用户名: 密码: 验证码:
黄土台塬区植被恢复对土壤碳组分影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨黄土高原大规模的生态修复对土壤碳收支的影响,本研究以乔、灌、草和农田等不同植被类型,植被恢复的不同阶段,纯林和混交林等不同林分结构为对象,在野外调查和室内试验分析基础上,通过测定其典型剖面土壤及其团聚体有机碳的组分、数量变化及相互关系,研究其有机碳组分的变化趋势,探索生态恢复对土壤有机碳固定的影响,为黄土高原土地利用和生态环境建设规划提供依据。主要研究结果如下:
     1.植被恢复对土壤有机碳和总碳的影响
     (1)植被类型对土壤有机碳和总碳的影响较大。林地和草地可较大幅度地提高土壤碳含量,其中,灌木林地和天然草地在整个剖面上能积累更多碳。不同植被类型土壤有机碳和总碳的差异以0-5 cm土层尤为显著,林地和草地土壤有机碳含量高出耕地70%-107%,其土壤总碳高出耕地34%-66%。
     (2)不同植被恢复阶段土壤有机碳和总碳存在一定差异。沙棘林对土壤碳的积累效果最明显,其中在幼年期(15、16年)-成年期(20年)有机碳和总碳增加迅速,分别增加94%、158%;成年期-过熟期(26年)逐渐降低,总碳和有机碳分别减少32%、43%。刺槐林土壤碳随林龄增加而持续缓慢增加,22-28的6年间总碳增加14%,22-41的19年间有机碳增加68%。油松林有机碳和总碳变化速率介于沙棘林和刺槐林之间,30年以前(幼年-青年-成年期)随生长年限的增加而缓慢增加,30年后(成年-过熟期)则有所降低。
     (3)林分结构对土壤有机碳和总碳的累积存在较大影响。混交林对碳的积累效果明显优于纯林,土壤有机碳含量高出纯林16%-160%,其中侧柏-刺槐混交林高于纯林123%-160%,而油松-沙棘-刺槐混交林低于部分纯林;混交林土壤总碳含量高出纯林8%-115%,其中侧柏-刺槐混交林高于纯林74%-115%,而油松-沙棘-刺槐混交林分别低于沙棘和刺槐纯林15%和10%。
     2.植被恢复对土壤团聚体及其碳含量的影响
     (1)植被恢复可以较大程度地影响土壤团聚体及其碳含量。植被恢复可提高大粒
     径团聚体的含量,天然草地和灌木林地提高效果突出,而传统耕作会破坏大粒径团聚体。其中0-5cm土层,草地和林地土壤平均重量直径与耕地相比提高417%-811%,团聚体总量高于耕地29%-51%;耕地团聚体的48%为0.25-0.5mm粒级,草地和林地0.25-0.5mm团聚体所占比例均<20%,而其0.5-2mm团聚体所占比例均大于50%。
     植被恢复可以有效提高各粒级团聚体有机碳含量,尤以灌木林地最为显著;各植被类型土壤均表现为,0.25-0.5mm粒级有机碳含量最低,而2-5、1-2mm粒级有机碳较高。其中以0.5-1mm (林地和草地高于耕地53%-129%)和0.25-0.5mm(林地和草地高于耕地194%-196%)两个粒级差异较大。
     (2)不同植被恢复阶段土壤团聚体及其碳存在一定差异。刺槐林随恢复年限增加,团聚体增加明显,从28-41年的13年间,团聚体增加64%-143%。沙棘林和油松林幼年-青年期团聚体增加,成年期以后随恢复年限增加有所降低,油松在26-36年的10年间,团聚体降低43%-57%;沙棘林在16-26年的10年间降低36%-90%。
     不同植被恢复阶段,都以2-5mm、1-2mm和0.5-1mm三个粒级团聚体颗粒态有机碳含量较高。0-5 cm土层各粒径团聚体有机碳含量,油松林表现为16-26年间下降14%-36%,26-36年间除1-2mm粒径无变化外,其他各粒径均有小幅度增加,2-5mm粒级增加33%;28-41的13年间刺槐林各粒径团聚体有机碳含量增加23%-71%;而沙棘林16-26的10年间,各粒径团聚体有机碳含量基本上表现为先增加后减少,16-21的5年间增加46%-126%,而21-26的5年间下降24%-52%。
     (3)不同林分结构造成土壤团聚体及其碳存在一定差异。除刺槐混交林外,其他混交林土壤团聚体含量都低于其纯林。混交林可有效提高土壤各粒径团聚体有机碳含量。0-5 cm土层,侧柏纯林低于其混交林40%-58%,沙棘纯林低于油松-沙棘-刺槐混交林23-39%,油松纯林高于其混交林8%-57%,但低于油松-沙棘-刺槐混交林7%-30%,刺槐纯林低于其混交林1%-51%。
     3.植被恢复对土壤活性碳组分的影响
     (1)不同植被类型土壤活性碳组分存在较大差异。植被恢复可明显提高土壤活性
     碳组分及其分配比例,灌木林地和天然草地尤为显著。其中易氧化态有机碳含量高出耕地179%-204%,轻组有机碳含量高出耕地250%-1303%,粗颗粒态有机碳含量高出耕地865%-1409%,细颗粒态有机碳含量高出耕地65%-239%,可溶性有机碳含量高出耕地86%-155%。
     (2)不同植被恢复阶段土壤活性碳组分的变化较大。幼-青年期沙棘林和成年期刺槐林效果突出。其中沙棘林从幼年-青年,各碳组分积累明显,易氧化态有机碳含量增加25%-67%,轻组有机碳含量增加82%,粗颗粒态有机碳含量增加128%,细颗粒态有机碳含量增加57%,可溶性有机碳含量增加90%;成年-过熟期则迅速降低,易氧化态有机碳含量降低31%,轻组有机碳含量降低58%,粗颗粒态有机碳含量降低65%,细颗粒态有机碳含量降低40%,可溶性有机碳含量降低35%。刺槐林各碳组分随生长年限的增加各碳组分持续增加,其中22-41年的青年-成年期,易氧化态有机碳含量增加约60%,轻组有机碳增加18%-137%,粗颗粒态有机碳含量增加67%-210%,细颗粒态有机碳含量增加27%-243%,可溶性有机碳含量增加69%。而油松林的各活性有机碳组分变化速率介于沙棘林和刺槐林之间,基本以30年为界限先缓慢增加后缓慢降低。
     (3)不同林分结构土壤活性碳组分存在很大差异。混交林可有效提高各活性有机碳含量,混交林易氧化态有机碳含量高于纯林16%-304%;混交林轻组有机碳含量高于纯林17%-1399%,而沙棘混交林低于沙棘纯林7%-42%;混交林粗颗粒态有机碳含量高于纯林7%-639%,而刺槐-沙棘混交林低于沙棘纯林8%,油松-沙棘-刺槐混交林低于纯林21%-54%;混交林细颗粒态有机碳含量高于纯林16%-633%,却低于沙棘纯林5%- 53%;混交林可溶性有机碳含量高于纯林17%-170%,沙棘混交林略低或等于沙棘纯林。4.各碳组分之间的关系
     易氧化态、轻组、颗粒态有机碳组成物质及其物质来源基本一致,而重组与稳态有机碳基本一致,可溶性有机碳主要来源于易氧化态、细颗粒态有机碳;可溶性有机碳的增加可以减少无机碳的含量;碱性磷酸酶、蔗糖酶和脲酶活性直接与土壤活性碳组分的转化有关,而过氧化氢酶活性可反映土壤碳总量特征。
     土壤总碳、各有机碳组分与团聚体及其各粒级碳相关性说明,有机碳及其组分主要集中在1-2mm和0.5-1mm水稳性团聚体内;土壤碱性磷酸酶、蔗糖酶活性促进了团聚体的形成,尤其是1-2mm、0.5-1mm两个粒级团聚体。
To explore the influence of mass ecological restoration on soil carbon balance in the Loess plateau, this study as the objects of different plant types-arbor, shrub, grass and wheat, different vegetation restoration stages and different plantation structures of pure and mixed forests, on the base of field investigation and laboratory analysis, by measure the typical soil and it’s aggregates carbon fractions and their relationship, had been done to research the trend of carbon variations. The main research results as follows:
     1. Effects of vegetation restoration on soil organic carbon(SOC) and total carbon(STC)
     (1) Vegetation restoration could influence on SOC and STC greatly.
     Soil carbon content could be improved greatly in forestland and grassland, especially in shrub forestland and natural grassland in the whole profile. The obvious difference of SOC and STC was in 0-5 cm layer, SOC under forestland and grassland was markedly higher than that under farmland by 70%-107%, their STC by 34%-66%.
     (2) There were some difference on SOC and STC during vegetation restoration stages.
