用户名: 密码: 验证码:
内质网应激—自噬对脑缺血再灌注能量代谢障碍与氧化应激的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量代谢障碍是脑缺血再灌注损伤的重要原因。脑缺血再灌注时线粒体氧化磷酸化障碍在导致ATP生成减少的同时,还产生大量的活性氧(reactive oxygenspecies,ROS),引发氧化应激。脑缺血再灌注时,除了ATP含量减少、自由基生成增加等引起细胞损伤之外,一些适应性调控机制在脑缺血再灌注过程中的作用也引起了人们的关注。
     内质网应激与自噬是细胞对损伤刺激的适应性反应。内质网应激-自噬可以维持细胞内环境的稳态平衡,具有一定的保护性作用。内质网应激时未折叠蛋白反应可以激活自噬自噬又可以通过降解错误折叠或未折叠蛋白减轻内质网的负荷,抑制内质网应激的过度激活,同时产生的降解产物也为机体细胞新蛋白质的合成、细胞结构的重建以及ATP的生成提供原料。但过度激活的内质网应激-自噬又能够加重细胞损伤,甚至导致细胞死亡。最近的研究结果提示,内质网应激-自噬在脑缺血再灌注引起的能量代谢障碍和氧化应激过程发挥重要的作用,但其作用机制尚不十分明了。
     Keap1-Nrf2-ARE信号转导途径是机体氧化应激条件下主要的防御机制。自噬相关蛋白p62作为一种多功能蛋白,不仅仅具有清除损伤的细胞器、降解异常聚集的蛋白等作用,而且,具有多种蛋白相互作用区的p62在细胞应激、细胞生存等多种信号转导途径中发挥衔接分子的作用。已有研究表明在氧化应激条件下,p62可与Nrf2之间形成一个正反馈环路,通过Keap1-Nrf2-ARE信号途径,促进抗氧化基因的表达。因此,探讨多功能蛋白p62在脑缺血再灌注损伤过程中的作用,可能进一步阐明细胞自噬与氧化应激之间的调控机制。
     自噬晚期自噬体和溶酶体的融合是一个典型的囊泡融合事件。NSF,作为一种ATP酶,通过利用自身水解ATP产生的能量,介导囊泡融合完成后SNARE复合物的解离,释放SNARE进入下一个囊泡融合进程,是囊泡融合顺利进行必需的一个关键蛋白。体外研究表明,只有细胞质内可溶性的NSF在ATP存在条件下才能介导囊泡的融合,如果可溶性的NSF发生聚集或ATP缺失将会丧失该功能。可见,ATP产生与囊泡融合关键蛋白NSF的功能存在着关联,通过复制体外细胞实验性脑缺血再灌注模型,观察能量代谢障碍时囊泡融合关键蛋白NSF的变化,进而探讨脑缺血损伤过程中能量代谢障碍与细胞自噬之间可能的调控机制。
     目的:
     本研究基于能量代谢障碍/氧化应激在引起细胞损伤的同时,可能会激活细胞内质网应激-自噬等适应性反应,探讨内质网应激-自噬在细胞能量代谢障碍与氧化应激中的作用,为阐明脑缺血再灌注损伤的机制提供新的线索。
     方法:
     (1)体内实验:
     1)线栓法阻塞大脑中动脉复制大鼠局灶性脑缺血再灌注模型。
     2)TTC染色和HE染色判断脑缺血再灌注后脑皮质损伤情况。
     3)免疫组织化学染色检测Keap1和Nrf2的表达;免疫印迹检测内质网应激相关蛋白、自噬相关蛋白和凋亡相关蛋白的表达、RT-PCR法检测Keap1-Nrf2-ARE下游基因的表达。
     (2)体外实验:
     1)建立体外培养PC12细胞ATP缺失再恢复模型;MTT法检测细胞生存率的变化;Western Blot检测自噬和内质网应激相关蛋白的表达。
     2)建立体外培养CHO细胞ATP缺失再恢复模型;LDH法检测细胞的损伤改变;差速离心和线性甘油梯度离心获取不同蛋白组分;Western Blot检测不同组分NSF蛋白表达。
     结果:
     (1)体内实验:
     1)神经缺陷评分、TTC及HE染色结果表明,随着缺血时间的延长,大鼠脑缺血再灌注引发的大脑皮质损伤逐渐加重。
     2)缺血1H再灌注24h,大脑皮质泛素化蛋白表达增加,Grp78表达升高,Bcl-2的表达升高,Bax的表达下降;随着缺血时间的延长,至缺血3H再灌注24h,大脑皮质泛素化蛋白表达明显增加, CHOP/GADD153表达显著升高,Bax表达升高,Bcl-2表达下降。
     3)缺血1H再灌注24h及缺血1.5H再灌注24h时,自噬共轭蛋白Atg12-Atg5和LC3-PE表达增加;在缺血3H再灌注24h,自噬共轭蛋白Atg12-Atg5和LC3-PE表达显著下降。
     4)脑缺血1H再灌注24h时,Nrf2核定位增加,上调其下游抗氧化基因NQO1、GCLM和HO1mRNA的表达。随着缺血时间的延长,缺血3H再灌注24h时,Nrf2核定位减少,激活下游抗氧化基因NQO1和HO1的能力下降。
     5)随着缺血时间的延长,p62mRNA表达水平先增加后降低,而p62蛋白水平仅仅在缺血3H再灌注24h显著增加。
     (2)体外实验:
     1)无糖条件下轻度ATP缺失再恢复,PC12细胞生存率略有升高,此时LC3-II和p62蛋白变化不明显;有糖条件下轻度ATP缺失再恢复,PC12细胞生存率相对于重度ATP缺失再恢复明显升高,此时Grp78蛋白表达显著升高,p62蛋白表达显著下降;重度ATP缺失再恢复,PC12细胞生存率明显下降,此时LC3-II和p62蛋白表达显著升高;3-MA抑制自噬降低PC12细胞在ATP缺失条件下的生存率。
     2)ATP缺失引起CHO细胞细胞质内可溶性NSF蛋白聚集和细胞损伤。NSF高表达可减轻ATP缺失再恢复诱导的CHO细胞损伤。
     结论:
     1.内质网应激-自噬途径参与调控脑缺血再灌注损伤。短时间脑缺血后再灌注,内质网应激-自噬的激活起一定的保护性作用;长时间脑缺血后再灌注,内质网应激反应过度激活,同时机体自噬的降解能力下降,加重脑损伤。
     2.脑缺血再灌注时,自噬通过p62与Keap1-Nrf2-ARE信号途径相关联,共同作用减轻氧化应激、抑制内质网应激的过度激活。
     3.体外实验抑制自噬能够加重细胞损伤,提示内质网应激-自噬途径在体外培养细胞能量代谢障碍过程中具有一定的细胞保护作用。
     4.体外实验发现,能量代谢障碍导致细胞质内可溶性的自噬相关蛋白NSF聚集失活,丧失介导囊泡融合的功能,进而可能抑制自噬降解途径,引发细胞损伤。
     综上,我们认为脑缺血导致的脑细胞损伤与能量代谢密切相关,而适度的内质网应激-自噬在能量代谢障碍引起的细胞损伤中具有一定的保护性作用。表明脑细胞内质网应激-自噬的相关研究可能为脑缺血再灌注损伤的预防与治疗提供了新的线索。
Energy metabolism disorder and oxidative stress are the major causes of cerebralischemia-reperfusion injury. Mitochondrial oxidative phosphorylation disorders aftercerebral ischemia-reperfusion can lead to decreased production of ATP andsimultaneously generate a large amount of reactive oxygen species (ROS), whichresults in oxidative stress. During cerebral ischemia-reperfusion, the decrease of ATPand the increase of free radicals can cause cell damaged, in addition, some adaptiveregulation mechanisms attract researchers’ attention.
