气硬改性动物胶型芯砂粘结剂的制备及硬化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环保要求的提高,开发无污染、高效率的铸造粘结剂成为迫切要求。动物胶是一种无污染、可生物降解的水溶性粘结剂,具有来源广泛,成本低廉,无污染等优点,有很广的应用前景。动物胶直接用作铸造粘结剂的效果很差,需要对动物胶进行改性。本文通过将普通的动物骨胶进行改性处理,制备成一种铸造型芯粘结剂,其室温下呈液态,并可通过吹入CO_2气体进行硬化,建立起较高的工艺强度。
     首先通过试验,确定合适的分解工艺。碱性催化剂具有分解动物胶高分子化合物速度快的特点,选择NaOH为催化剂,最佳加入量为动物胶质量的4%,碱解温度为50℃,碱解时间为30min,水胶比为4:5。
     接下来采用接枝共聚和酯化交联等方法,进行动物胶的改性,使其具备更高的吹气硬化强度。通过试验,选择了丙三醇和糊精、无水乙醇作为改性剂,并采用正交试验方法,确定了动物胶粘结剂的最佳配比和工艺参数。新型改性动物胶粘结剂的最佳工艺为:m(丙三醇):m(糊精):m(无水乙醇):m(动物胶)=9:10:9:100,
     改性温度75℃,改性时间90min。通过红外光谱对新型改性动物胶粘结剂进行分析,表明改性动物胶已经发生了接枝共聚和酯化反应。
     新型改性动物胶粘结剂可通过吹CO_2气体硬化,粉状Ca(OH)_2作为硬化促进剂。新型动物胶粘结剂加入量3.5%,促硬剂Ca(OH)2粉末加入量1.25%,吹气量0.7m3·h-1,吹气时间60s,混砂时间为150s,试样初强度可达0.8 MPa,终强度可达6.0 MPa。通过扫描电镜对粘结桥断面形貌进行了分析,并对吹气硬化机理进行了理论分析。最后通过试验测定了新型改性动物胶型砂的可使用时间、发气量、存放性和溃散性等工艺性能。该型砂具有较低的发气量,良好的存放能力和高温残留强度。通过经济性分析,新型动物胶粘结剂相对于三乙胺冷芯盒粘结剂有较大的经济优势,为开发新型动物胶铸造粘结剂提供了一条新的途径。
With the increased awareness of environmental protection requirements, a non-toxic, non-polluting, low-cost foundry binder is an urgent requirement. Animal glue is a water soluble binder which is non-toxic,pollution-free and biodegradable. The animal glue has some advantages, such as extensive sources, low cost, pollution-free and so on, and has a spacious prospect in application. When the animal glue was directly used as a binder for foundry,a poor result could get , so it needs to be modified. In this paper, the ordinary animal bone glue was modified by a modification and a new binder for foundry, which was liquid at room temperature, cured by CO_2 was prepared with a higher bonding strength.
     First, the appropriate decomposition process was determined through the tests. A alkaline catalyst has the feature of rapid decomposition speed. NaOH was chosen as catalyst and the optimum addition amount of NaOH is 4% of animal glue content, the temperature of alkaline decomposition process was 50℃, the period of time was 30 min.
     Next, the grafting polymerization and esterification crosslinking methods were applied to modify the animal glue, which made the core sands of animal glue have higher strength cured by gas. Through lots of experiments, glycerin, dextrin and ethanol were chosen as modifiers finally, and an orthogonal experiment was done to determine the best proportion of them and the process parameters for the preparation of the animal glue binder. The best technology of new modified animal glue binder agent is : m (glycerin) : m (dextrin): m (ethanol):m (animal glue) = 9:10:9:100, water-animal glue ratio is 4:5, modification temperature is 75℃and modification time is 90min. By the infrared spectrum, the new modified animal glue binder was characterized and the results showed that the modified animal glue had been modified by a grafting copolymerization and an esterification reaction.