     During short time planting Hippophae reamnoides, soil carbon could been increased distinctly, while long time planting Robinia pseudoacacia, soil carbon could been enhanced notably. The obvious differences of SOC and STC during different stages were in 0-5 cm layer, with the extension of planting time, STC and SOC increased very slowly under Robinia pseudoacacia but constantly(22-28 year STC increased by 14%, 22-41 year SOC increased by 7%-68%). SOC and STC under Hippophae reamnoides increased promptly during 15-21 years(STC and SOC increased by 94% and 158% individually), while that during 21-26 years decreased obviously(STC and SOC decreased by 32%, 43% individually). The rate of change of SOC and STC under Pinus tabuliformis was between those under Robinia pseudoacacia and under Hippophae reamnoides, 30 years ago SOC and STC slowly increased with the etension of planting time, while 30 years later they decreased slowly.
     (3) The accumulation of SOC and STC were influenced greatly by plantation structure.
     The accumulation of carbon under mixed forestland was more than that under pure forestland. The obvious difference of SOC and STC was in 0-5 cm layer, SOC content under mixed forestland was higher than that under their pure forestland for 16%-160%, except that under the mixed forestland of Pinus tabuliformis-Hippophae reamnoides-Acer mono Maxim was lower than that under Hippophae reamnoides pure forestland for 3%, that under mixed forestland of Pinus tabuliformis-Hippophae reamnoides-Robinia pseudoacacia was lower than that under Hippophae reamnoides and Robinia pseudoacacia pure forestland for 19%, 21% individually. STC content under mixed forestland was higher than that under their pure forestland for 8%-115%, except that under mixed forestland of Pinus tabuliformis-Hippophae reamnoides-Robinia pseudoacacia was lower than that under Hippophae reamnoides and Robinia pseudoacacia pure forestland for 15% and 10% individually.
     2. Effects of vegetation restoration on soil aggregates and their organic carbon content
     (1) Vegetation restoration could affect soil aggregates and their carbon concent greatly.
     Vegetation restoration could improve effectively big size aggregate content, especially by shrub forest and natural grass, while big size aggregates could been destroyed by conventional tillage. The obvious difference of >0.25 size aggregate content was in 0-5 cm layer, soil MWD under forestland and grassland was higher than that under farmland by 417-811%, total big size aggregate content were higher than that under farmland by 29%-51%. 48% aggregates under farmland was in 0.25-0.5mm size, that under grassland and forestland was less than 20% in 0.25-0.5mm size, while more than 50% aggregate was in 0.5-2mm size.
     Vegetation restoration also could improve effectively soil aggregate organic carbon content of big size, especially by shrub forest. For each plant type, among aggregate of >0.25mm size, aggregate organic carbon content in 0.25-0.5mm size was the lowest, while that in 2-5mm and 1-2mm size was higher. The obvious difference of aggregate organic carbon content was in 0-5 cm layer, the difference of aggregate organic carbon in 0.5-1mm size (that under forestland and grassland markedly higher than that under farmland for 53%-129%) and 0.25-0.5mm(that under forestland and grassland markedly higher than that under farmland for 194%-196%) were more obvious than others among different plant types.
     (2) There were certain different in soil aggregates and their organic carbon during different vegetation restoration stages.
     During short time of planting Pinus tabuliformis, it’s soil aggregates could been increased distinctly. While long time of planting Robinia pseudoacacia, it’s soil aggregates could been enhanced greatly. The obvious difference of aggregate content was in 0-5 cm layer, aggregate content under Pinus tabuliformis forestland during 16-36 years decreased with the extension of planting time, during 16-26 years soil aggregates in 2-5mm, 1-2mm and 0.5-1mm decreased by 41%-79%, during 26-36 years soil aggregates in 1-2mm, 0.5-1mm and 0.25-0.5mm decreased by 43%-57%. during 28-41 years under Robinia pseudoacacia forestland increased differently by 64%-143% (except >5mm size). That under 16-26 years Hippophae reamnoides forestland decreased 36%-90% (except 0.25-0.5mm).
