用户名: 密码: 验证码:
固体氧化物燃料电池新型阴极材料及在单室结构中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)作为一种高效、无污染、可以直接将燃料的化学能转变成电能的发电方式正受到日益重视。目前SOFC的研究重点是把工作温度降低到500-800°C的中低温区,以加速产业化进程。阴极极化电阻随温度降低而迅速增大并成为限制电池性能的主要因素,故开发高性能的阴极材料一直是研究重点之一。由于可以使用比氢气更经济,来源更广泛的烃类、醇类等做燃料,含碳燃料的SOFC相关研究日益增多。另外,具有无密封特点的单气室SOFC在便携式电源方面展现出很好的优势,是新的研究亮点。针对目前SOFC研究的趋势和热点,我们选取了新型高性能阴极材料以及它们在单气室SOFC(甲烷为燃料)中的应用作为本论文的研究重点。所涉及阴极材料包括三种,即在传统La1-xSrxMnO3 (LSM)阴极基础上改进的纳米Sm0.2Ce0.8O1.9 (SDC)修饰LSM复合阴极,新报道的Ba1-xSrxCo0.8Fe0.2O3-δ(BSCF)阴极,以及我们首次提出作为SOFC阴极使用的无钴Ba0.5Sr0.5Zn0.2Fe0.8O3–δ(BSZF)材料。
     首先我们对改性后的LSM阴极在SC-SOFC中的应用进行研究。使用SDC浸渍后LSM阴极的单电池性能得到很大提高。750oC时的最大功率密度达到404mW?cm-2,电池内阻为1.6??cm2,分别是未浸渍电池的4倍和38.5%。浸渍后LSM阴极被许多被纳米级SDC颗粒包覆,新增大量电化学活性区,进而显著提高电池性能。使用阳极对阴极结构将阳极支撑单电池串联组成电池组,实际测试的两个单电池组成的电池组在700oC时最大功率为371mW。电极的极化电阻是限制单电池和电池组性能的主要原因,而多个电池组成的电池组性能更受到流场和容器限制明显。针对上面结构遇到的问题,我们发明了一种新型的星形结构电池组,具有流场均匀,抗震性能好,易于实现高功率输出等优点。使用4节串联的星形电池组在750°C的最大功率达到了421mW,可以成功驱动一个USB风扇。进一步放大后在便携式电源方面展现出很好的应用前景。
     Ba0.5Sr0.5Co0.8Fe0.2O3是一种高性能中低温SOFC阴极材料,在双室和单气室SOFC中都表现优异。本文对BaxSr1-xCo0.8Fe0.2O3系列样品性质进行系统研究。BSCF的成相经历了复杂的中间过程,得到纯相BSCF需要900°C或更高焙烧温度。对BSCF中Ba的含量对晶体结构、热重、热膨胀和电导率性质的影响研究发现,随着Ba含量的增加,BSCF失氧量减少,热膨胀系数降低(500-1000oC),电导率降低。此结果揭示了氧缺陷在其中所起的重要作用,晶格氧在400oC附近就十分活跃,导致大量的氧空位的生成和高价Co和Fe离子发生热还原,进而对BSCF样品性质产生很大影响。首次发现并解释了BSCF体系中存在的反常热膨胀现象。对BSCF的电导弛豫和尺寸弛豫进行了初步研究,样品在400-500°C的扩散系数为5.0×10-9-5.9×10-8 cm2?s-1。掺入SDC后复合阴极的电化学性质得到很大提高,且以掺入30wt%SDC时性能最好,适合作为中低温SOFC的阴极材料。使用该复合阴极,SDC夹层的YSZ薄膜电池在800°C,阴极气氛为空气和氧气时的最大功率密度分别达到了1090mW?cm-2和1200mW?cm-2。在单气室条件下,电池的开路电压较高,550°C时约为1V。在CH4:O2=1.5:1,电池炉温为650°C时的最大功率密度达到了240mW.cm-2。升高到700°C后电池性能由于电极选择催化性的下降而降低到224mW?cm-2。
     最后,我们首次将以往应用于透氧膜的无钴BSZF材料作为SOFC阴极材料进行了研究。结合碘滴定实验和热重研究发现BSZF中含有大量的氧空位,有利于氧还原反应。BSZF电导率在590°C达到最大值9.4S?cm-1,并出现半导体导电到金属型导电转变。电导率较低的原因是由于大量氧空位的存在和二价的Zn离子的掺入不会对小极化子跳跃导电产生贡献。BSZF阴极在SDC电解质上的最佳烧结条件为950°C焙烧4h。根据极化电阻和氧分压的关系分析了BSZF阴极反应机理,氧吸附/脱附过程为速度控制步骤。纯相BSZF阴极在650°C极化电阻为0.48??cm2,性能与LSCF相当。使用浸渍SDC纳米颗粒后减小到0.28??cm2,恒温活化24h后降低到0.21??cm2。Ni+SDC?SDC?BSZF单电池使用湿润H2作燃料和空气为氧化剂时,650°C,600°C和550°C时最大功率密度分别达到了392mW?cm-2,208mW?cm-2和107mW?cm-2。在600°C/0.6V电池稳定运行了22h,基本没有衰退。在单气室条件下,炉体温度为600°C的最大功率分别密度为202mW?cm-2,由于自放热效应使得电池性能与使用氢气作燃料相当。
     本论文中对三种新型的阴极材料进行了系统研究。使用浸渍后LSM阴极可以显著增强电池性能,提出星形结构电池组,可望在便携式领域应用。对BSCF和BSZF两种混合导体阴极的物性和电化学性质进行系统研究,在中低温和单气室SOFC中都表现较好,是有前景的阴极材料。
Solid oxide fuel cell (SOFC) is a device that can directly convert chemical energy to electric energy with very high efficiency and low emissions. With the advantages of fuel flexible, all-solid-state and long-lifetime, much attention around the world has been paid on the research of SOFCs. Current research of SOFCs focuses on lowering the operation temperature range of 500-800°C to promote the commercialization process. However, cathodic overpotential increases considerably with temperature decreasing, and limits the cell performance critically, making the search of high performance cathode urgent. As the hydrocarbon fuels are more economical than hydrogen and are easily obtained, the related research increases in recent years. Furthermore, sealant-free single-chamber SOFC (SC-SOFC) has potential application in portable area, and thus becomes another hot research topic. Based on the research trends, the objective of this work is to investigate the high performance cathode materials and their applications in methane-fueled SC-SOFCs. The cathodes studied were nanosized Sm0.2Ce0.8O1.9 (SDC) modified La1-xSrxMnO3 (LSM), the newly-developed Ba1-xSrxCo0.8Fe0.2O3-δ(BSCF) perovskites and the novel Ba0.5Sr0.5Zn0.2Fe0.8O3–δ(BSZF) cathode that proposed by us firstly.