     Through the tests, the way of cured by CO_2 for the new modified animal glue binder was adopted and Ca (OH)2 in powder was used as a cure-promoter. The addition of new animal binder is 3.5% to sand the addition of Ca (OH)2 is 1.25%. A good flow of CO_2 is 0.7m3·h-1, a good period of time for blowing CO_2 is 60s and the mixing time of sand is 150 s. The original strength of the binder is above 0.8 MPa and its final strength is 6.0 MPa. By scanning electron microscope, the feature of bonding bridge was analyzed, and the gas-cured mechanism was analyzed in theory.
     At last, tests on the performance of new modified animal glue binder sand were done, such as the serviceable time, gas evolution, storage capacity and collapsibility of core. Through the tests, it was found that the sand has a low gas evolution, a good storage capacity and a low residual strength of high temperature. Through economic analysis, compared to the triethylamine cold box binder, which has widely application in the market, the new type of animal glue binder has an economic advantage, and which provides a new way in development of binder for foundry.
引文
[1] Zoebelein H.Dictionary of renewable resources. New York: John Wiley &Sons, 2001:13~20.
    [2]朱清时,阎立峰,郭庆祥.生物质洁净能源.北京:化学工业出版社,2002.1~10.
    [3]胡彭生.型砂.上海:上海科学技术出版社,1994.
    [4]蒲艳玲,王九思,于立志.淀粉改性聚乙烯醇缩甲醛胶粘剂的研究.兰州交通大学学报(自然科学版),2007,26(1):158~160.
    [5]韩世洪,李华.动物胶用于纯棉织物上浆的研究.武汉科技学院学报,2007,20(1):20~24.
    [6]李传栻.国内外铸造粘结剂的应用现状与发展趋势.机械工人,2004,20(3):1~4.
    [7] Morley J G (BCIRA)著,王艺华译. CO2气体硬化铸造树脂砂的研究.造型材料,1989,38(2):36~40.
    [8]戴斌煜,范新瑞,谢济生. CO2硬化聚丙烯酸钠树脂砂的研究.铸造,1992,21(6):8~12.
    [9]刘承尧.聚乙烯醇CO2砂.铸造,1987,12(7):25~28.
    [10]中译哲夫.聚乙烯醇作粘结剂的CO2气体快速硬化法的研究.铸造,1986,10(7):37~41.
    [11] Busby A D. Recent developments in binder technology-part B, Gas and Vapour Cured Resin Binders. The Foundry man,1993,86(8):324~328.
    [12]刘伟华,金广明,吕德志等.碱性酚醛树脂有机酯冷芯盒工艺.铸造,1999,9(5):31~34.
    [13] Foseco Co. Ecoletec 2000 a resin binder hardened with carbon dioxide. Foundry Practive.1989,217(4):1~2.
    [14] Del N S,Egre ja J A, Andrade J E, et al. Optimization of paramasters of CO2 hardening of alkaline phenolic resin. Metal Mater.1997,53(463):147~152.
    [15]刘伟华,李英民,任玉艳.铸造CO2硬化碱性酚醛树脂粘结剂系统的优化,机械工程学报,2008(12):287~290.
    [16] Barker Ann.Animal glues holding on. Adhesives Age,1984,27(5):16~17.
    [17]吉静,黄明智.开发智能性明胶.明胶科学与技术,2001,21(3):12~22.
    [18] Monte Robert,Sordillo Joseph D. Synthetle tches qualties of animal glue. Adhesives Age, 1975,18(A):38~39.
    [19] Moses K, Tenafly N. Dry f1exible glue compositions and method of making same. USP:4095990,1976.
    [20] Siak J S. GM develops a break through“green binder”for core sand dernCasting,1996(10):24~26.
    [21] Siak J S. Sand mold member and method. USA:5582231,1996.
    [22]石晶玉,孙国恩,何镇明等.动物蛋白质胶型(芯)砂的固化工艺及机理.铸造,1998(10):35~37.