     Endoplasmic reticulum stress and autophagy are two independent adaptiveresponses to cell stress injury. Endoplasmic reticulum stress-autophagy can maintaincell homeostasis, playing a protective role. The unfolded protein response uponendoplasmic reticulum stress can activate autophagy. Autophagy can alleviate theoverload of endoplasmic reticulum by degradation of misfolded or unfolded proteins,inhibiting overactivation of endoplasmic reticulum stress. In addition, autophagy canprovide raw materials for the synthesis of new proteins, reconstruction of cellstructure and ATP generation with the release of degradation products. However,excessive activation of endoplasmic reticulum stress-autophagy can increase celldamage or even cause cell death. Recent studies suggest that endoplasmic reticulumstress-autophagy plays a key role in energy metabolism disorder and oxidative stressinduced by cerebral ischemia-reperfusion, but the mechanism is not yet very clear.
     Keap1-Nrf2-ARE signaling pathway is a key cell defense mechanism underoxidative stress condition. As a multifunctional protein, autophagy-related protein p62not only can remove damaged cellular organelles and abnormal protein aggregation,but also can work as an adapter molecule in a variety of signal transduction pathways,such as cell stress and cell survival. Previous studies have shown that under oxidativestress condition, p62can form a positive feedback loop with Nrf2, promotes the xpression of antioxidant genes through the Keap1-Nrf2-ARE signaling pathway.Therefore, to explore the role of multifunctional protein p62in cerebral ischemia-reperfusion injury, may further clarify the regulation mechanism between autophagyand oxidative stress.
     The membrane fusion of autophagosome and lysosomes at the late stage ofautophagy pathway is one of the typical vesicle fusion events. Autophagy-relatedprotein NSF, as an ATPase, upon hydrolysis of ATP energy by itself, mediates therelease of SNARE complexes after the completion of vesicle fusion into the nextvesicle fusion process. NSF is a key protein indispensable for vesicle fusion process.In vitro studies show that only the the cytoplasmic soluble NSF can mediate theprocess of vesicle fusion through hydrolysis of ATP, NSF will lose its function ifaggregation and inactivation occurs or under ATP depletion condition. Thus, theremay exist some association between ATP generation and vesicle fusion. We observedchange of the vesicle fusion key protein NSF upon energy metabolism disorder by invitro experimental cerebral ischemia-reperfusion model, in order to further investigatethe possible regulation mechanisms between energy metabolism and autophagyduring cerebral-ischemic reperfusion injury.
     Objective:
     In this study, based on energy metabolism disorder/oxidative stress can inducecell injury,which may also activate some adaptive responses such as endoplasmicreticulum stress-autophagy, we investigated the role of endoplasmic reticulumstress-autophagy during energy metabolism disorder and oxidative stress in order toprovide new clues for the mechanism of cerebral ischemia-reperfusion injury.
     Methods:
     (1) In vivo:
     1) Rat transient middle cerebral artery occlusion (tMCAO) was induced by the suturemethod.
     2) TTC staining and HE staining were used to determine cortical injury after cerebralischemia-reperfusion.
     3) Immunohistochemistry, RT-PCR and western blot were used to detect theexpression of endoplasmic reticulum stress associated proteins, autophagy associattedproteins, proteins of Keap1-Nrf2-ARE pathway and expression of downstream genesin the cerebral cortex after ischemia-reperfusion.
     (2) In vitro:
     1) CHO cell culture ATP depletion and recovery model was induced by exposure to amixture of2-deoxy-D-glucose (2-DG,5mM) and oligomycin (2.5uM). CHO cellmedium LDH activities were determined to assess cell injury. Differentialcentrifugation and linear glycerol gradient centrifugation were used to get thedifferent protein fraction. Western blot was used to detect the expression of NSFprotein.
     1) PC12cell culture ATP depletion and recovery model was induced by exposure to amixture of2-deoxy-D-glucose (2-DG,5mM) and oligomycin (2.5uM). MTT methodwas used to detect cell viability. Western blot was used to detect the expression ofautophagy and endoplasmic reticulum stress associated proteins.
     Results:
     (1) In vivo:
     1) The results of neurological deficit scores, TTC and H&E staining revealed thatcerebral cortex injury was aggravated with prolongation of ischaemia afterischemia-reperfusion.
     2) After1hour of tMCAO and24hours of reperfusion, the expression ofubiquitinated proteins in the cortex increased, the expression of Grp78and Bcl-2alsoincreased, but the expression of Bax decreased. With prolongation of ischaemia, at3hours of ischaemia and24hours of reperfusion, the formation of ubiquitinated proteinaggregates and CHOP/GADD153expression notablely increased. Meanwhile, theexpression of Bax increased and expression of Bcl-2decreased.
     3) The expression of ubiquitinated proteins in the cortex increases after1hour and1.5hours of ischaemia and24hours of reperfusion, indicative of the accumulation ofprotein aggregates.Meanwhile, the expression of the autophagy conjugate proteinsAtg12-Atg5and LC3-PE, two factors essential for autophagy, also increased.However, at3hours of ischaemia and24hours of reperfusion, the formation ofubiquitinated protein aggregates notablely increased, while the expression ofAtg12-Atg5and LC3-PE decreased.