     During vegetation restoration years, aggregate organic carbon in 2-5mm, 1-2mm and 0.5-1mm size were higher than that in other sizes. 0-5cm layer, aggregate organic carbon content under 16-26 years’Pinus tabuliformis forestland decreased by 14%-36%, that under that of 26-36 years increased a little bit. That under 28-41 years Robinia pseudoacacia forestland increased differently by 23%-71%. That under 16-26 years Hippophae reamnoides forest increased firstly and then decreased, that of 16-21 years increased by 46%-126%, 21-26 years decreased by 24%-52%.
     (3) Soil aggregates and their carbon were influenced greatly by plantation structure. >0.25mm aggregate content under pure forest was higher than that under mixed(except that under Robinia pseudoacacia pure forest). While aggregate organic carbon was on the contrary, in the 0-5 cm layer, that under Biota orientalis pure forest was lower than that under it’s mixded by 40%-58% (except that in >5mm size higher by 30%); that under Hippophae reamnoides pure forest was lower than that under mixed Pinus tabuliformis-Hippophae reamnoides-Robinia pseudoacacia forest by 23%-39% (except that in 0.25-0.5mm size higher by 21%); that under Pinus tabuliformis pure forest was lower than that under mixed forest of Pinus tabuliformis-Hippophae reamnoides-Robinia pseudoacacia by 7%-30%; that under Robinia pseudoacacia pure forest was lower than that under it’s mixed by 1%-51%.
     3. Effects of vegetation restoration on soil labile organic carbon(LOC)
     (1) Different plant type leaded to the big difference on soil LOC.
     Soil LOC fractions’content and their proportions under forestland and grassland were higher than those under farmland in the 0-100 cm profile, especially under shrub forestland and natural grassland. The obvious difference of soil LOC was in 0-5cm layer, compared to farmland, EOC of forestland and grassland was higher by 179%-204%, LFOC of those was higher by 250%-1303%, CPOC of those was higher for 865%-1409%, FPOC of those was higher by 65%-239%, DOC was higher by 86%-155%.
     (2) Soil LOC during different vegetation restoration stages varied greatly.
     During short time of planting Hippophae reamnoides, soil LOC could been increased distinctly. While long time of planting Robinia pseudoacacia, soil LOC could been improved greatly. The obvious difference of soil LOC was in 0-5 cm layer, soil LOC under Robinia pseudoacacia forestland increased very slowly with the extension of planting time but constantly increased, EOC increased by 60%, LFOC increased by 18%-137%, CPOC increased by 67%-210%, FPOC increased by 27%-243%, DOC increased by 69%.
     In 0-5 cm layer, soil LOC under Hippophae reamnoides forestland increased promptly during 15-21 years, EOC increased by 25%-67%, LFOC increased by 82%, CPOC increased by 128%, FPOC increased by 57%, DOC increased by 90%; while those of during 21-26 years decreased obviously, EOC decreased by 31%, LFOC decreased by 58%, CPOC decreased by 65%, FPOC decreased by 40%, DOC decreased by 35%.
     The rate of change of soil LOC under Pinus tabuliformis forestland was between that under Robinia pseudoacacia and that under Hippophae reamnoides, 30 years ago with the etension of planting time, LOC slowly increased, while 30 years later they decreased slowly.
     (3) There were obvious difference on soil LOC among different plantation structure.
     Compared to pure forestland, mixed forestland could boost effectively soil LOC, for example, in the 0-5 cm layer, EOC increased by 16%-304%, LFOC increased by 17%-1399% (while that under mixed forest of Hippophae reamnoides was lower than that under it’s pure forest by 7%-42%), CPOC increased by 7%-639% (while that under mixed forest of Robinia pseudoacacia-Hippophae reamnoides was lower than that under Hippophae reamnoides pure forest by 8%,that under mixed forest of Pinus tabuliformis-Hippophae reamnoides-Robinia pseudoacacia was lower than that under their pure forest by 21%-54%), FPOC increased by 16%-633% (while was lower than that under Hippophae reamnoides forest by 5%-53%), DOC increased by 17%-170% (while that under mixed Hippophae reamnoides forest was lower than that under it’s pure forest for 10%).
     4. The relationship among different carbon fractions
     The correlation coefficients among carbon fractions showed: the composition of the substance and its material source of EOC, LFOC and POC were basically the same, while those of heavy fraction organic carbon and stable organic carbon were basically the same, DOC mainly came from EOC and FPOC, the increase of DOC could decrease soil inorganic carbon content. Alkaline-phosphatase, Invertase and Urease activities related directly with the transformation of soil LOC and their availibility; while Catalase activity could reflect the characteristics of soil carbon amount.
     The correlations between STC, organic carbon fractions and aggregates, aggregate organic carbon showed: organic carbon fractions were mainly concentrated in aggregates of 1-2mm and 0.5-1mm; in addition, the correlation coefficients between 1-2mm, 0.5-1mm size aggregate and four enzyme activities were higher than those of other sizes, this also could indirectly explain that soil enzyme activity would affect the formation of aggregate.