    [23]石晶玉,何镇明,孙国恩等.蛋白质基粘结剂芯砂的回用和热法再生.铸造,1999(10):37~39.
    [24]石晶玉,何镇明,石红玉.动物蛋白质型芯砂的再生工艺研究.汽车工艺与材料,1999(8):16~18.
    [25]陈昕,李英民,关键等.改性动物胶粘结剂的开发研究.铸造,2001,50(2):88~91.
    [26]娄桂艳,李英民,李放.SR-新型铝合金铸造粘结剂的研究.沈阳工业大学学报,2006,28(2):121~123.
    [27]娄桂艳,李英民,曹阳.铝铸件用无污染、高溃散性动物胶粘结剂的研究.铸造,2006,55(5):463~465.
    [28]李仲谨,李晓钡,朱敏等.骨胶与表氯醇接枝共聚物的合成及应用性能.包装工程,2006, 27(1):18~20.
    [29]李仲谨,李华锋,郭义.助剂在骨胶粘合剂中的应用研究.包装工程,2006,27(4):112~114.
    [30] Pilavendran S, Ganesh R. Journal of the society of leather. Technologies and Chemists,2005,89(2):67~70.
    [31] Chang H, Chen E L . Collapsibility microwave energy and CO2 gassing process. AFS Transaction, 1980,72(5):217~222.
    [32]高丽艳,任玉艳,李英民等.新型动物胶的制备及硬化工艺的研究.中国铸造活动周论文集,2007:345~350.
    [33]牛育华,李仲谨,李文汉.环保氨基酸型粘合剂的制备研究.包装工程,2007,12(28):35~37.
    [34]李仲谨,李华锋.环氧氯丙烷改性骨胶粘合剂的研究.中国胶粘剂,2006,4(15):21~23.
    [35]宋凉,李仲谨.环氧氯丙烷酸法改性骨胶胶黏剂的合成及性能研究.化学与黏合,2007,29(5):338~340.
    [36]谢苒薏,杨晓波,肖英宏.不同因素对明胶凝胶特性的影响研究.食品工业,2009(1):51~52.
    [37]褚美芳,莫连根.骨胶共混改性的研究.明胶科学与技术,2009,9(3):137~138.
    [38]王培霖,李仲谨,丁金皓.乙醇改性骨胶胶粘剂的制备及其耐水性研究.中国胶粘剂,2010,8(19):27~30.
    [39]刘敏歆.冷芯盒法的发展及其应用.机车车辆工艺,1985,5(1):1~4.
    [40]蒋祖尧.三乙胺气雾冷芯盒法制芯材料与工艺的研究.全国铸造年会论文集,1982:10~15.
    [41]西德Hüttenes-Albertus化学公司造型粘结剂产品目录第12部分.
    [42] Morley J G(BCIRA)著,王艺华译. CO2气体硬化铸造树脂砂的研究.造型材料,1989,38 (2):36~40.
    [43]刘瑞玲,史玉芳,阎冬青等.CO2硬化树脂砂的研究进展.铸造,2003,52(10):729~731.
    [44]李润霞,白彦华,孙万柏.气体硬化树脂砂发展概况.沈阳工业大学学报,1998,20(3):93~97.
    [45]李忠华. CO2-Na2SiF6水玻璃砂工艺参数的确定.铸造,2000,49(6):331~333.
    [46]李忠华.固体硬化剂和二氧化碳联合硬化水玻璃砂新工艺.铸造设备研究,2001,12(6):17~19.
    [47]冷延国,董春玲,黄雅钦等.胶接枝丙烯酰胺的研究.分子材料科学与工程,2002,18(1):12~16.
    [48] Hepworth D G, Smith J P. The mechanical properties manufactured from tendon fibres and pearl glue(animal glue). Composites, 2002, Part A: 797~803.
    [49] Johannes konnerth. Feasibility of particle board production using bone glue. Eur.J.prod, 2009,67(1):243~245.
    [50]王宗杰.材料成型工程综-实验.北京:中国科学文化出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700