     3) After1hour and1.5hours of ischaemia and24hours of reperfusion, the expressionof the autophagy conjugate proteins Atg12-Atg5and LC3-PE, two factors essentialfor autophagy, increased. However, at3hours of ischaemia and24hours ofreperfusion, the expression of Atg12-Atg5and LC3-PE decreased.
     4)The nuclear localization of Nrf2increases after1hour or1.5hours of ischaemiaand24hours of reperfusion. This RT-PCR analysis confirmed a marked increase inthe expression of the Nrf2down-stream target antioxidant genes, NQO1, GCLM andHO1. Prolongation to3hours of ischaemia followed by24hours of reperfusion,resulted in a decrease in the nucleic localization of Nrf2and inactivation of the Nrf2down-stream antioxidant target genes.
     5) The expression of p62increased dramatically after3hours of tMCAO and24hoursof reperfusion, while p62mRNA expression firstly increased and then decreased withprolongation of ischaemic time.
     (2) In vitro:
     1) Mild ATP depletion following by24hour recovery under glucose-free condition,the viability of PC12cell slightly elevated, while the protein levels of LC3-II and p62did not have significant changes; Mild ATP depletion following by24hour recoverywith the existence of glucose, the viability of PC12cell was higher than that in severeATP depletion group, Grp78protein significantly increased and p62proteinsignificantly decreased; Severe ATP depletion following by24hour recovery, theviability of PC12cell significant decreased, the protein levels of LC3-II and p62dramatically increased. Inhibition of autophagy by3-MA reduced the viability ofPC12cells upon ATP depletion.
     2) ATP depletion causes the aggregation of cytoplasmic soluble protein NSF in CHOcell culture and cell injury. Overexpression of NSF mitigates ATP depletion/recovery-induced cell injury.
     Conclusion:
     1. Endoplasmic reticulum stress-autophagy pathway is involved in cerebral ischemia-reperfusion injury. Upon short-time cerebral ischemia-reperfusion, the activation ofendoplasmic reticulum stress-autophagy plays a protective role; Upon long-timecerebral ischemia-reperfusion, the excessive activation of endoplasmic reticulumstress response and the decrease of autophagic degradation can aggravate braindamage.
     2. During cerebral ischaemia-reperfusion, autophagy may be involved in theKeap1-Nrf2-ARE signalling pathway through p62, which collectively induces theexpression of ARE downstream antioxidant proteins, playing a role in alleviating cellinjury induced by oxidative stress and overactivation of endoplasmic reticulum stress.
     3. The inhibition of autophagy aggravates cell death, which suggest that endoplasmicreticulum stress-autophagy pathway play a protective role on energy metabolismdisorder.
     4. Energy metabolism disorder leads to aggregation and inactivation of cytoplasmicsoluble NSF protein, losing its function in mediating vesicle fusion, which results inthe malfunction of autophagic degradation and causes cell damage. Overexpression ofNSF can reduce cell damage induced by ATP depletion by supplying somecytoplasmic soluble NSF.
     Overall, we think that the cell death induced by brain ischemia-reperfusion isclosely related with energy metabolism disorder/oxidative stress, while mildendoplasmic reticulum stress-autophagy have some protective effect in this process.The study about endoplasmic reticulum stress-autophagy in brain cells probablyprovide new clue for the prevention and therapy of brain ischemia-reperfusion.
引文
[1]Donald Lloyd-Jones, Robert Adams, Mercedes Carnethon, et al. Heart Disease andStroke Statistics-2009Update: A Report From the American Heart AssociationStatistics Committee and Stroke Statistics Subcommittee [J]. Circulation,2009,119(3): p.e21-181.
    [2]Dirnagl U1, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenousneuroprotection. Trends Neurosci [J].2003, May;26(5):248-254.
    [3]Cunnane S, Nugent S, Roy M, et al. Brain fuel metabolism, aging, and Alzheimer'sdisease [J]. Nutrition,2011,27(1):3-20.
    [4]Prins ML. Cerebral metabolic adaptation and ketone metabolism after brain injury[J]. J Cereb Blood Flow Metab,2008,28(1):1-16.
    [5]Mosconi L, Pupi A, De Leon MJ. Brain glucose hypometabolism and oxidativestress in preclinical Alzheimer's disease [J]. Ann NY Acad Sci,2008,1147:180-195.
    [6]Siesjo BK. Cell damage in the brain: a speculative synthesis [J]. J Cereb BloodFlow Metab,1981,1:155-185.
    [7]Heuser D, Guggenberger H. Ionic changes in brain ischemia and alterationsproduced by drugs [J]. Br J Anesth,1985,57(1):23-33.
    [8]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normalphysiological functions and human disease [J]. Int J Biochem Cell Biol,2007,39:44-84.
    [9]Lubos E, Handy DE, Loscalzo J. Role of oxidative stress and nitric oxide inatherothrombosis [J]. Front Biosci,2008,13:5323-5344.
    [10]Kinuta Y, Kikuchi H, Ishikawa M, et al. Lipid peroxidation in focal cerebralischemia [J]. J Neurosurg,1989,71:421-429.
    [11]Piantadosi CA, Zhang J. Mitochondrial generation of reactive oxygen speciesafter brain ischemia in the rat [J]. Stroke,1996,27:327-331.
    [12]Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases [J]. Nature,2006,443:787-795.
    [13]Papi A, Contoli M, Gasparini P, et al. Role of xanthine oxidase activation andreduced glutathione depletion in rhinovirus induction of inflammation inrespiratory epithelial cells [J]. J Biol Chem,2008,283:28595-28606.
    [14]Terzi C, Kuzu A, A lar AK, et al. Prevention of deleterious effects of reperfusioninjury using one-week highdose allopurinol [J]. Dig Dis Sci,2001,46:430-437.
    [15]Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotectiveafter ischemia-reperfusion [J]. J Cereb Blood Flow Metab,2009,29:1262-1272.
    [16]Zhang QG, Raz L, Wang R, Han D, De Sevilla L. Estrogen attenuates ischemicoxidative damage via an estrogen receptor alphamediated inhibition of NADPHoxidase activation [J]. J Neurosci,2009,29:13823-13836.
    [17]Rosa SC, Judas F, Lopes MC, et al. Nitric oxide synthase isoforms andNF-kappaB activity in normal and osteoarthritic human chondrocytes: regulationby inducible nitric oxide [J]. Nitric Oxide,2008,19:276-283.
    [18]Bulhak AA, Jung C, Ostenson CG, et al. PPAR-alpha activation protects the type2diabetic myo-cardium against ischemia-reperfusion injury: involvement of thePI3-Kinase/Akt and NO pathway [J]. Am J Physiol Heart Circ Physiol,2009,296:719-727.
