用户名: 密码: 验证码:
发电机气隙偏心与绕组短路复合故障的机电特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以汽轮发电机气隙静偏心、气隙动偏心、气隙动静混合偏心与定转子绕组短路的组合故障为研究对象,分析了发电机在正常运行状态、气隙偏心故障、转子匝间短路故障、定子匝间短路故障、气隙偏心与转子匝间短路复合故障、气隙偏心与定子匝间短路复合故障下的定转子径向振动特性与定子并联支路环流特性,并进行了相关的实验验证。本文的主要研究成果如下:
     (1)推导得到了六种运行状态下引发定子产生径向振动的单位面积磁拉力公式、引发转子产生径向振动的水平方向与垂直方向的不平衡磁拉力公式、引发定子并联支路内部产生环流的电势差公式。这些公式包含了发电机正常运行与对应故障所涉及的主要参数,表达了各参数与对应状态下定转子磁拉力、并联支路感应电势差的函数关系,为对应故障的定转子外在振动特征和并联支路环流特征提供了定性分析基础,同时为定转子磁拉力与并联支路电势差的定量计算提供了参考依据;
     (2)分析得到了发电机在六种状态下的定转子径向振动特征与定子并联支路环流特征,并在实验室模拟发电机上进行了验证。结果表明,气隙偏心与绕组短路复合故障下的机电特征与发电机正常运行、气隙偏心与绕组短路中某单一故障的机电特征有所不同,并不是这些单一故障所对应特征的简单叠加。所得到的这些故障特征可在现有基础上丰富汽轮发电机的故障诊断判据,为气隙偏心与绕组短路复合故障的诊断与识别提供了理论依据;
     (3)得到了气隙偏心与绕组短路复合故障下气隙偏心种类与定转子振动及定子并联支路环流某些特定成分的映射关系,这为发电机此类复合故障的诊断提供了参考和依据,同时有助于对其所含的偏心种类进行快速识别;
     (4)得到了气隙偏心与转子短路复合故障、气隙偏心与定子短路复合故障下定转子磁拉力和定子并联支路电势差各频率成分的幅值上界表达式及其影响因素,并定性分析了气隙静偏心成分加剧、气隙动偏心成分加剧、转子短路程度加剧、定子短路程度加剧、发电机励磁电流增大对定转子振动特性和定子并联支路环流特性的影响,为组成复合故障的各故障成分变化趋势的监测提供了基础和依据。
Taking the combined faults composed of the static air-gap eccentricity, the dynamic air-gap eccentricity, the mixed air-gap eccentricity and the winding interturn short circuit in the turbo-generator as the study object, this thesis analyzes the radial vibration characteristics of the stator&rotor, and the circulating current characteristics inside the parallel branch loop respectively under the normal condition, the air-gap eccentricity fault, the rotor interturn short circuit fault, the staor interturn short circuit fault, the air-gap eccentricity&rotor short circuit composite fault, and the air-gap eccentricity&stator short circuit composite fault. The main achievements obtained in the thesis can be drawn up as follows.
     (1) The formulas of the magnetic pull per unit area that causes radial vibrations to the stator, the unbalanced magnetic pull (UMP) in the horizontal direction and the vertical direction which brings in radial vibrations to the rotor, and the electromotive force (E.M.F.) difference between the two branches which produces circulatign currents inside the parallel branch loop are deduced. Since these formulas contain the main faulty parameters and express the fuction relation between these parameters and the magnetic pulls&E.M.F. difference, they can be provided as the qualitative analysis basis of the stator&rotor vibration and the circulating current characters. Also, these formulas can be used as the quantitative calculation reference of the magnetic pull and the E.M.F. difference.
     (2) The analysis and experiment verification on the stator&rotor radial vibration characters and the circulating current characters respectively under the refered six conditions are presented. The result shows that the mechanical and electrical faultly characters of the composite faults are greatly different with that of the normal condition and the single faults. Moreover, these characters can not be obtained through the simple character superposition of the composed fault types. The proposed analysis results will improve the failure criterion of the turbo-generator and offer a theory reference for the diagnosis of the air-gap eccentricity&winding short circuit composite faults.