     The application of modified LSM cathode in SC-SOFC was firstly studied. With the SDC impregnated LSM cathode, the cell performance was improved significantly. At the furnace temperature of 750oC, the max power density and total cell resistance were 404mW?cm-2 and 1.6??cm-2, which respectively, were 4 times higher and 38.5% of the non-impregnated cell. The enhancement was attributed to the fact that the LSM grains were covered by many ionic conducting SDC nanophase, which generated amount of electrochemically active area and improved the electrochemical properies. The anode-facing-cathode micro-stack using anode-supported cells was proposed. A stack with two single cells generated 371mW at 700oC. Impedance spectra data confirmed that electrode polarization resistance was the primary reason limiting the output of both single cell and stacks. The performance of stacks with 3 or more cells was also limited by the flow field and the size of quartz tube. To solve the problem, another novel design with star-shape was developed, which enables the advantages of uniform flow field, highly shock-resistance and easily obtained higher output. The stack with 4-cells contacted in series generated higher output of 421mW at 750°C, which successfully powered a USB fan. Enlarged stacks are attractive alternatives to batteries in the micropower arena.
     Ba0.5Sr0.5Co0.8Fe0.2O3–δcathode has demonstrated high performance in both dual- and single-chamber cells. Our research focused on the properties of BaxSr1-xCo0.8Fe0.2O3–δperovskites that were synthesized by a combined EDTA-citric acid complexing method. The phase development of BSCF experienced complexing intermediate process and the baking temperature of≥900°C was need for the formation of pure-phase BSCF. The effect of Ba content on crystal structure, TG, thermal expansion and conductivity were measured. The results showed that the oxygen loss, TEC and conductivity decreased with the increasing of Ba content, indicating the important role of oxygen deficiency. Lattice oxygen began loss at about 400oC, resulting in amount of oxygen vacancy and the thermal reduction of high valance of Co and Fe ions. Abnormal expansion behavior was found for the first time and its mechanism was explained. The conductivity relaxation and size relaxation of BSCF were parimarily studied. The oxygen diffusion coefficients were 5.0×10-9-5.9×10-8 cm2?s-1 between 400°C and 500°C. Moreover, the BSCF55-SDC composite cathodes were studied. Our results showed that the electrochemical performance of BSCF was improved obviously with the addition of SDC electrolyte, and the optimal composition was found to be BSCF-30wt%SDC. Using this composite cathode, the SDC interlayered YSZ film cell generated max power densities of 1090mW?cm-2 and 1200W?cm-2, respectively, when the cathode was fed by air and oxygen flow. Electrode polarization resistance mainly limited the performances. In single-chamber mode, the OCV of the cell reached high value of about 1V at 550°C. At the furnace temperatures of 600°C, the cell output achieved 220mW?cm-2. But the output decreased to 224mW?cm-2 when temperature increased to 700°C, due to the imperfect selective of electrodes at higher temperature.
     Finally, the cobalt-free Ba0.5Sr0.5Zn0.2Fe0.8O3–δ(BSZF) perovskite, formerly as oxygen permeation membrane, was investigated as a novel cathode for SOFCs. After baking at 950°C for 5h, precursor turned to cubic perovskite powder completely. The room-temperature oxygen nonstoichiometry in BSZF, as determined by iodometric titration experiment, was as high as 0.412, indicating high concentration of vacancy existed which was preferred for oxygen reduction. The electrical conductivity was relatively low with a peak value of 9.4 S?cm-1 at about 590°C, which was mainly caused by the high concentration of oxygen vacancy and the doping of bivalent zinc that doesn’t contribute to small polaron conduction. The optimal firing condition of BSZF cathode on SDC was 950°C for 4h. The dependence of Rp with oxygen partial pressure indicated that the rate-limiting step for oxygen reduction was oxygen adsorption/desorption kinetics. The polarization resistance of pure BSZF at 650°C was 0.48??cm2, which is comparable to LSCF cathode. After SDC impregnation, the resistance decreased to 0.28??cm2, which was further activated to 0.21??cm2 after 24h operation. Using BSZF as the cathode, the wet hydrogen fueled Ni+SDC?SDC?BSZF cell exhibited peak power densities of 392mW?cm-2, 208mW?cm-2 and 626mW?cm?2 and 107mW?cm-2 at 650°C,600°C and 550°C respectively, using stationary air as oxidant. When using oxygen as oxidant, improved outputs of 626mW?cm-2 , 353mW?cm-2 and 173mW.cm-2 were obtained. In single-chamber condition, the cell exhibited peak power densities of 202mW?cm-2 and 173mW?cm-2, at the furnace temperatures of 600°C and 550°C respectively. Owning to the self-heating effect, the performances in single chamber mode were comparable to that in dual-chamber cell powered by hydrogen.