    [19]Keynes RG, Garthwaite J. Nitric oxide and its role in ischaemic brain injury [J].Curr Mol Med2004,4:179-191.
    [20]Umemura A, Mabe H, Nagai H, et al. Action of phospholipases A2and C on freefatty acid release during complete ischemia in rat neocrtex Effect ofphospholipase C inhibitor and N-methyl-D-aspartate antagonist [J]. J Neurosurg,1992,76:648-651.
    [21]Muralikrishna Adidhatla R, Hatcher JF. Phospholipase A2, reactive oxygen specis,and lipid peroxidation in cerebral ischemia [J]. Free Rad Biol Med,2006,40:376-387.
    [22]Dumuis M, Sebben H, Haynes JP, et al. NMDA receptors activate the arachidonicacid cascade system in striatal neurons [J]. Nature,1988,336:68-70.
    [23]Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain[J]. J Cereb Blood Flow Metab,2001, Jan;21(1):2-14.
    [24]Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy[J]. Trends Cell Biol,2007,17:422-427.
    [25]Mirzaei H, Regnier F. Protein: protein aggregation induced by protein oxidation[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2008, Sep15;873(1):8-14.
    [26]Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization incell death [J]. Physiol Rev,2007, Jan:87(1):99-163.
    [27]Narendra DP, Jin, SM, Tanaka A, et al. PINK1is selectively stabilized onimpaired mitochondria to activate Parkin [J]. PLoS Biol,2010,8(1): e1000298.
    [28]Geisler S, Holmstrom KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy isdependent on VDAC1and p62/SQSTM1[J]. Nat Cell Biol,2010, Feb;12(2):119-131.
    [29]Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulumstress-induced apoptosis [J]. EMBO Rep,2006, Sep;7(9):880-885.
    [30]Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in thesecretory pathway [J]. Science,1999, Dec3;286(5446):1882-1888.
    [31]Romisch K. A cure for traffic jams: small molecule chaperones in theendoplasmic reticulum [J]. Traffic,2004, Nov;5(11):815-820.
    [32]Naidoo N.“Protein folding in the endoplasmic reticulum,” in ComprehensiveBiotechnology [M].2nd Ed. Editor-in-Chief: Murray Moo-Young (Amsterdam:Elsevier),217-227.
    [33]Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle[J]. Cell Calcium,2002, Nov-Dec;32(5-6):235-249
    [34]Ravid T, Hochstrasser M.Diversity of degradation signals in theubiquitin-proteasome system[J].Nat Rev Mol Cell Biol.2008Sep;9(9):679-690.
    [35]Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin proteasomesystem by protein aggregation[J]. Science,2001,292:15521555.
    [36]Perlmutter DH. The cellular response to aggregated proteins associated withhuman disease[J].J Clin Invest,2002,110:12191220.
    [37]Kaufman RJ. Orchestrating the unfolded protein response in health and disease [J].J Clin Invest,2002, Nov;110(10):1389-1398.
    [38]Ron D. Hyperhomocysteinemia and function of the endoplasmic reticulum [J]. JClin Invest,2001, May15,200,;107(10):1221-1222.
    [39]Walter P, Ron D. The unfolded protein response: from stress pathway tohomeostatic regulation [J]. Science,2011, Nov25;334(6059):1081-1086.
    [40]Johnson JA, Johnson DA, Kraft AD, et al. The Nrf2-ARE pathway: an indicatorand modulator of oxidative stress in neurodegeneration [J]. Ann N Y Acad Sci,2008, Dec;1147:61-69.
    [41]Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathwaycritical for health and disease [J]. Neurology,2006, Jan24;66(2Suppl1):S102-S109.
    [42]Harding HP, Calfon M, Urano F, et al. Transcriptional and translational control inthe Mammalian unfolded protein response [J]. Ann Rev Cell Dev Biol,2002,18:575-599.
    [43]Calfon M, Zeng H, Urano, F, et al. IRE1couples endoplasmic reticulum load tosecretory capacity by processing the XBP-1mRNA [J]. Nature,2002,415:92-96.
    [44]Lee K, Tirasophon, W, Shen X, et al. IRE1-mediated unconventional mRNAsplicing and S2P-mediated ATF6cleavage merge to regulate XBP1in signalingthe unfolded protein response [J]. Genes Dev,2002, Feb15;16(4):452–466.
    [45]Yoshida H, Haze K, Yanagi H, et al. Identification of the cis-acting endoplasmicreticulum stress response element responsible for transcriptional induction ofmammalian glucose-regulated proteins Involvement of basic leucine zippertranscription factors [J]. J Biol Chem,1998, Dec11;273(50):33741-33749
    [46]Okada T, Yoshida H, Akazawa R, et al. Distinct roles of activating transcriptionfactor6(ATF6) and double-stranded RNA-activated protein kinase-likeendoplasmic reticulum kinase (PERK) in transcription during the mammalianunfolded protein response [J]. Biochem J,2002, Sep1;366(Pt2):585-594.
    [47]Schroder M, Kaufman RJ. ER stress and the unfolded protein response [J]. MutatRes,2005,569:29-63.
    [48]Wu J, Kaufman RJ. From acute ER stress to physiological roles of the UnfoldedProtein Response [J]. Cell Death Differ,2006,13:374-384.
    [49]Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy inphysiology and pathophysiology [J]. Physiol Rev,2010, Oct;90(4):1383-1435.
    [50]Huang JK, lionsky DJ. Autophagy and human disease [J]. Cell Cycle,2007,6(15):1837-1849
    [51]van der Vaart A, Mari M, Reggiori F. A picky eater: exploring the mechanisms ofselective autophagy in human pathologies [J]. Traffic,2008,9:281-289.
    [52]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeastApg8p, is localized in autophagosome membranes after processing [J]. EMBO J,2000,19:5720-5728.
    [53]Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can beincorporated into protein aggregates independent of autophagy: caution in theinterpretation of LC3localization [J]. Autophagy,2007,3:323-328.
    [54]Bj rk y G, Lamark T, Brech A, et al. p62/SQSTM1forms protein aggregatesdegraded by autophagy and has a protective effect on huntingtin-induced celldeath [J]. J Cell Biol,2005, Nov21;171(4):603-614.
    [55]Nakaso K, Yoshimoto Y, Nakano T, et al.. Transcriptional activation ofp62/A170/ZIP during the formation of the aggregates: possible mechanisms andthe role in Lewy body formation in Parkinson’s disease [J]. Brain Res,2004,1012:42-51
    [56]Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neuralcells causes neurodegenerative disease in mice [J]. Nature,2006,441:885-889.
