Proton-Exchange-Membrane Fuel Cell. I. Monomer and Copolymer Synthesis. Journal of Polymer Science Part A. 2004, 42: 862~874
    156 R. Yamamoto, H. Matsumoto, A. Tanioka. Ionic Transport Behavior across Charged Membranes with Low Water Content. I. Theoretical Aspect of Membrane Potentials in Membranes Having Inhomogeneously Distributed Fixed-Charge Groups. Journal of Physical Chemistry Part B. 2003, 107(38): 10615~10622
    157 B. S. Pivovar, Y. X. Wang, E. L. Cussler. Pervaporation Membranes in Direct Methanol Fuel Cells. Journal of Membrane Science. 1999, 154(2): 155~162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700