     In conclusion, three kinds of new cathodes were investigated. Impregnated LSM cathodes can enhance the cell performance obviously. A novel star-shaped micro-stack was proposed which can be applied in portable arena. The properties of mixed conducting BSCF and cobalt-free BSZF cathodes were systemically studied, which exhibited attractive performances for intermediate-to-low temperature SOFC and single-chamber SOFC.
引文
1李瑛,王林山,燃料电池.冶金工业出版社, 2000, 1~5
    2毛宗强,燃料电池.化学工业出版社, 2005, 275-277
    3衣宝廉,燃料电池—原理技术应用.化学工业出版社, 2003, 1~9
    4 N. Q. Minh, Ceramic Fuel-Cells. J. Am. Ceram. Soc. 1993, 76:563~588
    5 S. C. Singhal, K. Kendall,韩敏芳,蒋先锋译,彭苏萍校,高温固体氧化物燃料电池原理、设计和应用. 2007
    6 S. C. Singhal, Advances in Solid Oxide Fuel Cell Technology. Solid State Ion. 2000, 135:305~313
    7 K. Huang, J. Wan, J. B. Goodenough, Oxide-Ion Conducting Ceramics for Solid Oxide Fuel Cells. J. Mater. Sci. 2001, 36:1093~1098
    8 B. C. H. Steele, Appraisal of Ce1-yGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500°C. Solid State Ion. 2000, 129:95~110
    9 R. Doshi, V. L. Richards, J. D. Carter, X. P. Wang, M. Krumpelt, Development of Solid-Oxide Fuel Cells That Operate at 500°C. J. Electrochem. Soc. 1999, 146:1273~1278
    10 K. Huang, R. Tichy, J. B. Goodenough, C. Milliken, Superior Perovskite Oxide-Ion Conductor Strontium- and Magnesium-Doped LaGaO3: III, Performance Tests of Single Ceramic Fuel Cells. J. Am. Ceram. Soc. 1998, 81:2581~2585
    11 K. D. Kreuer, Proton-Conducting Oxides. Ann. Rev. Mater. Res. 2003, 33:333~359
    12 S. M. Haile, Fuel Cell Materials and Components. Acta Mater. 2003, 51:5981~6000
    13 S. D. Park, J. M. Vohs, R. J. Gorte, Direct Oxidation of Hydrocarbons in a Solid-Oxide Fuel Cell. Nature 2000, 404:265~267
    14 S. W. Tao, J. T. S. Irvine, A Redox-Stable Efficient Anode for Solid-Oxide Fuel Cells. Nat. Mater. 2003, 2:320~323
    15 Y. H. Huang, R. I. Dass, Z. L. Xing, J. B. Goodenough, Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells. Science 2006, 312:254~257
    16刘江,直接碳氢化合物固体氧化物燃料电池.化学进展2006,18:1026~1033
    17 E. P. Murray, S. A. Barnett, (La,Sr)MnO3-(Ce,Gd)O2-x Composite Cathodes for Solid Oxide Fuel Cells. Solid State Ionics 2001, 143:265~273
    18 E. P. Murray, T. Tsai, S. A. Barnett, Oxygen Transfer Processes in (La,Sr)MnO3/Y2O3-Stabilized ZrO2 Cathodes: An Impedance Spectroscopy Study. Solid State Ion. 1998, 110:235~243
    19 E. P. Murray, M. J. Sever, S. A. Barnett, Electrochemical Performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 Composite Cathodes. Solid State Ionics 2002, 148:27~34
    20 X. G. Zhang, M. Robertson, S. Yick, C. Deces-Petit, E. Styles, W. Qu, Y. S. Xie, R. Hui, J. Roller, O. Kesler, R. Maric, D. Ghosh, Sm0.5Sr0.5CoO3–δ+ Sm0.2Ce0.8O1.9 Composite Cathode for Cermet Supported Thin Sm0.2Ce0.8O1.9 Electrolyte SOFC Operating Below 600°C. J. Power Sources 2006, 160:1211~1216
    21 C. R. Xia, W. Rauch, F. L. Chen, M. L. Liu, Sm0.5Sr0.5CoO3 Cathodes for Low-Temperature SOFCs. Solid State Ionics 2002, 149:11~19
    22 Z. P. Shao, S. M. Haile, A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells. Nature 2004, 431:170~173
    23 J. W. Fergus, Metallic Interconnects for Solid Oxide Fuel Cells. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2005, 397:271~283
    24 K. S. Weil, The State-of-the-Art in Sealing Technology for Solid Oxide Fuel Cells. JOM 2006, 58:37~44
    25 S. C. Singhal, Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications. Solid State Ionics 2002, 152:405~410
    26 T. Kenjo, M. Nishiya, LaMnO3 Air Cathodes Containing ZrO2 Electrolyte for High-Temperature Solid Oxide Fuel-Cells. Solid State Ion. 1992, 57:295~302
    27 S. deSouza, S. J. Visco, L. C. DeJonghe, Thin-Film Solid Oxide Fuel Cell with High Performance at Low-Temperature. Solid State Ionics 1997, 98:57~61
    28 J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells. J. Electrochem. Soc. 1999, 146:69~78
    29 Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence ofConstituent Metal Cations in Substituted LaCoO3 on Mixed Conductivity and Oxygen Permeability. Solid State Ionics 1991, 48:207~212