    [57]Komatsu M,Waguri S, Chiba T, et al. Loss of autophagy in the central nervoussystemcauses neurodegeneration in mice [J]. Nature,2006,441:880-884.
    [58]Menzies FM, Ravikumar B, Rubinsztein DC. Protective roles for induction ofautophagy in multiple proteinopathies [J]. Autophagy,2006,2:224-225.
    [59]Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease throughcellular self-digestion [J]. Nature,2008;451:1069-1075.
    [60]Sheng R, Zhang LS, Han R, et al. Autophagy activation is associated withneuroprotection in a rat model of focal cerebral ischemic preconditioning [J].Autophagy,2010, May8;6(4):482-494.
    [61]Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatalhypoxia-ischemia induced brain injury [J]. Neurobiol Dis,2008, Dec;32(3):329-339.
    [62]Liu C, Gao Y, Barrett J, et al. Autophagy and protein aggregation after brainischemia [J]. J Neurochem,2010, Oct;115(1):68-78.
    [63]Qin AP, Liu CF, Qin YY, et al.Autophagy was activated in injured astrocytes andmildly decreased cell survival following glucose and oxygen deprivation andfocal cerebral ischemia [J]. Autophagy,2010, Aug16;6(6):738-753.
    [64]Wen YD, Sheng R, Zhang LS, et al.Neuronal injury in rat model of permanentfocal cerebral ischemia is associated with activation of autophagic and lysosomalpathways [J]. Autophagy,2008, Aug16;4(6):762-769.
    [65]Puyal J, Vaslin A, Mottier V, et al.Postischemic treatment of neonatal cerebralischemia should target autophagy [J]. Ann Neurol,2009, Sep;66(3):378-389.
    [66]Zheng YQ, Liu JX, Li XZ, et al. RNA interference-mediated downregulation ofBeclin1attenuates cerebral ischemic injury in rats [J]. Acta Pharmacol Sin,2009,Jul;30(7):919-927.
    [67]Smith CM, Chen Y, Sullivan ML, et al. Autophagy in acute brain injury: feast,famine, or folly?[J]. Neurobiol Dis,2010, Jul;43(1):52-59.
    [68]Rami A, K gel D. Apoptosis meets autophagy-like cell death in the ischemicpenumbra: Two sides of the same coin?[J]. Autophagy,2008, May16;4(4):422-426.
    [69]Puyal J, Ginet V, Vaslin A, et al.The two faces of autophagy in the nervous system[J]. Med Sci (Paris),2009, Apr;25(4):383-390.
    [70]Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation ofBeclin1and autophagy-like cell death [J]. Neurobiol Dis,2008, Jan;29(1):132-141.
    [71]Moscat J, Diaz-Meco MT, Wooten MW. Signal integration and diversificationthrough the p62scaffold protein [J]. Trends Biochem Sci,2007,32(2):95-100.
    [72]Sanchez P, De Carcer G, Sandoval IV, et al. Localization of atypical protein kinaseC isoforms into lysosome-targeted endosomes through interaction with p62[J].Mol Cell Biol,1998,18(5):3069-3080.
    [73]Pankiv S, Lamark T, Bruun JA, et al. Nucleocytoplasmic shuttling ofp62/SQSTM1and its role in recruitment of nuclear polyubiquitinated proteins topromyelocytic leukemia bodies [J]. Journal of Biological Chemistry,2010, Feb19;285(8):5941-5953.
    [74]Moscat J, Diaz-Meco MT, Wooten MW. Of the atypical PKCs, Par-4and p62:recent understandings of the biology and pathology of a PB1-dominated complex[J]. Cell Death and Differentiation,2009, Nov;16(11):1426-1437.
    [75]Moscat J and Diaz-Meco MT. p62at the crossroads of autophagy, apoptosis, andcancer [J] Cell,2009, Jun12;137(6):1001-1004.
    [76]Jain AT, Lamark E, Sj ttem et al. p62/SQSTM1is a target gene for transcriptionfactor NRF2and creates a positive feedback loop by inducing antioxidantresponse element-driven gene transcription[J]. Journal of Biological Chemistry,2010, Jul16;285(29):22576-22591
    [77]Pankiv S, Clausen TH, Lamark T et al. p62/SQSTM1binds directly to Atg8/LC3to facilitate degradation of ubiquitinated protein aggregates by autophagy[J].Journal of Biological Chemistry,2007, Aug17;282(33):24131-24145.
    [78]Hayes JD, McMahon M. NRF2and KEAP1mutations: permanent activation ofan adaptive response in cancer[J].Trends BiochemSci,2009,34:176-188.
    [79]Lallena MJ, Diaz-Meco MT, Bren G, et al. Activation of IkappaB kinase beta byprotein kinase C isoforms[J]. Mol Cell Biol,1999,19(3):2180-2188.
    [80]Wooten MW, Geetha T, Seibenhener ML, et al. The p62scaffold regulates nervegrowth factor-induced NF-kappaB activation by influencing TRAF6polyubiquitination[J]. J Biol Chem,2005,280(42):35625-35629.
    [81]Martin P, Diaz-Meco MT, Moscat J. The signaling adapter p62is an importantmediator of T helper2cell function and allergic airway inflammation[J].EMBO J,2006,25(15):3524-3533.
    [82]Lee DF, Kuo HP, Liu M, et al. KEAP1E3ligase-mediated downregulation ofNF-kappaB signaling by targeting IKKbeta [J]. Mol Cell,2009,36:131-140.
    [83]Maneet Bhatia, Therese C. Karlenius, Giovanna Di Trapani, et al.The InteractionBetween Redox and Hypoxic Signalling Pathways in the Dynamic OxygenEnvironment of Cancer Cells [M]. Book edited by Kathryn Tonissen,2013.
    [84]Mandy Kwong, YuetWaiKan, and Jefferson Y. Chan. The cnc basic leucinezipper factor, nrf1, is essential for cell survival in response to oxidativestress-inducing agents[J]. Journal of biological chemistry,1999,274(52):37491-37498.
    [85] Itoh K, Wakabayashi N, Katoh Y, et al. Keap1represses nuclear activation ofantioxidant responsive elements by Nrf2through binding to the aminoterminalNeh2domain[J]. Genes&development,1999, Jan1;13(1):76-86.
    [86] Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates theinduction of phase II detoxifying enzyme genes through antioxidant responseelements[J]. Biochemical and biophysical research communications,1997, Jul18;236(2):313-322.
