用户名: 密码: 验证码:
基于一致性算法的多航天器姿态协同控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,多智能体协同控制的研究受到了各个领域的广泛关注。一致性算法是多智能体协同控制的研究核心,并为很多应用提供了必要的理论基础。其中,分布式航天器的姿态协同控制就是一个典型的例子。本文在一致性算法的研究基础上开展多航天器的姿态协同控制研究。
     针对多智能体协同控制中存在的稀疏通信拓扑、不可靠的通信链路连接、网络延时、外界干扰等问题,提出了一种适用于通用的固定有向通信拓扑和动态有向通信拓扑的快速一致性算法,找到了一致性算法在有延时情况下的稳定或一致最终有界的条件,并设计了一种对外界干扰具有鲁棒性的有限时间一致性算法。
     基于一致性算法基本理论的研究,开展了多航天器姿态协同控制的研究。为了克服传统的主从控制结构中的严格通信拓扑要求,在固定通信拓扑下提出了一种基于一致性算法的姿态协同跟踪控制策略,并将该控制策略拓展到广义通信拓扑、动态通信拓扑和无角速度测量的情况中。建立了一套适用于不同通信拓扑条件的鲁棒姿态协同控制方法。通过仿真,说明了提出的协同控制方法能够用于解决多航天器静态目标跟随和动态目标跟随的问题,并且较传统的主从控制方法对通信链接失效具有更好的鲁棒性。
     针对协同控制方法中存在的延时问题,通过时域方法研究了面向通信延时的姿态协同控制算法。对于静态目标跟随,找到了保证姿态协同调节算法的稳定条件。对于动态目标跟随,找到了保证姿态协同跟踪算法的一致最终有界条件。从而系统地解决了姿态协同控制算法在有延时情况下的控制参数选择问题。数值仿真验证了相应研究的有效性。
     在保证系统稳定的基础上,为了提高姿态协同控制算法对外界干扰的鲁棒性并改善系统的收敛性能,分别设计了有限时间的姿态协同调节算法和有限时间的姿态协同跟踪算法。通过数值仿真,说明了有限时间的姿态协同控制策略对外界干扰具有鲁棒性,并且较传统的渐进稳定控制策略有更快的收敛速度。
Cooperative control of multi-agent system has been received much attention inrecent years. Consensus algorithm is critical to the research of cooperative control ofmulti-agent system and it can provide theoretical foundations for many applications.For instance, attitude coordination control for multiple spacecraft is one of typical ap-plications. This thesis mainly studies on attitude coordination control based on con-sensus algorithm.
     To solve the problems of sparse communication topologies, unreliable communi-cation connections, network delays and environment distances, we propose an acceler-ated consensus algorithm for the general fixed directed communication topology anddynamic directed communication topology. We also find the stability and uniformlyultimate boundedness conditions for consensus algorithm with delays, and design afinite-time consensus algorithm that is robust to environment disturbances.
     Based on the basic research of consensus algorithm, we focus on the research ofattitude coordination control for multiple spacecraft. In order to overcome the strictrequirement of communication topologies in the leader-follower structure, we designan attitude cooperative tracking control law for fixed communication topology basedon consensus algorithm. Then, we extend the algorithm to the case of the general com-munication topology, the case of the dynamic communication topology and the caseof unavailability of the angular velocity. In such case, we build a robust attitude co-ordination control framework that can be used for di?erent communication topologyconditions. Simulation results validate that the proposed coordination control strategycan be used to solve the stationary objective tracking problem and the dynamic ob-jective tracking problem, and it is more robust to the conventionally leader-followerstructure when there exists the communication connection loss.
     To solve delay problems in the coordination control, we study the stability ofattitude cooperative control algorithm when these exist communication delays. For stationary objective tracking problem, we find the stability conditions of attitude co-operative regulation algorithm. For dynamic objective tracking problem, we find theuniformly ultimate boundedness conditions of attitude cooperative tracking problem.In such case, we solve the parameter selection problem for the attitude coordinationalgorithms when there exist communication delays. Simulation results validate theeffectiveness of the corresponding research.