引文
曹靖,常雅君,苗晶晶,祁世坪. 2009.黄土高原半干旱区植被重建对不同坡位土壤肥力质量的影响.干旱区资源与环境, 23(1): 170~173
    陈文新,李阜棣. 1979.土壤微生物学.上海:上海科学技术出版社: 53~54
    程淑兰,欧阳华,牛海山,王琳,田玉强,张锋,高俊琴. 2004.荒漠化重建地区土壤有机碳时空动态特征-以陕西省榆林市为例.地理学报, 59(4): 505~513
    戴全厚,刘国彬,薛萐,余娜,张超,兰雪. 2008.不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响.水土保持研究, 15(3): 61~64
    方精云,刘国华,徐嵩龄. 1996.我国森林植被的生物量和净生产量.生态学报, 16(5): 497~508
    关松荫. 1980.土壤酶与土壤肥力.土壤通报, 11(6): 41~44
    关松荫,张德生,张志明. 1986.土壤酶及其研究法.北京:农业出版社. 14~142
    郭然,王效科,刘康,杨帆. 2004.樟子松林下土壤有机碳和全氮储量研究.土壤, 36 (2): 192~196
    郭梓娟,宋西德,赵宏刚. 2007.沙棘—侧柏混交林生物量、林地土壤特性及其根系分布特征的研究.水土保持通报, 27(3): 18~23
    韩恩贤,韩刚,薄颖生. 2007.黄土高原油松、侧柏与沙棘人工混交林生长及土壤特性研究.西北林学院学报, 22(3): 100~104
    何振立. 1997.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤, (02): 61~69
    侯扶江,肖金玉,南志标. 2002.黄土高原退耕地的生态恢复.应用生态学报, 13 (8): 923~929
    胡婵娟,傅伯杰,靳甜甜,刘国华. 2009.黄土丘陵沟壑区植被恢复对土壤微生物生物量碳和氮的影响.应用生态学报, 20(1): 45~50
    黄雪夏,唐晓红,魏朝富. 2007a.不同利用方式对紫色水稻土水溶性有机碳的影响.中国农学通报, 23(8): 440~443
    黄雪夏,唐晓红,魏朝富,谢德体. 2007b.利用方式对紫色水稻土有机碳与颗粒态有机碳的影响.生态环境, 16(4): 1277~1281
    黄懿梅,安韶山,曲东,赵伟峰. 2007.黄土丘陵区植被恢复不同阶段土壤酶活性的响应与演变.水土保持学报, 21 (1 ): 152~155
    贾黎明. 1998.固氮树种与非固氮树种混交林研究现状.世界林业研究, (1): 20~26
    解宪丽,孙波,周慧珍,李忠佩,李安波. 2004.中国土壤有机碳密度和储量的估算与空间分布分析.土壤学报, 41(1): 35~43
    李家永,袁小华. 2001.红壤丘陵区不同土地资源利用方式下有机碳储量的比较研究.资源科学, 23(5): 73~76
    李江涛,张斌,彭新华,赖涛. 2004.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响.土壤学报, 41 (6): 912~917
    李菊梅,王朝辉,李生秀. 2003.有机质,全氮和可矿化氮在反映土壤供氮能力方面的意义.土壤学报, 40 (2): 232~238
    李恋卿,潘根兴,张旭辉. 2000.太湖地区几种水稻土的有机碳储存及其分布特性.科技通报, 11(6): 421~426
    李新宇,唐海萍,赵云龙,张新时. 2004.怀来盆地不同土地利用方式对土壤质量的影响分析.水土保持学报, 18(6): 103~107
    李阳兵,杨霞,宋晓利,徐花,江杨梅,王春致. 2006.岩溶生态系统土壤非保护性有机碳含量研究.农业环境科学学报, 25(2): 402~406
    李裕元,邵明安,郑纪勇. 2007.黄土高原北部草地的恢复与重建对土壤有机碳的影响.生态学报, 27(6): 2279~2287
    李跃林,彭少麟,赵平,任海,李志安. 2002.鹤山几种不同土地利用方式的土壤碳储量研究.山地学报, 20(5): 548~552
    李忠佩. 2004.低丘红壤有机碳库的密度及变异.土壤, 36 (3): 292~297
    李忠佩,林心雄,车玉萍. 2002.中国东部主要农田土壤有机碳库的平衡与趋势分析.土壤学报, 39(3): 351~360
    李忠佩,张桃林,陈碧云. 2004.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报, 41(4): 544~552
    梁文举,闻大中. 2001.土壤生物及其对土壤生态学发展的影响.应用生态学报, 12(1): 137~140
    刘纪远,王绍强,陈镜明,刘明亮,庄大方. 2004. 1990 - 2000年中国土壤碳氮蓄积量与土地利用变化.地理学报, 59(4): 483~496
    刘绍辉,方精云,清田信. 2002.北京山地温带森林的土壤呼吸.植物生态学报, 1998, 22(2): 119~126
    卢金伟,李占斌. 2002.土壤团聚体研究进展.水土保持研究, 9(1): 81~85.
    马玉红,郭胜利,杨雨林,王小利,杨光. 2007.植被类型对黄土丘陵区流域土壤有机碳氮的影响.自然资源学报, 22(1):97~105.
    莫彬,曹建华,徐祥明,申宏岗,杨慧,李小方. 2006.岩溶山区不同土地利用方式对土壤活性有机碳动态的影响.生态环境, 15(6): 1224~1230
    鲍士旦主编. 2000.土壤农化分析.北京:农业出版社
    倪进治,徐建民,谢正苗. 2000.土壤轻组有机质.环境污染治理技术与设备, 1(2): 58~64
    潘根兴. 1999a.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义.南京农业大学学报, 22(1): 51~57
    潘根兴. 1999b.中国土壤有机碳和无机碳库量研究.科技通报, 15(5): 330~332
    潘根兴,张旭辉,李恋卿. 2001.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响.生态学杂志, 20(2): 16~19
    潘根兴,李恋卿,张旭辉. 2003.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展, 18(4): 609~618
    彭新华,张斌,赵其国. 2003.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报, 23: 2176~2183
    齐雁冰,常庆瑞. 2007.人工植被恢复荒漠化逆转过程中土壤颗粒分形特征.土壤学报, 44(3): 566~570
    沈宏,曹志洪,胡义正. 1999.土壤活性有机碳的表征及其生态效应.生态学杂志, 18(3): 32~38
    沈宏,曹志洪. 2000.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报, 37(2): 166~173
    苏永中,赵哈林. 2003.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究.中国农业科学, 36(8): 928~934
    孙波,张桃林,赵其国. 1999.我国中亚热带缓丘区红粘土红壤肥力的演化Ⅱ.化学和生物学肥力的演化.土壤学报, 36(2): 203~217
    孙维侠,史学正,于东升. 2003.土壤有机碳的剖面分布特征及其密度的估算方法研究.土壤, 35 (3): 236~241
    唐国勇,李昆,孙永玉,张春华. 2010.干热河谷不同利用方式下土壤活性有机碳含量及其分配特征.环境科学, 31(5): 1365~1371
    汪远品,何腾兵. 1994.贵州主要耕作土壤的脲酶活性研究.热带亚热带土壤科学研究, 3(4): 226~232
    王晶,谢宏图,朱平,李晓云. 2003.土壤活性有机质(碳)的内涵和现代分析方法概述.生态学杂志, 22(6): 109~112
    王琳琳,陈云明,张飞,王锋利,李寰. 2010.黄土丘陵半干旱区人工林细根分布特征及土壤特性.水土保持通报, 30(4): 27~31
    王清奎,汪思龙. 2005.土壤团聚体形成与稳定机制及影响因素.土壤通报, 36( 3): 415~421
    王小利,郭胜利,马玉红,黄道友,吴金水. 2007.黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响.应用生态学报, 18(6): 1281~1285
    王晓龙,胡锋,李辉信,刘满强,秦江涛,张斌. 2007.侵蚀退化红壤自然恢复下土壤生物学质量演变特征.生态学报, 27(4): 1404~1411
    王艳芬,陈佐忠, Larry T. Tieszen. 1998.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报, 22 (6 ): 545~551
    魏朝富,谢德体,阵世正. 1996.紫色水稻土有机无机复合与土粒团聚的关系.土壤学报, 33(1): 70~77
    吴彦,刘世全,付秀琴,王金锡. 1997.植物根系提高土壤水稳性团聚体含量的研究.土壤侵蚀与水土保持学报, 3( 1): 45~49
    肖洪浪,赵雪,赵文智. 1998.河北简育干润均腐土耕种过程中的退化研究.土壤学报, 35(1): 129~134
    谢锦升,杨玉盛,解明曙,杨少红,杨智杰. 2006.土壤轻组有机质研究进展.福建林学院学报, 26(3): 281~288
    熊毅. 1983.土壤胶体(第一册).北京:科学出版社
    熊毅,张敬森,傅积平. 1985.土壤胶体(第二册).北京:科学出版社
    徐德应. 1994.人类经营活动对森林土壤碳的影响.世界林业研究, (5): 26~32
    徐秋芳,姜培坤,沈泉. 2005.灌木林与阔叶林土壤有机碳库的比较研究.北京林业大学学报, 7(2): 18~22
    徐秋芳,姜培坤. 2004.不同森林植被下土壤水溶性有机碳研究.水土保持学报, 18(6): 8~11
    杨长明,欧阳竹,杨林章. 2006.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响.生态学报, 26(12): 4148~4155
    杨黎芳,李贵桐,赵小蓉. 2007.栗钙土不同植被类型下有机碳和无机碳剖面分布特征.生态环境, 16(1): 158~162
    杨丽韫,罗天祥,吴松涛. 2005.长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较.应用生态学报, 16(7): 1195~1199
    杨万勤,王开运. 2002.土壤酶研究动态与展望.应用与环境生物学报, 8(5): 564~570
    杨玉盛,刘艳丽,陈光水,李灵,谢锦升,林鹏. 2004.格氏栲天然林与人工林土壤非保护性有机碳含量及其分配.生态学报, 24, 1~8