     (3) The mapping relation between the air-gap eccentricity type and some specific components of the stator&rotor vibration and the circulating current, which can be provided as the reference for the composite fault diagnosis and will be beneficial to the fast identification of the eccentricity types, is obtained.
     (4) The upper bound amplitude expressions and the influential factors of the magnetic pull and the E.M.F. difference under the air-gap eccentricity&winding short circuit composite faults are obtained. Furthermore, the respective effect of the static air-gap eccentricity development, the dynamic air-gap eccentricity development, the rotor short circuit development, the stator short circuit development, and the exciting current increment on the stator&rotor vibration and the circulating current is investigated, based on which the faulty components'development monitoring can be carried out.
引文
[1]L. T. Rosenberg. Eccentricity, Vibration, and Shaft Currents in Turbine Generators [J]. Transactions of the American Institute of Electrical Engineers, 1955,74:38-41.
    [2]诸嘉慧,邱阿瑞.大型水轮发电机转子偏心磁场的计算[J].大电机技术,2007(3):1-4,26.
    [3]诸嘉慧,邱阿瑞,陶果.转子偏心及定子斜槽凸极同步发电机支路的感应电动势[J].清华大学学报(自然科学版),2008,48(4):453-456.
    [4]S. Keller, M.Tu Xuan, J.-J. Simond, and A. Schwery. Large Low-Speed Hydro-Generators-Unbalanced Magnetic Pulls and Additional Damper Losses In Eccentricity Conditions [J]. IET Electric Power Applications,2007,1(5): 657-664.
    [5]姚大坤,邹经湘,黄文虎,等.水轮发电机转子偏心引起的非线性电磁振动[J].应用力学学报,2006,23(3):334-337.
    [6]Lin Wang, Richard W. Cheung, Zhiyun Ma, Jiangjun Ruan, and Ying Peng. Finite-Element Analysis of Unbalanced Magnetic Pull in a Large Hydro-Generator under Practical Operations [J]. IEEE Transactions on Magnetics,2008,44(6):1558-1561.
    [7]Richard Perers, Urban Lundin, and Mats Leijon. Saturation Effects on Unbalanced Magnetic Pull in a Hydroelectric Generator with an Eccentric Rotor [J]. IEEE Transactions on Magnetics,2007,43(10):3884-3890.
    [8]Lundstrom L., Gustavsson R., Aidanpaa J.-O., etc. Influence on the Stability of Generator Rotors Due to Radial and Tangential Magnetic Pull Force [J]. IET Electric Power Applications,2007,1(1):1-8.
    [9]Zarko D., Ban D., Vazdar I., Jarica V.. Calculation of Unbalanced Magnetic Pull in a Salient-Pole Synchronous Generator Using Finite-Element Method and Measured Shaft Orbit [J]. IEEE Transactions on Industrial Electronics, 2012,59(6):2536-2549.
    [10]宋志强,马震岳.考虑不平衡电磁拉力的偏心转子非线性振动分析[J].振动与冲击,2010,29(8):169-173.
    [11]万书亭,李和明,李永刚.气隙偏心对汽轮发电机定转子振动特性的影响[J]. 振动与冲击,2005,24(6):21-23,133-134.
    [12]万书亭,孔江生.发电机偏心故障的机电多重特征分析[J].中国机械工程,2008(3):347-350.
    [13]Haniotis, A., Thivet, N., Jonnet, E., Kladas, A.. Field and Circuit Modeling of Rotor Eccentricity Effects in Surface Permanent Magnet Generator [C]. Electromagnetic Field Computation,12th Biennial IEEE Conference,2006: 281-281.