     To improve the robustness of the system and obtain fast convergence speed, wedesign, respectively, finite-time attitude regulation algorithm and finite-time attitudetracking algorithm. Simulation results validate that finite-time attitude coordinationcontrol strategy is robust to environment disturbances and has faster convergence speedthan the asymptotically stable control strategy.
引文
[1] Maes P. Modeling adaptive autonomous agents. Artificial Life, 1994, 1(1-2):135–162.
    [2] Ren W. Consensus seeking, Formation Keeping, and Trajectory Tracking in Multiple Vehi-cle Cooperative Control[D]. Provo, Utah 84602: Brigham Young University, August, 2004.
    [3] Russell S J, Norvig P. Artificial Intelligence: A Modern Approach. Upper Saddle River, N.J.: Prentice Hall: 2nd edition, Prentice Hall series in artificial intelligence, 2003.
    [4] Liu J,靳小龙,张世武, et al.多智能体模型与实验.清华大学出版社, 2003.
    [5]俞辉.多智能体机器人协调控制研究及稳定性分析[D].中国湖北省武汉市:华中科技大学,五月, 2007.
    [6] Ren W, Beard R W, Atkins E M. Information Consensus in Multivehicle Cooperative Con-trol: Collective Group Behavior through Local Interaction. IEEE Control Systems Maga-zine, 2007, 27(2):71–82.
    [7] Gazi V, Passino K M. Stability Analysis of Swarms. IEEE Transactions on AutomaticControl, 2003, 48(4):692–697.
    [8] Lin J, Morse A S, Anderson B D O. The Multi-Agent Rendezvous Problem - The Asyn-chronous Case. Proceedings of the IEEE Conference on Decision and Control, ParadiseIsland, Bahamas, 2004. 1926–1931.
    [9] Ji M, Egerstedt M. Distributed Coordination Control of Multiagent Systems While Preserv-ing Connectedness. IEEE Transaction on Robotics, 2007, 23(3):693–703.
    [10] Dimarogonas D V, Kyriakopoulos K J. Inverse agreement protocols with application to dis-tributed multi-agent dispersion. IEEE Transactions on Automatic Control, 2009, 54(3):657–663.
    [11]张治国.卫星编队飞行相对姿态动力学与控制[D].中国北京市:清华大学博士论文,一月, 2008.
    [12]林来兴,车汝才.分布式空间系统和航天器编队飞行辨析–兼谈航天器知识编队和精确编队飞行应用实例.航天器工程, 2008, 17(4):24–29.
    [13]张育林,曾国强,王兆魁, et al.分布式卫星系统理论及应用.科学出版社, 2008.
    [14] Inalhan G, Tillerson M, How J P. Relative Dynamics and Control of Spacecraft Formationsin Eccentric Orbits. AIAA Journal of Guidance, Control, and Dynamics, 2002, 25(1):48–59.
    [15] Shaw G, Miller D, Hastings D. Generalized characteristics of communication, sensing, andnavigation satellite systems. Journal of Spacecraft and Rockets, 2000, 37(6):801–811.
    [16] Caceres M. The emerging nanosatellite market. Aerospace America, 2001, 39(2):16–18.
    [17] Shan J. Synchronized Attitude and Translational Motion Control for Spacecraft Forma-tion Flying. Proceedings of the Institution of Mechanical Engineers, Part G: Journal ofAerospace Engineering, 2009, 223(6):749–768.
    [18] Folta D, Bordi F, Scolese C. Consideration on formation ?ying seperations for earth observ-ing satellite missions. Advances in Astron autical Sciences, 1992, 79:803–822.
    [19] Vicsek T, Czirok A, Jacob E B, et al. Novel Type of Phase Transitions in a System ofSelf-driven Particles. Physical Review Letters, 1995, 75(6):1226–1229.
    [20] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switchingtopology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9):1520–1533.
    [21] Fax J A, Murray R M. Information ?ow and cooperative control of vehicle formations. IEEETransactions on Automatic Control, 2004, 49(9):1465–1476.
    [22] Jadbabaie A, Lin J, Morse A S. Coordination of Groups of Mobile Autonomous AgentsUsing Nearest Neighbor Rules. IEEE Transactions on Automatic Control, 2003, 48(6):988–1001.