    杨玉盛,谢锦升,盛浩,陈光水,李旭. 2007.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响.地理学报, 62(11): 1123~1131
    姚胜蕊,束怀瑞. 1999.有机物料对苹果根际营养元素动态及土壤酶活性的影响.土壤学报, 36(3): 428~432
    宇万太,马强,赵鑫,周桦,李建东. 2007.不同土地利用类型下土壤活性有机碳库的变化.生态学杂志, 26(12): 2013~2016
    袁可能. 1963.土壤有机矿质复合体的研究I:土壤有机矿质复合体中腐殖质氧化稳定性的初步研究.土壤学报, 18(2): 286~293
    袁颖红,李辉信,黄欠如,胡锋,潘根兴. 2004.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响.生态学报, 24(12): 2961~2966
    曾骏,郭天文,包兴国,王卓,孙建好. 2008.长期施肥对土壤有机碳和无机碳的影响.中国土壤与肥料, (2): 11~14
    张成娥,刘国彬,陈小利. 1999.坡地不同利用方式下土壤微生物和酶活性以及生物量特征.土壤通报, (3): 101~103
    张春霞,郝明德,魏孝荣. 2004.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究.土壤肥料. 3(10): 12~16
    张金波,宋长春,杨文燕. 2005.土地利用方式对土壤水溶性有机碳的影响.中国环境科学, 25(3): 343~347
    张金波,宋长春. 2003.土地利用方式对土壤碳库影响的敏感性评价指标.生态环境, 12(4): 500~504
    张金屯. 1998.气候变化对自然土壤碳、氮循环的影响.地理学报, 18 (5): 463~471
    张林波,曹洪波,高吉喜. 1998.大气CO浓度升高对土壤微生物的影响.生物学杂志, 17(4): 33~38
    张履勤,章明奎. 2006.土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响.土壤通报, 37(4): 662~665
    张旭辉,李恋卿,潘根兴. 2001.不同轮作制度对淮北白浆土团聚体及其有机碳的积累和分布的影响.生态学杂志, 20(2): 16~19
    赵吉,邵玉琴,孔祥辉. 2002.皇甫川地区枯枝落叶的分解及其对土壤生物环境的影响.农业环境保护, 21(6): 543~545
    赵劲松,袁星,张旭东,王晶. 2003.土壤溶解性有机质的特性与环境意义.应用生态学报, 14(1): 126~130
    郑粉莉. 1996.子午岭林区植被破坏与恢复对土壤演变的影响.水土保持通报, 16 (5): 41~44
    周程爱,张于光,肖烨,张小全,李迪强. 2009.土地利用变化对川西米亚罗林土壤活性碳库的影响.生态学报, 29(8): 4542~4547
    周广胜,张新时. 1996.全球气候变化的中国自然植被的净第一生产力研究.植物生态学报, 20(1): 11~19
    周国模,姜培坤. 2010.不同植被恢复对侵蚀型红壤活性碳库的影响.水土保持学报, 18(6): 68~83
    周萍,潘根兴. 2007.长期不同施肥对黄泥土水稳性团聚体颗粒态有机碳的影响.土壤通报, 8(2): 256~261
    周萍,张旭辉,潘根兴. 2006.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响.植物营养与肥料学报, 12(6): 765~771
    周涛,史培军,王绍强. 2003.气候变化及人类活动对中国土壤有机碳储量的影响.地理学报, 58(5): 727~734
    朱显谟. 1999.迅速全面恢复植被是根除河害之本.中国水土保持, (10): 29~31
    Adger W N, Brown K, Shiel R S, Whitby M C. 1992. Carbon dynamics of plant type in Great Britain. Journal of Environmental Management, 36(2): 117~133
    Alvarez C R, Alvarez R, Grigera M S, Lavado R S. 1998. Associationsbetween organic matter fractions and the active soil microbial biomass. Soil Biol. Biochem, 30: 767~773
    Alvarez R, Alvarez C R, Daniel P E, Richter V, Blotta L. 1998. Nitrogen distribution in soil density fractions and its relation to nitrogen mineral isation under different tillage systems. Australia Journal Soil Researeh, 36: 247~256
    Amberdella C A, Elliottet. 1994. Carbon and nitrogen dynamics of some fraction from cultivated grassland soils . Soil Science Soc - ety of America Journal, 58: 123~130
    Amelung W, Kaisser K, Kammerer G, Sauer G. 2002. Organic carbon at soil particle surface - evidence from X - ray photoelectron spectroscopy and surface abrasion. Soil Sci. Soc. Am. J, 66: 1526~1530
    Anderson T H, Domsch K H. 1990. Application of eco - physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem, 22: 251~255
    Balesdent J, Mariotti B, Gunlet B. 1987. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry, 19(1): 25~30
    Barrios E, Buresh R J, Sprent J I. 1996. Organicmatter in soil particle size and density fractions from maize and legume cropping systems. Soil Biol. Biochem, 28: 185~193
    Barrios E, Kwesiga F, Buresh R J, Sprent J I. 1997. Light fraction soil organic matter and available nitrogen following trees and maize. Soil Scienee Society of America Journal, 61: 826~831
    Batjes N H. 1996. Total carbon and nitrogen in the soil of the world. European Journal of Soil Science, 47: 151~163
    Bettina John, Tamon Yamashita, Bernard Ludwig, Heiner Flessa. 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of plant type. Geoderma, 128, 63~79
    Biederbeck B O, Zentner R P. 1994. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol. Biochem, 26(12): 1647~1656
    Blair G J, Lefroy R D B, Lisle L. 1995. Labile soil carbon fractions based on the degree of oxidation and the development of a carbon management index for agricultural systems. Aus. J. Agric. Res. Ecol, 46: 1459~1466
    Boone R D. 1994. Light fraction soil organic matter: Origin and contribution to net nitrogen mineralization . Soil Biology and Biochemistry, 26: 1459~1468
    Bouwman A F. 1990. Soils and Greenhouse Effect. Chichester: John Wiley Sons: 61~127
    Bremer E, Janzen H H, Johnston A M. 1994. Sensitivity of total, light and mineralizable organic matter to management practices in a Lethbridge soil. Can. J. Soil Sci, 74: 131~138
    Burke C, Yonker C M, Parton W J, Cole C V, Flach K, Schimel D S. 1989. Texture, climate, and cultivation effects on soil organic matter content in U. S. Grassland soils. Soil Sci. Soc. Amer. J, 53: 800~805
    Buscail R R, Pocklington R, Daumas L, Guidi. 1990. Fluxes and budget of organic matter in the benthic boundary layer over the northwestern Mediterranean margin. Continental Shelf Research, 10:1089~1122
    Buyanovsky G A, Wagner G H. 1994. Residue decomposition and carbon in physical fractions of soil. Trans. 4th International Soil Science Congress. Acapulca. Mexico, 9: 253~263