    [14]Iman Tabatabaei, Jawad Faiz, H. Lesani, M.T. Nabavi-Razavi. Modeling and Simulation of a Salient-Pole Synchronous Generator with Dynamic Eccentricity Using Modified Winding Function Theory [J]. IEEE Transactions on Magnetics,2004,40(3):1550-1555.
    [15]DeBortoli M.J., Salon S.J., Burow D.W., and Slavik, C.J.. Effects of Rotor Eccentricity and Parallel Windings on induction machine behavior:A Study Using Finite Element Analysis [J]. IEEE Transactions on Magnetics,1993, 29(2):1676-1682.
    [16]Sundaram V.M., and Toliyat, H.A.. Diagnosis and isolation of Air-Gap Eccentricities in Closed-Loop Controlled Doubly-Fed Induction Generators [C].2011 IEEE International Conference on Electric Machines & Drives,2011: 1064-1069.
    [17]M'hamed Drif, A. J. Marques Cardoso. Airgap-Eccentricity Fault Diagnosis, in Three-Phase Induction Motors, by the Complex Apparent Power Signature Analysis [J]. IEEE Transactions on Industrial Electronics,2008,55(3): 1404-1410.
    [18]De Canha, D., Cronje, W.A., Meyer, A.S., Hoffe, S.J.. Methods for diagnosing static eccentricity in a synchronous 2 pole generator [C]. Power Tech conference proceedings,2007 IEEE Lausanne,2007:2162-2167.
    [19]Bruzzese, C., Giordani, A., Santini, E.. Static and dynamic rotor eccentricity on-line detection and discrimination in synchronous generators By No-Load E.M.F. space vector loci analysis [C].2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion,2008:1259-1264.
    [20]李永刚,李和明,赵华,万书亭.基于定子线圈探测的转子匝间短路故障识别方法[J].2004,24(2):107-112.
    [21]徐剑,李永刚,李和明.隐极式转子匝间短路在线监测[J].电力系统自动化,2006(8):70-74.
    [22]刘庆河,蔡维铮,徐殿国.汽轮发电机转子绕组匝间短路在线检测方法的研究[J].中国电机工程学报,2004(9):234-237.
    [23]李晓明,刘东明.大型汽轮发电机转子绕组匝间短路故障的测试与分析[J].2003(3):7-11.
    [24]Wan Shuting, Li Yonggang, Li Heming, Tang Guiji. A Compositive Diagnosis Method on Turbine-Generator Rotor Winding Inter-turn Short Circuit Fault [C].2006 IEEE International Symposium on Industrial Electronics,2006: 1662-1666.
    [25]D. R. Albright. Interturn Short-Circuit Detector for Turbine- Generator Rotor Windings [J]. IEEE Transactions on Power Apparatus and Systems,1971, PAS-90(2):478-483.
    [26]Ramirez-Nino, J., Pascacio, A.. Detecting Interturn Short Circuits in Rotor Windings [J]. Computer Applications in Power, IEEE,2001,14(4):39-42.
    [27]万书亭,李和明,李永刚.转子匝间短路对发电机转子振动特性的影响[J].中国电机工程学报,2005,25(10):122-126.
    [28]万书亭,李和明,李永刚,唐贵基.基于定子振动特征的转子绕组短路故障识别[J].振动工程学报,2005,18(3):342-345.
    [29]武玉才,李和明,李永刚,等.在线检测发电机转子绕组匝间短路的新方法[J].高电压技术,2009(11):2698-2703.
    [30]党晓强,刘俊勇,雷霞,刘继春.水轮发电机转子绕组故障的智能在线识别[J].高电压技术,2007,33(8):160-164.
    [31]Yong-gang Li, Yan-jun Zhao, Lei Chen, and Xuan Ji. Fault Diagnosis of Rotor Winding Inter-Turn Short Circuit in Turbine-Generator Based on Bp Neural Network [C].2008 International Conference on Electrical Machines and Systems,2008.