    [87]Katoh Y, Itoh K, Yoshida E, et al. Two domains of Nrf2cooperatively bind CBP,a CREB binding protein, and synergistically activate transcription [J]. GenesCells,2001,6:857-868.
    [88]Okawa H, Motohashi H, Kobayashi A, et al. Hepatocytespecific deletion of theKeap1gene activates Nrf2and confers potent resistance against acute drugtoxicity. Biochem Biophys Res Commun,2006,339:79-88.
    [89] Itoh K, Tong KI and Yamamoto M, Molecular mechanism activating Nrf2-Keap1pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med,2004,36:1208-1213.
    [90]Kang, M. I., Kobayashi, A., Wakabayashi, N., Kim, S. G., and Yamamoto, M,Scaffolding of Keap1to the actin cytoskeleton controls the function of Nrf2askey regulator of cytoprotective phase2genes. Proc Natl Acad Sci USA,2004,101:2046–2051.
    [91]Lee JM, Johnson JA. An Important Role of Nrf2-ARE Pathway in the CellularDefense Mechanism [J]. Journal of Biochemistry and Molecular Biology,2004,Mar31;37(2):139-143.
    [92]Rushmore TH, Pickett CB. Transcriptional regulation of the rat glutathioneS-transferase Ya subunit gene. Characterization of a xenobiotic-responsiveelement controlling inducible expression by phenolic antioxidants [J]. J BiolChem,1990, Aug25;265(24):14648-14653.
    [93]Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases [J]. Annu RevPharmacol Toxicol,2005,45:51-88.
    [94]Jaiswal AK. Human NAD(P)H:quinoneoxidoreductase (NQO1) gene structureand induction by dioxin [J]. Biochemistry,1991, Nov5;30(44):10647-10653.
    [95]Moinova HR, Mulcahy RT. An Electrophile Responsive Element (EpRE)Regulates β-Naphthoflavone Induction of the Human γ-Glutamylcysteine-Synthetase Regulatory Subunit Gene [J]. Journal of Biological Chemistry,1998,Jun12;273(24):14683-14689.
    [96]Nioi P, Hayes JD. Contribution of NAD(P)H:quinoneoxidoreductase1toprotection against carcinogenesis, and regulation of its gene by the Nrf2basic-region leucine zipper and the arylhydrocarbon receptor basichelix-loop-helix transcription factors [J]. Mutation research,2004, Nov2;555(1-2):149-171.
    [97]Furukawa M, Xiong Y. BTB protein Keap1targets antioxidant transcriptionfactor Nrf2for ubiquitination by the Cullin3-Roc1ligase [J]. Mol Cell Biol,2005, Jan;25(1):162-171.
    [98]Stewart D, Killeen E, Naquin R, et al. Degradation of transcription factor Nrf2viathe ubiquitin–proteasome pathway and stabilization by cadmium [J]. J BiolChem,2003, Jan24;278(4):2396-2402.
    [99]Sarikas A, Hartmann T, Pan ZQ. The cullin protein family [J]. Genome Biol,2011,12(4):220.
    [100]Nicole F, Villeneuve, Alexandria Lau, et al. Regulation of the Nrf2–Keap1Antioxidant Response by the Ubiquitin Proteasome System: An Insight intoCullin-Ring Ubiquitin Ligases [J]. Antioxidants redox signaling,2010, Dec1;13(11):1699-1712.
    [101]Eggler AL, Small E, Hannink M, et al. Cul3-mediated Nrf2ubiquitination andantioxidant response element (ARE) activation are dependent on the partialmolar volume at position151of Keap1[J]. The Biochemical journal,2009, Jul29;422(1):171-180.
    [102]Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of theKeap1–Nrf2pathway in stress response and cancer evolution [J]. Genes to Cells,2011, Feb;16(2):123-140.
    [103]Dinkova-Kostova AT, Holtzclaw WD, Cole RN, et al. Direct evidence thatsulfhydryl groups of Keap1are the sensors regulating induction of phase2enzymes that protect against carcinogens and oxidants [J]. Proceedings of theNational Academy Science USA,2002, Sep3;99(18):11908-11913.
    [104]Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, et al. Protection againstelectrophile and oxidant stress by induction of the phase2response: fate ofcysteines of the Keap1sensor modified by inducers [J]. Proc Natl Acad Sci USA,2004, Feb17;101(7):2040-2045.
    [105]Kobayashi M, Li L, Iwamoto N, et al. The antioxidant defense systemKeap1-Nrf2comprises a multiple sensing mechanism for responding to a widerange of chemical compounds [J]. Molecular and cellular biology,2009, Jan;29(2):493-502.
    [106]Zhang DD, Hannink M. Distinct cysteine residues in Keap1are required forKeap1-dependent ubiquitination of Nrf2and for stabilization of Nrf2bychemopreventive agents and oxidative stress [J]. Mol. Cell. Biol,2003,23:8137-8151.
    [107]Huang HC, Nguyen T, Pickett CB. Regulation of the antioxidant responseelement by protein kinase C-mediated phosphorylation of NFE2-related factor2[J]. Proc Natl Acad Sci USA,2000,97(23):12475-12480.
    [108]Zipper LM, Mulcahy RT. Inhibition of ERK and p38MAP kinases inhibitsbinding of Nrf2and induction of GCS genes [J]. BiochemBiophys Res Commun,2000,278:484-492.
    [109]Reichard JF, Petersen DR. Involvement of phosphatidylinositol3-kinase andextracellularregulated kinase in hepatic stellate cell antioxidant response andmyofibroblastic transdifferentiation [J]. Arch BiochemBiophys,2006,446:111-118.
    [110] Komatsu M, Ichimura Y. Physiological significance of selective degradation ofp62by autophagy [J]. FEBS Lett,2010,584:1374-1378.
    [111]Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substratep62activates the stress responsive transcription factor Nrf2through inactivationof Keap1[J]. Nat Cell Biol,2010,12:213-223.
    [112]Lu M, Nakamura RM, Dent ED, et al. Aberrant expression of fetal RNA-bindingprotein p62in liver cancer and liver cirrhosis [J]. Am J Pathol,2001,159:945-953.
    [113] Tagaya M, Wilson DW, Brunner M, et al. Domain structure of anNethylmaleimide-sensitive fusion protein involved in vesicular transport [J]. JBiol Chem,1993,268:2662-6.
    [114]Hanson PI, Whiteheart SW. AAA+proteins: have engine, will work [J]. Nat RevMol Cell Biol,2005,6:519-529.