    30 H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln1-xSrxCoO3 (Ln=Sm, Dy) for the Electrode of Solid Oxide Fuel Cells. Solid State Ionics 1997, 100:283~288
    31 K. T. Lee, A. Manthiram, Comparison of Ln0.6Sr0.4CoO3(Ln = La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells. J. Electrochem. Soc. 2006, 153:A794~A798
    32 M. Godickemeier, K. Sasaki, L. J. Gauckler, I. Riess, Perovskite Cathodes for Solid Oxide Fuel Cells Based on Ceria Electrolytes. Solid State Ionics 1996, 86-8:691~701
    33 J. M. Ralph, C. Rossignol, R. Kumar, Cathode Materials for Reduced-Temperature SOFCs. J. Electrochem. Soc. 2003, 150:A1518~A1522
    34 L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, Structure and Electrical-Properties of La1-xSrxCo1-yFeyO3 .1. The System La0.8Sr0.2Co1-yFeyO3. Solid State Ionics 1995, 76:259~271
    35 L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, Structure and Electrical-Properties of La1-xSrxCo1-yFeyO3 .2. The System La1-xSrxCo0.2Fe0.8O3. Solid State Ionics 1995, 76:273~283
    36 S. Z. Wang, T. Chen, S. P. Chen, Kinetics of Oxygen Reduction over Sm0.5Sr0.5CoO3 Supported on La0.9Sr0.1Ga0.8Mg0.2O3. J. Electrochem. Soc. 2004, 151:A1461~A1467
    37 H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Reaction Model of Dense Sm0.5Sr0.5CoO3 as SOFC Cathode. Solid State Ionics 2000, 132:279~285
    38 T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano, A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures. Science 2000, 288:2031~2033
    39 A. Esquirol, N. P. Brandon, J. A. Kilner, M. Mogensen, Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate-Temperature SOFCs. J. Electrochem. Soc. 2004, 151:A1847~A1855
    40 V. Dusastre, J. A. Kilner, Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications. Solid State Ionics 1999,126:163~174
    41 F. Tietz, V. A. C. Haanappel, A. Mai, J. Mertens, D. Stover, Performance of LSCF Cathodes in Cell Tests. J. Power Sources 2006, 156:20~22
    42 Z. P. Shao, J. Mederos, W. C. Chueh, S. M. Haile, High Power-Density Single-Chamber Fuel Cells Operated on Methane. J. Power Sources 2006, 162:589~596
    43 H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, A. Ahmad-Khanlou, Correlation between Thermal Expansion and Oxide Ion Transport in Mixed Conducting Perovskite-Type Oxides for SOFC Cathodes. Solid State Ionics 2000, 138:79~90
    44 I. Yasuda, K. Ogasawara, M. Hishinuma, T. Kawada, M. Dokiya, Oxygen Tracer Diffusion Coefficient of (La,Sr)MnO3. Solid State Ionics 1996, 86~8:1197-1201
    45 R. A. De Souza, J. A. Kilner, J. F. Walker, A SIMS Study of Oxygen Tracer Diffusion and Surface Exchange in La0.8Sr0.2MnO3. Mater. Lett. 2000, 43:43~52
    46 A. Petric, P. Huang, F. Tietz, Evaluation of La-Sr-Co-Fe-O Perovskites for Solid Oxide Fuel Cells and Gas Separation Membranes. Solid State Ionics 2000, 135:719~725
    47 B. Wei, Z. Lu, S. Y. Li, Y. Q. Liu, K. Y. Liu, W. H. Su, Thermal and Electrical Properties of New Cathode Material Ba0.5Sr0.5Co0.8Fe0.2O3–δfor Solid Oxide Fuel Cells. Electrochem. Solid State Lett. 2005, 8:A428~A431
    48 S. McIntosh, J. F. Vente, W. G. Haije, D. H. A. Blank, H. J. M. Bouwmeester, Oxygen Stoichiometry and Chemical Expansion of Ba0.5Sr0.5Co0.8Fe0.2O3 Measured by in-situ Neutron Diffraction. Chem. Mater. 2006, 18:2187~2193
    49 P. S. Manning, J. D. Sirman, J. A. Kilner, Oxygen Self-Diffusion and Surface Exchange Studies of Oxide Electrolytes Having the Fluorite Structure. Solid State Ionics 1996, 93:125~132
    50 K. Q. Huang, M. Feng, J. B. Goodenough, Synthesis and Electrical Properties of Dense Gd0.1Ce0.9O1.95 Ceramics. J. Am. Ceram. Soc. 1998, 81:357~362
    51 M. Godickemeier, L. J. Gauckler, Engineering of Solid Oxide Fuel Cells with Ceria-Based Electrolytes. J. Electrochem. Soc. 1998, 145:414~421
    52 Y. Ji, J. A. Kilner, M. F. Carolan, Electrical Properties and Oxygen Diffusionin Yttria-Stabilised Zirconia (YSZ)-La0.8Sr0.2MnO3 (LSM) Composites. Solid State Ionics 2005, 176:937~943
    53 W. G. Wang, Y. L. Liu, R. Barfod, S. B. Schougaard, P. Gordes, S. Ramousse, P. V. Hendriksen, M. Mogensen, Nanostructured Lanthanum Manganate Composite Cathode. Electrochem. Solid State Lett. 2005, 8:A619~A621