    [32]李之昆,马宏忠.基于ANN的发电机转子绕组匝间短路故障诊断方法[J].高电压技术,2004,30(1):31-38.
    [33]唐芳轩,傅煜.隐极同步发电机转子匝间短跌分布电压诊断法[J].高压电器,2005(1):72-73.
    [34]李和明,武玉才,李永刚.转子绕组匝间短路对电机轴电压的影响[J].中国电机工程学报,2009,29(36):96-100.
    [35]武玉才,李永刚,李和明.基于轴电压的隐极同步发电机转子典型故障诊断[J].电工技术学报,2010(6):178-184.
    [36]万书亭,李永刚.转子绕组短路故障中短路因素对转子振动的影响[J].振 动、测试与诊断,2008,28(2):131-134,181.
    [37]张超,夏立,吴正国,等.同步发电机转子绕组匝间短路故障特征规律分析[J].高电压技术,2010,36(6):1506-1512.
    [38]孙宇光,郝亮亮,王祥珩.同步发电机励磁绕组匝间短路时的稳态电流谐波特征研究[J].中国电机工程学报,2010,30(33):51-57.
    [39]李永刚,宋欣羽,武玉才.基于多回路理论的转子匝间短路时定子并联支路环流分析[J].电力系统自动化,2009,33(17):71-75.
    [40]李永刚,赵艳军,陈雷,等.基于并联支路环流特征的转子匝间短路故障识别[J].高电压技术,2009,35(5):1014-1019.
    [41]刘念,谢驰,陈实,等.基于小波分析的发电机转子匝间短路故障诊断方法研究[J].电力自动化设备,2008,28(6):49-51.
    [42]李永刚,李和明,赵华.汽轮发电机转子绕组匝间短路故障诊断新判据[J].中国电机工程学报,2003,23(6):112-116,169.
    [43]Bachir, S., Tnani, S., Trigeassou, J.-C., Champenois, G.. Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines [J]. IEEE Transactions on Industrial Electronics,2006,53(3):963-973.
    [44]Wan Shuting, Li Yonggang, Li Herring and Tang Guiji. The Analysis of Generator Excitation Current Harmonics on Stator and Rotor Winding Fault [C].2006 IEEE International Symposium on Industrial Electronics,2006: 2089-2093.
    [45]俞胜,仇新宏,李哲.基于负序电压分布的发电机定子匝间短路保护[J].电力自动化设备,2010,30(9):72-74.
    [46]党晓强,刘俊勇,刘继春.用特征电流智能诊断汽轮发电机定子匝间短路[J].高电压技术,2006(4):5-7.
    [47]夏长亮,金雪峰,方红伟,等.基于R/S分析和小波变换的同步发电机定子绕组匝间短路故障分析[J].电工技术学报,2006(6):101-105.
    [48]万书亭,李和明,许兆凤,等.定子绕组匝间短路对发电机定转子径向振动特性的影响[J].中国电机工程学报,2004(4):157-161.
    [49]方红伟,夏长亮,李国平.同步发电机定子绕组匝间短路下电磁转矩和振动分析[J].天津大学学报,2009,42(4):322-326.
    [50]方红伟,夏长亮,修杰.定子绕组匝间短路时发电机电磁转矩分析[J].中国电机工程学报,2007,27(15):83-87.
    [51]邰能灵,朱佳杰.大型超临界汽轮发电机匝间短路故障分析及主保护研究[J].电力系统自动化,2006,30(20):54-58.
    [52]De Angelo, C.H., Bossio, G.R., Giaccone, S.J., etc. Online Model-Based Stator-Fault Detection and Identification in Induction Motors [J]. IEEE Transactions on Industrial Electronics,2009,56(11):4671-4680.
    [53]Kallesoe, C.S., Izadi-Zamanabadi, R., Vadstrup, P., Rasmussen, H.. Observer-Based Estimation of Stator-Winding Faults in Delta-Connected Induction Motors:A Linear Matrix Inequality Approach [J]. IEEE Transactions on Industry Applications,2007,43(4):1022-1031.