    [23] Lin Z, Broucke M, Francis B. Local Control Strategies for Groups of Mobile AutonomousAgents. IEEE Transactions on Automatic Control, 2004, 49(4):622–629.
    [24] Ren W, Beard R W. Consensus Seeking in Multiagent Systems Under Dynamically Chang-ing Interaction Topologies. IEEE Transactions on Automatic Control, 2005, 50(5):655–661.
    [25] Moreau L. Stability of Multi-agent Systems with Time-dependent Communication Links.IEEE Transactions on Automatic Control, 2005, 50(2):169–182.
    [26] Merris R. Laplacian Matrices of Graphs: A Survey. Linear Algebra and its Applications,1994, 197-198:143–176.
    [27] Lin Z, Francis B, Maggiore M. Necessary and Su?cient Graphical Conditions for FormationControl of Unicycles. IEEE Transactions on Automatic Control, 2005, 50(1):121–127.
    [28] La?erriere G, Williams A, Caughman J, et al. Decentralized Control of Vehicle Formations.Systems and Control Letters, 2005, 54(9):899–910.
    [29] Ren W, Atkins E M. Distributed Multi-vehicle Coordinated Control via Local InformationExchange. International Journal of Robust and Nonlinear Control, 2007, 17(10–11):1002–1033.
    [30] Ren W. Consensus Strategies for Cooperative Control of Vehicle Formations. IET ControlTheory & Applications: Special Issue on Cooperative Control of Multiple Spacecraft Flyingin Formation, 2007, 1(2):505–512.
    [31] Ren W. On Consensus Algorithms for Double-integrator Dynamics. IEEE Transactions onAutomatic Control, 2008, 53(6):1503–1509.
    [32] Zhu J, Tian Y, Kuang J. On the general consensus protocol of multi-agent systems withdouble-integrator dynamics. Linear Algebra Application, 2009, 431(5-7):701–715.
    [33] Lee D, Spong M W. Stable ?ocking of multiple inertial agents on balanced graphs. IEEETransactions on Automatic Control, 2007, 52(8):1469–1475.
    [34] Xie G, Wang L. Consensus control for a class of networks of dynamic agents. InternationalJournal of Robust and Nonlinear Control, 2007, 17(10–11):941–959.
    [35] Lin P, Jia Y, Du J, et al. Distributed leaderless coordination for networks of second-orderagents with time-delay on switching topology. Proceedings of the American Control Con-ference, Seattle, WA, USA, 2008. 1564–1569.
    [36] Liu X, Chen T, Lu W. Consensus problem in directed networks of multi-agents via nonlinearprotocols. Physics Letters A, 2009, 373(35):3122–3127.
    [37] Yu W, Chen G, Cao M, et al. Second-order consensus for multi-agent systems with directedtopologies and nonlinear dynamics. IEEE Transactions on Systems, Man, and Cybernetics-Part B. Doi: 10.1109/TSMCB.2009.2031624, in press.
    [38] Bauso D, Giarre L, Pesenti R. Non-linear protocols for optimal distributed consensus innetworks of dynamic agents. Systems & Control Letters, 2006, 55(11):918–928.
    [39] Liu X, Chen T. Exponential synchronization of nonlinear coupled dynamical networkswith a delayed coupling. Physica A: Statistical Mechanics and its Applications, 2007,381(15):82–92.
    [40] Hui Q, Haddad W M. Distributed nonlinear control algorithms for network consensus.Automatica, 2008, 44(9):2375–2381.
    [41] Liu X, Chen T. Synchronization analysis for nonlinearly-coupled complex networks withan asymmetrical coupling matrix. Physica A, 2008, 387(16-17):4429–4439.
    [42] Martinez S, Cortes J, Bullo F. Motion Coordination with Distributed Information: obtainingglobal behavior from local interaction. IEEE Control Systems Magazine, 2007, 27(4):75–88.
    [43] Ren W. Multi-vehicle consensus with a time-varying reference state. Systems and ControlLetters, 2007, 56(7-8):474–483.