    54 J. M. Serra, H.-P. Buchkremer, On the Nanostructuring and Catalytic Promotion of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) Cathodes. J. Power Sources 2007, 172:768~774
    55 Y. Liu, S. W. Zha, M. L. Liu, Nanocomposite Electrodes Fabricated by a Particle-Solution Spraying Process for Low-Temperature SOFCs. Chem. Mater. 2004, 16:3502~3506
    56 S. P. Jiang, A Review of Wet Impregnation - an Alternative Method for the Fabrication of High Performance and Nano-Structured Electrodes of Solid Oxide Fuel Cells. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 418:199~210
    57 L. S. Wang, S. A. Barnett, Ag-Perovskite Cermets for Thin-Film Solid Oxide Fuel-Cell Air-Electrode Applications. Solid State Ionics 1995, 76:103~113
    58 M. Sahibzada, S. J. Benson, R. A. Rudkin, J. A. Kilner, Pd-Promoted La0.6Sr0.4Co0.2Fe0.8O3 Cathodes. Solid State Ionics 1998, 115:285~290
    59 H. Uchida, S. Arisaka, M. Watanabe, High Performance Electrodes for Medium-Temperature Solid Oxide Fuel Cells: Activation of La(Sr)CoO3 Cathode with Highly Dispersed Pt Metal Electrocatalysts. Solid State Ionics 2000, 135:347~351
    60 S. P. Simner, J. R. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle, J. W. Stevenson, Development of Lanthanum Ferrite SOFC Cathodes. J. Power Sources 2003, 113:1~10
    61 V. A. C. Haanappel, D. Rutenbeck, A. Mai, S. Uhlenbruck, D. Sebold, H. Wesemeyer, B. Rowekamp, C. Tropartz, F. Tietz, The Influence of Noble-Metal-Containing Cathodes on the Electrochemical Performance of Anode-Supported SOFCs. J. Power Sources 2004, 130:119~128
    62 K. T. Lee, A. Manthiram, Electrochemical Performance of Nd0.6Sr0.4Co0.5Fe0.5O3–δ-Ag Composite Cathodes in Intermediate Temperature Solid Oxide Fuel Cells. J. Power Sources 2006, 160:903~908
    63 S. P. Jiang, W. Wang, Novel Structured Mixed Ionic and Electronic Conducting Cathodes of Solid Oxide Fuel Cells. Solid State Ionics 2005, 176:1351~1357
    64 Y. Y. Huang, J. M. Vohs, R. J. Gorte, Characterization of LSM-YSZ Composites Prepared by Impregnation Methods. J. Electrochem. Soc. 2005, 152:A1347~A1353
    65 Y. Y. Huang, J. M. Vohs, R. J. Gorte, Fabrication of Sr-Doped LaFeO3YSZ Composite Cathodes. J. Electrochem. Soc. 2004, 151:A646~A651
    66 C. Lu, T. Z. Sholklapper, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Lsm-YSZ Cathodes with Reaction-Infiltrated Nanoparticles. J. Electrochem. Soc. 2006, 153:A1115~A1119
    67 T. Z. Sholklapper, V. Radmilovic, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Synthesis and Stability of a Nanoparticle-Infiltrated Solid Oxide Fuel Cell Electrode. Electrochem. Solid State Lett. 2007, 10:B74~B76
    68 J. D. Kim, G. D. Kim, J. W. Moon, Y. I. Park, W. H. Lee, K. Kobayashi, M. Nagai, C. E. Kim, Characterization of LSM-YSZ Composite Electrode by Ac Impedance Spectroscopy. Solid State Ionics 2001, 143:379~389
    69 A. Mitterdorfer, L. J. Gauckler, Reaction Kinetics of the Pt, O2(g)-ZrO2 System: Precursor-Mediated Adsorption. Solid State Ionics 1999, 120:211~225
    70 M. J. L. Ostergard, M. Mogensen, AC-Impedance Study of the Oxygen Reduction-Mechanism on La1-xSrxMnO3 in Solid Oxide Fuel-Cells. Electrochim. Acta 1993, 38:2015~2020
    71 S. B. Adler, X. Y. Chen, J. R. Wilson, Mechanisms and Rate Laws for Oxygen Exchange on Mixed-Conducting Oxide Surfaces. J. Catal. 2007, 245:91~109
    72 S. B. Adler, J. A. Lane, B. C. H. Steele, Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. J. Electrochem. Soc. 1996, 143:3554~3564
    73 M. L. Liu, Equivalent Circuit Approximation to Porous Mixed-Conducting Oxygen Electrodes in Solid-State Cells. J. Electrochem. Soc. 1998, 145:142~154
    74陈胜洲,董新法,林维明,单室固体氧化物燃料电池的研究进展.电源技术2003,27:134~136
    75王康,邵宗平,单室固体氧化物燃料电池.化学进展2007, 19:267~275
    76 M. Yano, A. Tomita, M. Sano, T. Hibino, Recent Advances in Single-Chamber Solid Oxide Fuel Cells: A Review. Solid State Ionics 2007, 177:3351~3359
    77 C. Eyraud, L. Enoir, M. Gery, Fuel Cells Utilizing the Electrochemical Properties of Absorbates. Compt. Rend. 1961, 252:1599~1603