    [115]Sumida M, Hong RM, Tagaya M. Role of two nucleotide-binding regions in anN-ethylmaleimidesensitive factor involved in vesicle-mediated protein transport[J]. J Biol Chem,1994,269:20636-20641.
    [116]Matveeva E, Whiteheart SW. The effects of SNAP/SNARE complexes on theATPase of NSF [J]. FEBS Lett,1998,435:211-214.
    [117]Barnard RJ, Morgan A, Burgoyne RD. Stimulation of NSF ATPase activity byalpha-SNAP is required for SNARE complex disassembly and exocytosis [J]. JCell Biol,1997,139:875-883.
    [118]Whiteheart SW, Rossnagel K, Buhrow SA, et al. N-ethylmaleimidesensitivefusion protein: a trimeric ATPase whose hydrolysis of ATP is required formembrane fusion [J]. J Cell Biol,1994,126:945-954.
    [119]Clary DO, Griff IC, Rothman JE. SNAPs, a family of NSF attachment proteinsinvolved in intracellular membrane fusion in animals and yeast [J]. Cell,1990,61:709-721.
    [120]Chae TH, Kim S, Marz KE, et al. The hyh mutation uncovers roles for alphaSnap in apical protein localization and control of neural cell fate [J]. Nat Genet,2004,36:264-70.
    [121]Han X, Wang CT, Bai J, et al. Transmembrane segments of syntaxin line thefusion pore of Ca2+-triggered exocytosis [J]. Science,2004,304:289-292.
    [122] Ungermann C, Langosch D. Functions of SNAREs in intracellular membranefusion and lipid bilayer mixing [J]. J Cell Sci,2005,118:3819-3828.
    [123]Sutton RB, Fasshauer D, Jahn R, et al. Crystal structure of a SNARE complexinvolved in synaptic exocytosis at2.4A resolution [J]. Nature,1998,395:347-353.
    [124] Matveeva EA, He P, Whiteheart SW. N-Ethylmaleimide-sensitive fusionprotein contains high and low affinity ATP-binding sites that are functionallydistinct [J]. J Biol Chem,1997,272:26413-26418.
    [125] Hanson PI, Otto H, Barton N, et al. The N-ethylmaleimide-sensitive fusionprotein and alpha-SNAP induce a conformational change in syntaxin [J]. J BiolChem,1995,270:16955-16961.
    [126]Matveeva EA, Whiteheart SW, Vanaman TC, et al. Phosphorylation of theN-ethylmaleimidesensitive factor is associated with depolarization-dependentneurotransmitter release from synaptosomes [J]. J Biol Chem2001,276:12174-12181.
    [127]Liu Y, Cheng K, Gong K, et al. Pctaire1phosphorylatesN-ethylmaleimide-sensitive fusion protein: implications in the regulation of itshexamerization and exocytosis [J]. J Biol Chem,2006,281:9852-9858.
    [128]Huynh H, Bottini N, Williams S, et al. Control of vesicle fusion by a tyrosinephosphatase [J]. Nat Cell Biol,2004,6:831-839.
    [129]Matsushita K, Morrell CN, Cambien B, et al. Nitric oxide regulates exocytosisby S-nitrosylation of N-ethylmaleimide-sensitive factor [J]. Cell,2003, Oct17;115(2):139-150.
    [130]Matsushita K, Morrell CN, Mason RJ, et al. Hydrogen peroxide regulation ofendothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor [J]. JCell Biol,2005;170:73-79.
    [131]Averous J, Bruhat A, Jousse C, et al. Induction of CHOP expression by aminoacid limitation requires both ATF4expression and ATF2phosphorylation [J]. JBiol Chem, Feb13;279(7):5288-5297
    [132] Keller JN, Dimayuga E, Chen Q, et al. Autophagy, proteasomes, lipofuscin, andoxidative stress in the aging brain [J]. Int J Biochem Cell Biol,2004, Dec;36(12):2376-2391.
    [133] Balduini W, Carloni S, Buonocore G. Autophagy in hypoxiaischemia inducedbrain injury: evidence and speculations [J]. Autophagy,2009, Feb7;5:221-223.
    [134] Kobayashi M, Yamamoto M. Nrf2-Keap1regulation of cellular defensemechanisms against electrophiles and reactive oxygen species [J]. Advances inEnzyme Regulation,2006, Aug2;46:113-140.
    [135]Kobayashi A, Kang MI, Okawa H, et al. Oxidative stress sensor Keap1functionsas an adaptor for Cul3-based E3ligase to regulate for proteasomal degradation ofNrf2[J]. Molecular and Cellular Biology,2004, Aug;24(16):7130-7139.
    [136] Motohashi H, Yamamoto M. Nrf2-Keap1defines a physiologically importantstress response mechanism [J]. Trends in Molecular Medicine,2004, Nov;10(11):549-557.
    [137] Ding WX, Yin XM. Sorting, recognition and activation of the misfolded proteindegradation pathways through macroautophagy and the proteasome [J].Autophagy,2008, Feb;4(2):141-150.
    [138] Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1forms protein aggregatesdegraded by autophagy and has a protective effect on huntingtininduced celldeath [J]. Journal of Cell Biology,2005, Nov21;171(4):603-614.
    [139] Mathew R, Karp CM, Beaudoin B, et al. Autophagy suppresses tumorigenesisthrough elimination of p62[J]. Cell,2009, Jun12;137(6):1062-1075.
    [140]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral arteryocclusion without craniectomy in rats [J]. Stroke,1989, Jan;20(1):84-91.
    [141]Tatlisumak T, Carano RA, Takano K, et al. Broad-spectrum cation channelinhibition by LOE908MS reduces infarct volume in vivo and postmortem infocal cerebral ischemia in the rat [J]. Journal of the Neurological Sciences,2000,Sep15;178(2):107-113.
    [142]王伟伟.氯离子通道CLC-2及CLIC4在糖尿病脑损伤中的作用及机制研究[D].吉林:吉林大学白求恩医学院,2010.
    [143] Jin X, Liu J, Yang Y, et al. Spatiotemporal evolution of blood brain barrierdamage and tissue infarction within the first3h after ischemia onset [J].Neurobiology of Disease,2012Dec;48(3):309-316.
    [144]Murakami K, Kondo T, Kawase M, et al. Mitochondrial susceptibility tooxidative stress exacerbates cerebral infarction that follows permanent focalcerebral ischemia in mutant mice with manganese superoxide dismutasedeficiency [J]. The Journal of Neuroscience,1998;18:205-213.