    Caldwell B A, Griffiths R P, Sollins P. 1999. Soil enzyme response to vegetation disturbance in two lowland Costa Rican. Soil Biology and Biochemistry, 31(12): 1603~1608
    Cambardella C, Elliott E. 1994. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Science Society of America Journal, 58: 122~130
    Celik, I. 2005. Land - use effects organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research, 83: 270~277
    Chan K Y. 1997. Consequences og changes in particulate organic carbon in verticals under pasture and cropping. Soil Sci. Soc. Amer. J, 61: 1376~1382
    Chan K Y, Bowman A, Oates A. 2001. Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Science, 166: 61~67
    Christensen B T. 1987. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biology and Biochemistry, 19(4): 429~435
    Christensen B T. 2001. Physical fractionation of soil and structural and functional complexity in organicmatter turnover. European Journal of soil Science, 52: 345~353
    Dalal R C, Chan K Y. 2001. Soil organic matter in rain - fed cropping systems of the Australian Cereal Belt. Aust J SoilRes, 39: 435~464
    Davidson E A, Ackeman I K. 1993. Changes in carbon inventories following cultivation of previously untilled soil . Biogeochemistry, 20: 161~193
    Decker K L M, Boemer R E J, Morris S J. 1999. Scale - dependent patterns of soil enzyme activity in a forest landscape. Canadian Journal of Forest Research, 29(2): 232~241
    Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, Wisniewski J. 1994. Carbon pools and fiux of global forest ecosystem. Science, 263: 185~190
    Domzal H, Hodara J, TurskR. 1993. The effects ofagriculturaluse on the structure and physical properties of three soil types. Soil and Tillage Research, 27: 365~375
    Doran J W, Jones A J, Arshad M A. 1999. Determinants of soil quality and health. Soil Quality and Soil Erosion. Boca Raton: CRC Press: 17~36
    Elliott E T. 1986. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil. Sci. Soc. Am. J, 50: 627~633
    Elliott E T, Cambardella C A. 1991. Physical separation of soil organic matter. Agri. Ecos. & Envir, 34: 407~419
    Eswaran H, Reich F, Kimble J M. 2000. Global soil carbon stocks. Global Climate Change and Pedogenic Carbonates. USA: Lewis Publishers: 15~26
    Folsom B L, Wagner G H, Scrivner C L. 1974. Comparison of soil carbohydrate in several prairie and forest soils by gas - liquid chromatography. Soil Sci. Soc Am. Proc, 38: 305~309
    Freixo A A, Machado P L, Santos H P. 2002. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil Till. Res, 64: 221~230
    Golchin A, Oades J M, Kjemstad J O. 1994. Soil structure and carbon cycling. Aust. J. Soil Res, 32: 1043~1068
    Greenland D J, Ford G W. 1964. Trans. 8th Int. Congr Soil Scienee, Bucharest, 3: 137~148
    Gregorich E G, Carter M R, Angers D A, Angers D A, Ellert B H. 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Soil Sci, 74: 376~385
    Gupta VVSR. 1998. Distribution of microbial biomass and its activity in different soil aggregate size classes affected by cultivation. Soil Biology and Biochemistry, 20(6): 777~786
    Haynes R J. 2000. Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand. Soil Biol & Biochem, 32: 211~219
    Haynes, R J. 1993. Effect of sample pretreatment on aggregate stability measured by wet sieving or turbidimetry on soils of different cropping histories. Soil Sci, 44, 261~270
    Janzen H H, Campbell C A, Brandt S A. 1992. Light fraction organic matter in soils from long - term crop rotations. Soil Sci. Soc. Am. J, 56: 1799~1808
    Jastrow J D, Boutton T W, Miller R M. 1996a. Carbon dynamics of aggregate - associated organic matter estimated by 13C natural abundance. Sci. Soc. Am. J, 60: 801~807
    Jastrow J D. 1996b. Soil aggregate formation and the accrual of particulate and mineral - associated organic matter. Soil Biol Biochem, 28(4 - 5): 665~676
    Jeffrey E Herrick, Michelle M Wander. 1997. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity. Lal R, et al. Soil Processes and the Carbon Cycle. Boca Raton: Boca Raton: CRC Press: 405~425
    Jenkinson D S, Adams D E, Wild A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature, 351: 304~306
    Johnston A E. 1991. Soil fertility and soil organic matter. In: Wilson WS, eds. Advances in Soil Organic Matter Research: the Impact on Agriculture and the Environment. Cambridge: Royal Society of Chemistry, 299~313
    Kalbitz K, Solinger S, Park J H. 2000. Controls on the dynamics of dissolved organic matter in soils a review. Soil Sci, 165: 277~304
    Staben M L, Karlen D L, Rosek M J, Gardner J C, Allan D L, Alms M J, Bezdicek D F, Flock M, D. R. Huggins, Miller B S, Staben M L. 1999. Conservation reserve program effects on soil quality indicators. Journal of Soil and Water Conservation, 54 (1): 439~444