    78 W. V. Gool, The Possible Use of Surface Migration in Fuel Cells and Herogenrous Catalysis. Phillips Res. Reports1965, 20:81~93
    79 I. Riess, P. J. Vanderput, J. Schoonman, Solid Oxide Fuel-Cells Operating on Uniform Mixtures of Fuel and Air. Solid State Ionics 1995, 82:1~4
    80 Y. Hao, D. G. Goodwin, Numerical Modeling of Single-Chamber SOFCs with Hydrocarbon Fuels. J. Electrochem. Soc. 2007, 154:B207~B217
    81 Y. Hao, Z. P. Shao, J. Mederos, W. Lai, D. G. Goodwin, S. M. Haile, Recent Advances in Single-Chamber Fuel-Cells: Experiment and Modeling. Solid State Ionics 2006, 177:2013~2021
    82 T. Hibino, S. Q. Wang, S. Kakimoto, M. Sano, One-Chamber Solid Oxide Fuel Cell Constructed from A YSZ Electrolyte with A Ni Anode and LSM Cathode. Solid State Ionics 2000, 127:89~98
    83 Z. P. Shao, C. Kwak, S. M. Haile, Anode-Supported Thin-Film Fuel Cells Operated in a Single Chamber Configuration 2T-I-12. Solid State Ionics 2004, 175:39~46
    84 A. Tomita, D. Hirabayashi, T. Hibino, M. Nagao, M. Sano, Single-Chamber SOFCs with a Gd0.1Ce0.9O1.95 Electrolyte Film for Low-Temperature Operation. Electrochem. Solid State Lett. 2005, 8:A63~A65
    85 K. Asano, H. Iwahara, Performance of a One-Chamber Solid Oxide Fuel Cell with A Surface-Modified Zirconia Electrolyte. J. Electrochem. Soc. 1997, 144:3125~3130
    86 K. Asano, T. Hibino, H. Iwahara, A Novel Solid Oxide Fuel-Cell System Using the Partial Oxidation of Methane. J. Electrochem. Soc. 1995, 142:3241~3245
    87 X. Jacques-Bedard, T. W. Napporn, R. Roberge, M. Meunier, Performance and Ageing of An Anode-Supported SOFC Operated in Single-Chamber Conditions. J. Power Sources 2006, 153:108~113
    88 T. Suzuki, P. Jasinski, V. Petrovsky, H. U. Anderson, F. Dogan, Anode Supported Single Chamber Solid Oxide Fuel Cell in CH4-Air Mixture. J.Electrochem. Soc. 2004, 151:A1473~A1476
    89 T. Suzuki, P. Jasinski, V. Petrovsky, H. U. Anderson, F. Dogan, Performance of a Porous Electrolyte in Single-Chamber SOFCs. J. Electrochem. Soc. 2005, 152:A527~A531
    90 S. Asahara, D. Michiba, M. Hibino, T. Yao, Single Chamber SOFC Using BaLaIn2O5.5 Solid Electrolyte. Electrochem. Solid State Lett. 2005, 8:A449~A451
    91 T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano, Single-Chamber Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures. J. Electrochem. Soc. 2000, 147:2888~2892
    92 T. Suzuki, P. Jasinski, H. U. Anderson, F. Dogan, Role of Composite Cathodes in Single Chamber SOFC. J. Electrochem. Soc. 2004, 151:A1678~A1682
    93 B. E. Buergler, M. E. Siegrist, L. J. Gauckler, Single Chamber Solid Oxide Fuel Cells with Integrated Current-Collectors. Solid State Ionics 2005, 176:1717~1722
    94 T. Hibino, A. Hashimoto, M. Yano, M. Suzuki, S. Yoshida, M. Sano, High Performance Anodes for SOFCs Operating in Methane-Air Mixture at Reduced Temperatures. J. Electrochem. Soc. 2002, 149:A133~A136
    95 Z. P. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. L. Zhan, S. A. Barnett, A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack with High Power Density. Nature 2005, 435:795~798
    96 T. Suzuki, P. Jasinski, H. U. Anderson, F. Dogan, Single Chamber Electrolyte Supported SOFC Module. Electrochem. Solid State Lett. 2004, 7:A391-A393
    97 Z. L. Zhan, S. A. Barnett, An Octane-Fueled Olid Oxide Fuel Cell. Science 2005, 308:844~847
    98 T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano, A Solid Oxide Fuel Cell Using an Exothermic Reaction as the Heat Source. J. Electrochem. Soc. 2001, 148:A544~A549
    99 I. C. Stefan, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Single Chamber Fuel Cells: Flow Geometry, Rate, and Composition Considerations. Electrochem. Solid State Lett. 2004, 7:A198~A200
    100 T. Hibino, H. Iwahara, Simplification of Solid Oxide Fuel-Cell System Using Partial Oxidation of Methane. Chem. Lett. 1993:1131~1134
    101 T. W. Napporn, X. Jacques-Bedard, F. Morin, M. Meunier, Operating Conditions of A Single-Chamber SOFC. J. Electrochem. Soc. 2004, 151:A2088~A2094
    102 S. P. Jiang, Y. J. Leng, S. H. Chan, K. A. Khor, Development of (La, Sr)MnO3-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochem. Solid State Lett. 2003, 6:A67~A70