    [54]Romeral, L., Urresty, J.C., Riba Ruiz, J.-R., Garcia Espinosa, A.. Modeling of Surface-Mounted Permanent Magnet Synchronous Motors With Stator Winding Interturn Faults [J]. IEEE Transactions on Industrial Electronics, 2011,58(5):1576-1585.
    [55]Bouzid, M., Champenois, G., Bellaaj, N.M., etc. An Effective Neural Approach for the Automatic Location of Stator Interturn Faults in Induction Motor [J]. IEEE Transactions on Industrial Electronics,2008,55(12):4277-4289.
    [56]Da Silva, A.M., Povinelli, R.J., Demerdash, N.A.O.. Induction Machine Broken Bar and Stator Short-Circuit Fault Diagnostics Based on Three-Phase Stator Current Envelopes [J] IEEE Transactions on Industrial Electronics, 2008,55(3):1310-1318.
    [57]Gandhi, A., Corrigan, T., Parsa, L.. Recent Advances in Modeling and Online Detection of Stator Interturn Faults in Electrical Motors [J]. IEEE Transactions on Industrial Electronics,2011,58(5):1564-1575.
    [58]Cruz, S.M.A., Cardoso, A.J.M.. Multiple Reference Frames Theory:A New Method for the Diagnosis of Stator Faults in Three-Phase Induction Motors [J]. IEEE Transactions on Energy Conversion,2005,20(3):611-619.
    [59]Kim, K.-H.. Simple Online Fault Detecting Scheme for Short-Circuited Turn in a PMSM through Current Harmonic Monitoring [J]. IEEE Transactions on Industrial Electronics,2011,58(6):2565-2568.
    [60]Mirafzal, B., Povinelli, R.J., Demerdash, N. A. O.. Interturn Fault Diagnosis in Induction Motors Using the Pendulous Oscillation Phenomenon [J]. IEEE Transactions on Energy Conversion,2006,21(4):871-882.
    [61]Mirafzal, B., Demerdash, N. A. O.. On innovative methods of induction motor interturn and broken-bar fault diagnostics [J]. IEEE Transactions on Industry Applications,2006,42(2):405-414.
    [62]Jangho Yun, Kwanghwan Lee, Kwang-Woon Lee, etc. Detection and Classification of Stator Turn Faults and High-Resistance Electrical Connections for Induction Machines [J]. IEEE Transactions on Industry Applications,2009,45(2):666-675.
    [63]党晓强,刘俊勇,刘继春,等.水轮发电机定子接地的行波电流差动保护与故障选相[J].中国电机工程学报,2008,28(7):79-83.
    [64]李和明,李俊卿.汽轮发电机定子冷却水路堵塞时的温度场分析计算[J].中国电机工程学报,2005(21):163-168.
    [65]刘振兴,尹项根,张哲,等.大型汽轮发电机定子绕组温度监测与故障诊断的软件实现[J].武汉科技大学学报(自然科学版),2004,27(2):167-170.
    [66]李伟力,杨雪峰,顾德宝.空冷汽轮发电机冷却气流风量对定子内流体的影响[J].中国电机工程学报,2009,29(21):53-61.
    [67]路义萍,阴文豪,韩家德,等.汽轮发电机转子端部及槽内绕组温升[J].电工技术学报,2010,25(2):1-5.
    [68]万书亭,李和明,李永刚.发电机绕组故障时振动的关联维数分析及诊断[J].振动、测试与诊断,2005(3):210-214.
    [69]M.-H. Wang. Application of extension theory to vibration fault diagnosis of generator sets [J]. IEE Proc.-Gener. Transm. Distrib.,2006,151(4):503-508.
    [70]乔俊伟,魏永梅,张雷,等.基于二维全息谱的汽轮发电机的振动分析[J].机械设计与研究,2006,22(2):95-97.