    Kaiser K, Guggenberger G, Haumaier L, Zech W. 2001a. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestrisL.) and European beech (Fagus sylvaticaL.) stands in northeastern Bavaria, Germany. Biogeochemistry, 55: 103~143.
    Kaur B, Gupta S R, Singh G. 2000. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Applied Soil Ecology, 15(3): 283~294
    Kay, B. 1990. Rates of change of soil structure under different cropping systems. Adv. Soil Sci, 12, 1~52
    Kennedy A C, Papendick R I. 1995. Microbial characteristics of soil quality. Soil Water conserv, 5:243~247
    Kucharik C J, Foley J A, Delire C, V A Fisher, M T Coe, J Lenters, C Young-Molling, N Ramankutty, J M Norman, S T Gower. 2000. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance and vegetation structure. Glob Biogeochem cycle, 14(3): 795~825
    Lal R, Logan T J, Fausey N R. 1990. Long - term tillage effects on Mollic Ochraqualf in northwestern Ohio soil nutrient profile. Soil Tillage Research, 15: 371~382
    Lal R. 1998. Soil processes and greenhouse effect. In: Lal R, et al. eds. Methods for assessment of soil degradation. Boca Raton : CRC press, Boca, RATON, printed in the United States of America, 119~212
    Lal R, Follett R F, Kimble J, Cole C V. 1999. Management U. S. cropland to sequester carbon in soil. Journal of Soil and Water Cons, 54(1): 374~381
    Lal R. 2002. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degradation & Development, 13: 469~478
    Lehmann J, Cravo M S, Zech W. 2001. Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected by single trees: chemical characterization of density, aggregate, and particle size fractions. Geoderma, 99(122): 147~168
    Li Z, Zhao Q G. 2001. Organic carbon content and distribution in soils under different plant types in tropical and subtropical China. Plant and Soil, 231: 175~185
    Malhi S S, Brandt S, Gill K S. 2003. Cultivation and grass land type effects on light fraction and total organic C and N in a Dark Brown Chernozemic soil. Canadian Journal of Soil Science, 83(2): 145~153
    Marland G, Garten Jr C T, Post W M. 2004. Studies on enhancing carbon sequestration in soils. Energy, 29: 1643~1650
    Mcdowell W H, Likens G E. 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr, 58: 177~195
    Mensah F, Schoenau J J, Malhi S S. 2003. Soil carbon changes in cultivated and excavated land converted to grasses in east - central Saskachewan. Biogeochemistry, 63: 85~92
    Monkiedje A, Spitellers M, Fotio D, Sukul P. 2006. The effect of landuse on soil health indicators in per - urban agriculture in the humid forest zone of southern Cameroon. Journal of Environmental Quality, 35(6): 2402~2409
    Murty D, Kirschbaum M F, Mcmurtrie R E. 2002. Does convention of forest to agricultural land change soil carbon and nitrogen? A review of literature. Global Change Biology, 8: 105~123
    Nelson P N, Dictor M C, Soulsa G. 1994. Availability of organic carbon in soluble and particle - size fractions from a soil profile. Soil Biochem, 26: 1549~1555
    Nicolardot B, Fauvet G, Cheneby D. 1994. Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biology, (2): 253~261
    Osher L J, Matson P A, Amundson R. 2003. Effect of plant type change on soil carbon in Hawaii. Biogeochemistry, 65: 213~232
    Parton W J, Schimel D S, Cole C V, Cole CV, Ojima D S. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J, 51: 1173~1179
    Piccolo A, Mbagwu J S C. 1999. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Science Society of America Journal, 63: 1801~1810
    Post W M, Emanuel W R, Zinke P J, Stangenberger A G. 1982. Soil carbon pools and life zones. Nature, 298, 156~159
    Post W M, Peng T H, Emanuel W R, King A W. 1990. The Global Carbon Cycle. American Scientist, 78: 310~326
    Post W M, Izaurralde R C, Mann L K, et al. 2001. Montoring and verifying changes of organic carbonin soil. Climatic Change, 51: 73~99
    Potter K N, Torbert H A, Johnson H B, Tischler C R. 1999. Carbon storage after long - term grass establishment on degraded soils. Soil Science, 164: 718~725
    Puget P, Chenu C, Balesdent J. 2000. Dynamics of soil organic matter associated with particle - size fractions of water - stable aggregates. European Journal of Soil Science, 51: 595~605
    Reeder J D, Schuman G E, Bowman R A. 1998. Soil C and N changes on conservation reserve program lands in the Central Great Plains. Soil and Tillage Research, 47(3 - 4): 339~349
    Robles M D, Burke I C. 1998. Soil organic matter recovery on conservation reserve program fields in southeastern Wyoming. Soil Science Society of America Journal, 62: 725~730
    Roscoe R, Buurman P. 2003. Tillage Effects on Soil Organic Matter in Density Fractions of A Cerrado Oxisol. Soil and Tillage Research, 70(2): 107~119
    Sayiozzi A, Levi Minzir R, Cardellir R, Riffaldi R. 2001. A comparison of soil quality in adjacent cultivated forest and native grassland soil. Plant and Soil, 233(2): 251~259