    103 K. F. Chen, Z. Lu, N. Ai, X. Q. Huang, Y. H. Zhang, X. D. Ge, X. S. Xin, X. J. Chen, W. H. Su, Fabrication and Performance of Anode-Supported Ysz Films by Slurry Spin Coating. Solid State Ionics 2007, 177:3455~3460
    104 B. E. Buergler, A. N. Grundy, L. J. Gauckler, Thermodynamic Equilibrium of Single-Chamber SOFC Relevant Methane-Air Mixtures. J. Electrochem. Soc. 2006, 153:A1378~A1385
    105 C. E. Hori, H. Permana, K. Y. S. Ng, A. Brenner, K. More, K. M. Rahmoeller, D. Belton, Thermal Stability of Oxygen Storage Properties in a Mixed CeO2-ZrO2 System. Appl. Catal. B-Environ. 1998, 16:105~117
    106 J. P. P. Huijsmans, F. P. F. van Berkel, G. M. Christie, Intermediate Temperature SOFC - A Promise for the 21st Century. J. Power Sources 1998, 71:107~110
    107 Teraoka Y, Zhang HM, Furukawa S, Teraoka Y, Y. N, Oxygen Permeation through Perovskite-Type Oxides. Chem. Lett. 1985, 167:1743~1746
    108 Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J. H. Tong, G. X. Xiong, Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 Oxygen Membrane. J. Membr. Sci. 2000, 172:177-188
    109 S. N. B. Hodgson, X. Shen, F. R. Sale, Preparation of Alkaline Earth Carbonates and Oxides by the EDTA-Gel Process. J. Mater. Sci. 2000, 35:5275~5282
    110 L. Hong, F. Guo, J. Lin, From Chelating Precursors to La0.05Sr0.95CoO3-y Oxide. 1999, Mater. Res. Bull. 34:1943~1958
    111 G. N. Glavee, R. D. Hunt, M. Paranthaman, Low Temperature Preparation of BaCeO3 and Ce0.75Zr0.25O2 Thin Films Using Sol-Gel Processing Techniques. Mater. Res. Bull. 1999, 34:817~825
    112 A. Pohl, G. Westin, Alkoxide Route to La0.5Sr0.5CoO3 Films and Powders. J. Am. Ceram. Soc. 2005, 88:2099~2105
    113 R. D. Shannon, Revised Values of Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32:751~753
    114 Y. Teraoka, M. Yoshimatsu, N. Yamazoe, T. Seiyama, Oxygensorptive Properties and Defect Structure of Perovskite-Type Oxides. Chem. Lett. 1984:893~896
    115 G. C. Kostogloudis, P. Fertis, C. Ftikos, The Perovskite Oxide System Pr1-xSrxCo1-yMnyO3: Crystal Structure and Thermal Expansion. J. Euro. Ceram. Soc. 1998, 18:2209~2215
    116 Z. P. Shao, G. X. Xiong, J. H. Tong, H. Dong, W. S. Yang, Ba Effect in Doped Sr(Co0.8Fe0.2)O3 on the Phase Structure and Oxygen Permeation Properties of the Dense Ceramic Membranes. Separation Purif. Tech. 2001, 25:419~429
    117 S. Uhlenbruck, F. Tietz, High-Temperature Thermal Expansion and Conductivity of Cobaltites: Potentials for Adaptation of the Thermal Expansion to the Demands for Solid Oxide Fuel Cells. Mater. Sci. Eng. B 2004, 107:277~282
    118 J. A. Kilner, R. A. DeSouza, I. C. Fullarton, Surface Exchange of Oxygen in Mixed Conducting Perovskite Oxides. Solid State Ionics 1996, 86-8:703~709
    119 R. L. Cook, A. F. Sammells, On the Systematic Selection of Perovskite Solid Electrolytes for Intermediate Temperature Fuel Cells. Solid State Ionics 1991, 45:311~321
    120 J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, W. J. Weber, Electrochemical Properties of Mixed Conducting Perovskites La1-xMxCo1-yFeyO3 (M=Sr,Ba,Ca). J. Electrochem. Soc. 1996, 143:2722~2729
    121 H. H. Wang, S. Tablet, W. S. Yang, R. Caro, In situ High Temperature X-Ray Diffraction Studies of Mixed Ionic and Electronic Conducting Perovskite-Type Membranes. Mater. Lett. 2005, 59:3750~3755
    122 Q. S. Zhu, T. A. Jin, Y. Wang, Thermal Expansion Behavior and Chemical Compatibility of BaxSr1-xCoyFe1-yO3–δwith 8YSZ and 20GDC. Solid State Ionics 2006, 177:1199~1204
    123 Z. S. Duan, M. Yang, A. Yan, Z. F. Hou, Y. L. Dong, Y. Chong, M. J. Cheng,W. S. Yang, Ba0.5Sr0.5Co0.8Fe0.2O3 as a Cathode for IT SOFCs with a GDC Interlayer. J. Power Sources 2006, 160:57~64
    124 M. Shiono, K. Kobayashi, T. L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, Effect of CeO2 Interlayer on ZrO2 Electrolyte/La(Sr)CoO3 Cathode for Low-Temperature SOFCs. Solid State Ionics 2004, 170:1~7
    125 T. L. Nguyen, T. Kato, K. Nozaki, T. Honda, A. Negishi, K. Kato, Y. Iimura, Application of Sm0.5Sr0.5CoO3 as A Cathode Material to (Zr,Sc)O2 Electrolyte with Ceria-Based Interlayers for Reduced-Temperature Operation SOFCs. J. Electrochem. Soc. 2006, 153:A1310~A1316