    [145]Jayanthi S, Deng X, Noailles PA, et al. Methamphetamine induces neuronalapoptosis via cross-talks between endoplasmic reticulum andmitochondria-dependent death cascades [J]. FASEB J,2004,18(2):238-251
    [146]Hayashi T, Saito A, Okuno S, et al. Damage to the endoplasmic reticulum andactivation of apoptotic machinery by oxidative stress in ischemic neurons [J]. JCereb Blood Flow Metab,2005,25(1):41-53
    [147]Liu H, Bowes RC,van de Water B, et al. Endoplasmic reticulum chaperonesGRP78and calreticulin prevent oxidative stress,Ca2+disturbances,and cell deathin renal epithelial cells [J]. J Biol Chem,1997,272(35):21751-21759.
    [148]Aoki M, Tamatani M, Taniguchi M, et al. Hypothermic treatment restoresglucose regulated protein78(GRP78) expression in ischemic brain. Brainresearch Molecular Brain Research,2001, Nov1;95(1-2):117-128.
    [149]Eymin B, Dubrez L, Allouche M, et al. Increased gadd153messenger RNA levelis associated with apoptosis in human leukemic cells treated with etoposide [J].Cancer Research,1997, Feb15;57(4):686-695.
    [150]Hu BR, Janelidze S, Ginsberg MD, et al. Protein aggregation after focal brainischemia and reperfusion [J]. Journal of Cerebral Blood Flow and Metabolism,2001;21:865-875.
    [151]Innamorato NG, Rojo AI, Garcia-Yague AJ, et al. The transcription factor Nrf2isa therapeutic target against brain inflammation [J]. J Immunol,2008Jul1;181(1):680-689.
    [152]Ping Z, Liu W, Kang Z, et al. Sulforaphane protects brains againsthypoxic-ischemic injury through induction of Nrf2-dependent phase2enzyme[J]. Brain Res,2010Jul9;1343:178-185.
    [153]Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factor Nrf2,HO-1expression and protects rat brains against focal ischemia [J]. Brain Res,2009, Jul28;1282:133-141.
    [154]Lau A, Wang X-J, Zhao F, et al. A noncanonical mechanism of Nrf2activationby autophagy deficiency: Direct interaction between Keap1and p62[J].Molecular and Cellular Biology2010;30:3275-3285.
    [155]Ichimura Y, Komatsu M. Selective degradation of p62by autophagy [J].Seminars in Immunopathology,2010;32:431-436.
    [156]Kirkin V, McEwan DG, Novak I, et al. A role for ubiquitin in selective autophagy[J]. Molecular Cell2009;34:259-269.
    [157]Das PC, McElroy WK, Cooper RL. Potential mechanisms responsible forchlorotriazine-induced alterations in catecholamines in pheochromocytoma(PC12) cells [J]. Life Sci,2003, Oct31;73(24):3123-3138.
    [158]Kang HT, Ju JW, Cho JW, et al. Down-regulation of Sp1activity throughmodulation of O-glycosylation by treatment with a low glucose mimetic,2-deoxyglucose [J]. J Biol Chem,2003, Dec19;278(51):51223-51231.
    [159]Matsuno-Yagi A, Hatefi Y. Kinetic modalities of ATP synthesis. Regulation bythe mitochondrial respiratory chain [J]. J Biol Chem,1986, Oct25;261(30):14031-14038.
    [160] Rothman JE. Mechanisms of intracellular protein transport [J]. Nature,1994,Nov3;372(6501):55-63.
    [161]Block MR, Glick BS, Wilcox CA, et al. Purification of anN-ethylmaleimide-sensitive protein catalyzing vesicular transport [J]. Proc NatlAcad Sci USA,1988,85:7852-7856.
    [162]Neuwald AF. The hexamerization domain of N-ethylmaleimidesensitive factor:structural clues to chaperone function [J]. Structure Fold Des,1999,7: R19-23.
    [163]May AP, Whiteheart SW, Weis WI. Unraveling the mechanism of the vesicletransport ATPase NSF, the N-ethylmaleimidesensitive factor. J Biol Chem,2001,276:21991-21994.
    [164]Mohtashami M, Stewart BA, Boulianne GL, et al. Analysis of the mutantDrosophila N-ethylmaleimide sensitive fusion-1protein in comatose revealsmolecular correlates of the behavioural paralysis [J]. J Neurochem,2001,77:1407-1417.
    [165]Stewart BA, Mohtashami M, Rivlin P, et al. Dominant-negative NSF2disruptsthe structure and function of Drosophila neuromuscular synapses [J]. J Neurobiol,2002,51:261-271.
    [166]Nishimune A, Isaac JT, Molnar E, et al. NSF binding to GluR2regulatessynaptic transmission [J]. Neuron,1998,21:87-97.
    [167]Osten P, Srivastava S, Inman GJ, et al. The AMPA receptor GluR2C terminuscan mediate a reversible, ATP-dependent interaction with NSF and alpha-andbeta-SNAPs [J]. Neuron,1998,21:99-110.
    [168]Noel J, Ralph GS, Pickard L, et al. Surface expression of AMPA receptors inhippocampal neurons is regulated by an NSF-dependent mechanism [J]. Neuron,1999.23:365-376.
    [169]Malhotra V, Orci L, Glick BS, et al. Role of an N-ethylmaleimide-sensitivetransport component in promoting fusion of transport vesicles with cisternae ofthe Golgi stack [J]. Cell,1988,54:221-227.
    [170]Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia.Brain Res,1982,239:57-69.
    [171]Liu and Hu BR. Alterations of N-ethylmaleimide-sensitive ATPase followingtransient cerebral ischemia [J]. Neuroscience,2004,128:767-774
    [172]Hu BR, Martone ME, Jones YZ, et al. Protein aggregation after transientcerebral ischemia. J Neurosci,2000,20:3191-3199.
    [173]Hu BR and Martone ME. Changes in postsynaptic densities after brain ischemia
    [M]. Maturation phenomenon in cerebral ischemia IV (Bazan N et al., eds), pp93-101. Berlin: Springer-Verlag,2001.
    [174]Whiteheart SW, Rossnagel K, Buhrow SA, et al. N-ethylmaleimide-sensitivefusion protein: a trimeric ATPase whose hydrolysis of ATP is required formembrane fusion [J]. J Cell Biol,1994,126:945-954.
    [175]Pan R, Chen C, Liu WL, et al. Zinc promotes the death of hypoxic astrocytes byupregulating hypoxia-induced hypoxia-inducible factor-1alpha expression viapoly (ADP-ribose) polymerase-1[J]. CNS Neurosci Ther,2013, Jul;19(7):511-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700