    Schlesinger W H. 1993. Response of the terrestrial biosphere to global climate change and human perturbation. Vegetation, 104/105: 295~305
    Sexstone A J, Revsbech N P, Parkin T B, Tiedje J M. 1985. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J, 49(3): 645~651
    Sikora L J, Cambardella C A, Yakivchenko V, Doran J W. 1996. Assessing soil quality by testing organic matter. In: Magdoff F R. (eds).Soil Organic Analysis and Interpretation. Soil Sci. Soc. Amer. Madison. WI.P. 41~50
    Silveria A M, Victoria R L, Baliester M V. 2000. Simulation of the effects of plant type changes in soil carbon dynamics in the Piracicaba river basin, Sao Paulo State, Brazil. Brasilerira, 35(2): 389~399
    Six J, Paustain K, Elliott E T, Combrink C. 2000. Soil structure and organic matter: I. Distribution of aggregate - size classes and aggregate - associated carbon. Soil Sci. Soc. Am. J, 64: 681~689
    Skjemstad J O, Dalal R C, Barron P F. 1986. Spectroscopic investigations of cultivation effects on organic matter of vertisols. Soil Sci. Soc.Am, 50: 354~359
    Smith W N, Dejardins R L, Pattey E. 2000. The net flux of carbon from agricultural soils in Canada 1970 - 2010. Global Change Biology, 6(5): 557~568
    Sollins P, Spycher G, Glassman C A. 1984. Netnitrogen mineralization from light and heavy fraction forest soil organic matter. Soil Biology and Biochemistry, 16: 31~37
    Spycher G, Sollins P, Rose S. 1983. Carbon and nitrogen in the light fraction of forest soil: vertical distribution and seasonal pattterns. Soil Science, 135: 79~87
    Staben M L, Bezdicek D F, Smith J L, Fauci M F. 1997. Assessment of soil quality in conservation reserve program and wheat - fallow soils. Soil Science Society of America Journal, 61: 124~130
    Stinson G, Freedman B. 2001. Potential for carbon sequestration in Canadian forests and agroecosystems. Mitigation and Adaptation Strategies for Global Change, 6: 1~23
    Sundquist E T. 1993. The global carbo dioxide budget. Science, 259: 935~941
    Templer P H, Groffman P M, Flecker A S, Power A G. 2005. Plant type change and soil nutrient transformations in the Los Haitises region of Dominican Republic. Soil Biology﹠ Biochemistry, 37: 215~225
    Thuille A, Buchmann N, Schulze E D. 2000. Carbon stocks and soil respiration rates duringdeforestation, grassplant type and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiology, 20: 849~857
    Tisdall J M, Oades J M. 1982. Organic matter and water - stable aggregates. Journal of Soil Science, 33: 141~163
    Tisdall J M. 1996. Formation of soil aggregates and accumulation of soil organic matter. In: Carter, M. R, Stewart, B. A. (Eds. ), Soil Structure and Organic Matter Storage in Agricultural Soils. CRC Press, Boca Raton, FL: 57~96
    Torn M S, Trunbore S E, Chadwick O A, Vitousek P M. 1997. Mineral control of soil organic carbon storage and turnover. Nature, 389: 170~173
    Trujillo W, Amezquita E, Fisher M J, Lal, R. 1997. Soil organic carbon dynamics and plant type in the Colobian Savannas I. Aggregate size distribution. Lal R. Soil Processes and the Carbon Cycle. Boca Raton: CRC Press, 267~280
    Wander M M, Traina S J, Stinner B R, Peters S E. 1994. The effects of organic and conventional management on biologically active soil organic matter fractions. Soil Sci Soc Am J, 58: 1130~1139
    Wang S Q. 2002. Regional characteristics of China’soil carbon storage and effects of plant type changes In Li Kerang Landuse Change, Greenhouse Gases Emission﹠ Terrestrial Ecosystem Carbon Cycle. Beijing : Beijing Mete Press: 151~186
    Wang Q K, Wang S L, Feng Z W, Huang Y. 2005. Active soil organic matter and its relationship with soil quality. Acta Ecol Sin, 25(3): 513~519
    Watson R T, Noble, Bolin B, Verardo D J. 2000. Land, plant type change, and forestry: a special report of the IPCC. Cambridge, United Kingdom: Cambridge university press: 189~217
    Wilson A T. 1978. Pioneer agriculture explosion and CO2 levels in the atmosphere. Nature, 273: 40~41
    Wright A L, Hons F M. 2004. Carbon and nitrogen sequestration and soil aggregation under sorghum cropping sequences. Biology and Fertility Soils, 43: 265~272
    Wu J G, Zhang X Q, Xu D Y. 2004. The mineralization of soil organic carbon under different plant types in the Liupan Mountain forest zone. Acta Phytoecol Sin, 28(5): 657~664
    Wu T Y, Schoenau J J, Li F M, Qian P Y, Sukhdev S M, Shi Y C. 2003. Effect oftillage and rotation on organic forms of chernozemic soils in Saskachwan. Journal of Plant Nutrition and Soil Science, 166: 328~335
    Xu M G, Yu R, Wang B R. 2000. Progress on the study of soil active organic matter. Soil Fertil, (6): 3~7
    Zhao Y, Shi X, Yu D, Wang H, Sun W. 2005. Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 59: 1527~1535

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700