    126 A. Mai, V. A. Haanappel, S. Uhlenbruck, F. Tietz, D. Stover, Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells I. Variation of Composition. Solid State Ionics 2005, 176:1341~1350
    127 S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, V. L. Sprenkle, J. W. Stevenson, Optimized Lanthanum Ferrite-Based Cathodes for Anode-Supported SOFCs. Electrochem. Solid State Lett. 2002, 5:A173~A175
    128 G. Y. Zhu, X. H. Fang, C. R. Xia, X. Q. Liu, Preparation and Electrical Properties of La0.4Sr0.6Ni0.2Fe0.8O3 Using a Glycine Nitrate Process. Ceram. Int. 2005, 31:115~119
    129 K. Huang, H. Y. Lee, J. B. Goodenough, Sr- and Ni-Doped LaCoO3 and LaFeO3 Perovskites - New Cathode Materials for Solid-Oxide Fuel Cells. J. Electrochem. Soc. 1998, 145:3220~3227
    130 S. I. Hashimoto, K. Kammer, P. H. Larsen, F. W. Poulsen, M. Mogensen, A Study of Pr0.7Sr0.3Fe1-xNixO3–δas a Cathode Material for SOFCs with Intermediate Operating Temperature. Solid State Ionics 2005, 176:1013~1020
    131 H. H. Wang, C. Tablet, A. Feldhoff, J. Caro, A Cobalt-Free Oxygen-Permeable Membrane Based on the Perovskite-Type Oxide Ba0.5Sr0.5Zn0.2Fe0.8O3–δ. Adv. Mater. 2005, 17:1785~1788
    132 R. J. Nadalin, W. B. Brozda, Chemical Methods for the Determination of The "Oxidizing (or Reducing) Power" of Certain Materials Containing a Multivalent Element in Several Oxidation States. Anal . Chim. Acta 1963, 28:282~293
    133 V. L. Kozhevnikov, I. A. Leonidov, M. V. Patrakeev, E. B. Mitberg, K. R.Poeppelmeier, Electrical Properties of the Ferrite SrFeOy at High Temperatures. J. Solid State Chem. 2001, 158:320~326
    134 A. L. Shaula, V. V. Kharton, M. V. Patrakeev, J. C. Waerenborgh, D. P. Rojas, F. M. B. Marques, Defect Formation and Transport in SrFe1-xAlxO3–δ. Ionics 2004, 10:378~384
    135 Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, S. M. Liu,Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ(y =0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane, Electrochim. Acta 2007 52(25):7343~7351
    136 S. Y. Li, Z. Lu, B. Wei, X. Q. Huang, J. P. Miao, G. Cao, R. B. Zhu, W. H. Su, A Study of (Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2O3–δas A Cathode Material for IT-SOFCs. J. Alloy. Compd. 2006, 426:408~414
    137 S. Y. Li, Z. Lu, N. Ai, K. F. Chen, W. H. Su, Electrochemical Performance of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3 as An Intermediate Temperature Solid Oxide Fuel Cell Cathode. J. Power Sources 2007, 165:97~101
    138 J. Fleig, F. S. Baumann, V. Brichzin, H. R. Kim, J. Jamnik, G. Cristiani, H. U. Habermeier, J. Maier, Thin Film Microelectrodes in SOFC Electrode Research. Fuel Cells 2006, 6:284~292
    139 S. B. Adler, Mechanism and Kinetics of Oxygen Reduction on Porous La1-xSrxCoO3 Electrodes. Solid State Ionics 1998, 111:125~134
    140 H. Zhao, L. H. Huo, L. P. Sun, L. J. Yu, S. Gao, J. G. Zhao, Preparation, Chemical Stability and Electrochemical Properties of LSCF-CBO Composite Cathodes. Mater. Chem. Phys. 2004, 88:160~166
    141 T. Matsui, T. Kosaka, M. Inaba, A. Mineshige, Z. Ogumi, Effects of Mixed Conduction on the Open-Circuit Voltage of Intermediate-Temperature SOFCs Based on Sm-Doped Ceria Electrolytes. Solid State Ionics 2005, 176:663~668
    142 H. C. Yu, F. Zhao, A. V. Virkar, K. Z. Fung, Electrochemical Characterization and Performance Evaluation of Intermediate Temperature Solid Oxide Fuel Cell with La0.75Sr0.25CuO2.5–δCathode. J. Power Sources 2005, 152:22~26
    143 C. R. Xia, M. L. Liu, A Simple and Cost-Effective Approach to Fabrication of Dense Ceramic Membranes on Porous Substrates. J. Am. Ceram. Soc.2001, 84:1903~1905
    144 C. R. Xia, M. L. Liu, Low-Temperature SOFCs Based on Gd0.1Ce0.9O1.95 Fabricated by Dry Pressing. Solid State Ionics 2001, 144:249~255
    145 B. E. Buergler, M. Ochsner, S. Vuillemin, L. J. Gauckler, From Macro- to Micro-Single Chamber Solid Oxide Fuel Cells. J. Power Sources 2007, 171:310~320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700