    [71]Andrew M. Knight, and Sergio P. Bertani. Mechanical Fault Detection Induction in a Medium-Sized Motor Using Stator Current Monitoring [J]. IEEE Transactions on Energy Conversion,2005,20(4):753-760.
    [72]M. B. Srinivas, T. S. Ramu. Multifactor Aging of HV Generator Stator Insulation Including Mechanical Vibrations [J]. IEEE transactions on electrical insulation,1992,27(5):1009-1021.
    [73]Kai Wu. Effect of Mechanical Vibration on the Behavior of Partial Discharges in Generator Windings [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(1):345-352.
    [74]黄志伟,周建中,寇攀高,等.水轮发电机组轴系非线性电磁振动特性分析[J].华中科技大学学报(自然科学版),2010,38(7):20-24.
    [75]李文兰,杨志安,邱家俊.受简谐激励三圆盘非线性扭振系统的非线性振动[J].天津大学学报,2004,37(6):505-509.
    [76]张俊红,于镒隆,高宏阁.多支承转子系统弯曲振动分析方法研究[J].机械工程学报,2004,40(11):35-41.
    [77]卿光辉,邱家俊,胡宇达.双壳耦合结构与大型发电机定子系统的振动特性分析[J].工程力学,2004,21(2):101-106.
    [78]安学利,周建中,刘力,等.水轮发电机组横向振动特性分析[J].润滑与密封,2008,33(12):40-43.
    [79]沈剑贤,申小虎.霍州电厂3号机不稳定振动分析[J].汽轮机技术,2003,45(5):323-324.
    [80]王延博.大型汽轮发电机组轴系不对中振动的研究[J].动力工程,2004,24(6):768-774,784.
    [81]徐进友,刘建平,宋轶民,等.考虑电磁激励的水轮发电机组扭转振动分析[J].天津大学学报,2008,41(12):1411-1416.
    [82]陈贵清,董保珠,邱家俊.电磁作用激发的水电机组转子轴系振动研究[J].力学季刊,2010,31(1):108-112.
    [83]杨志安,李文兰,邱家俊.发电机组轴系电磁激发扭振主共振与奇异性[J].天津大学学报,2007,40(7):864-868.
    [84]姚学诗,刘荣万.基于预应力法的转子扭转振动研究[J].汽轮机技术,2003,45(6):375-376.
    [85]姚学诗,周传荣.基于预应力法的转子振动特性研究[J].汽轮机技术,2005,47(5):355-356,359.
    [86]王西田,于达仁,陈陈.汽轮发电机组轴系扭振的独立模态空间鲁棒控制[J].中国电机工程学报,2004,24(5):202-206.
    [87]邱家俊,段文会.水轮发电机转子轴向位移与轴向电磁力[J].机械强度,2003,25(3):285-289.
    [88]韩玉峰.汽轮发电机组轴向振动的分析和处理[J].汽轮机技术,2005,47(1):59-60.
    [89]何成兵.汽轮发电机组轴系弯扭耦合振动研究[D].北京:华北电力大学,2003.
    [90]何成兵,顾煜炯,邢诚.短路故障时汽轮发电机组轴系弯扭耦合振动分析[J].中国电机工程学报,2010(32):84-90.
    [91]Wan Shuting, Li Heming, Li Yonggang and Meng Fanchao. Analysis of Stator parallel-Connected Branches Circulating Current and Its Application in Generator Fault Diagnosis [C]. Fortieth IAS Annual Meeting on Industry Applications Conference,2005:42-45.
    [92]万书亭,李和明,李永刚,等.同步发电机转子匝间短路故障时励磁电流谐波特性分析[J].电力系统自动化,2003,27(22):64-67.
    [93]万书亭.发电机绕组与偏心故障交叉特征分析及其检测方法研究[D].保定:华北电力大学电气工程学院,2005.
    [94]何玉灵.汽轮发电机气隙偏心故障分析与诊断方法研究[D].保定:华北电力大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700