    [44] Lozano R, Spong M, Guerrero J A, et al. Controllability and Observability of Leader-Based Multi-agent Systems. Proceedings of the IEEE Conference on Decision and Control,Cancun, Mexico, 2008. 3713–3718.
    [45] Jin Z, Murray R M. Consensus Controllability for Coordinated Multiple Vehicle Control.Proceedings of The 6th International Conference on Cooperative Control and Optimization,Gainesville, 2006.
    [46] Hong Y, Chen G, Bushnell L. Distributed observers design for leader-following control ofmulti-agent networks. Automatica, 2008, 44(3):846–850.
    [47] Hong Y, Hu J, Gao L. Tracking control for multiagent consensus with an active leader andvariable topology. Automatica, 2006, 42(7):1177–1182.
    [48] Ren W, Beard R W, McLain T W. Coordination Variables and Consensus Building in Mul-tiple Vehicle Systems. In: Kumar V, Leonard N E, Morse A S, (eds.). Proceedings ofCooperative Control: A Post-Workshop Volume 2003 Block Island Workshop on Coopera-tive Control, volume 309. Springer-Verlag Series: Lecture Notes in Control and InformationSciences, 2005. 171–188.
    [49] Cortés J. Distributed algorithms for reaching consensus on general functions. Automatica,2008, 44(3):726–737.
    [50] Preciado V M, Verghese G C. Synchronization in Generalized Erdos-Renyi Networks ofNonlinear Oscillators. Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference, Seville, Spain, 2005. 4628–4633.
    [51] Kim Y, Mesbahi M. On maximizing the second smallest eigenvalue of a state-dependentgraph Laplacian. IEEE Transactions on Automatic Control, 2006, 51(1):116–120.
    [52] Xiao L, Boyd S. Fast Linear Iterations for Distributed Averaging. Systems and ControlLetters, 2004, 53(1):65–78.
    [53] Xu D, Li Y, Wu T. Improving consensus and synchronizability of networks of coupledsystems via adding links. Physica A, 2007, 382(2):722–730.
    [54] Olfati-Saber R. Ultrafast consensus in small-world networks. Proceedings of 2005 Ameri-can Control Conference, Portland, OR, USA, 2005. 2371–2378.
    [55] Xiao F, Wang, Jia Y. Fast Information Sharing in Networks of Autonomous agents. Proceed-ings of 2008 American Control Conference, Seattle, Washington, USA, 2008. 4388–4393.
    [56] Li S, Tian Y. Finite time synchronization of chaotic systems. Chaos Solitons Fractals, 2003,15(2):303–310.
    [57] Wang X, Hong Y. Finite-Time Consensus for Multi-Agent Networks with Second-OrderAgent Dynamics. Proceedings of the 17th World Congress The International Federation ofAutomatic Control, Seoul, Korea, 2008. 15185–15190.
    [58] Cortes J. Finite-time convergent gradient ?ows with applications to network consensus.Automatica, 2006, 42(11):1993–2000.
    [59] Horn R A, Johnson C R. Matrix Analysis. Cambridge University Press, 1985.
    [60] Tsitsiklis J N, Bertsekas D P, Athans M. Distributed Asynchronous Deterministic andStochastic Gradient Optimization Algorithms. IEEE Transactions on Automatic Control,1986, 31(9):803–812.
    [61] Moreau L. Stability of Continuous-time Distributed Consensus Algorithms. Proceedings ofthe IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004. 3998–4003.
    [62] Slotine J J E, Wang W. A Study of Synchronization and Group Cooperation Using PartialContraction Theory. In: Kumar V, Leonard N E, Morse A S, (eds.). Proceedings of Co-operative Control: A Post-Workshop Volume 2003 Block Island Workshop on CooperativeControl, volume 309. Springer-Verlag Series: Lecture Notes in Control and InformationSciences, 2004. 207–228.
    [63] Reynolds C W. Flocks, Herds, and Schools: A Distributed Behavioral Model. ComputerGraphics, 1987, 21(4):25–34.
    [64] Tanner H G, Jadbabaie A, Pappas G J. Flocking in Fixed and Switching Networks. IEEETransactions on Automatic Control, 2007, 52(5):863–868.
    [65] Olfati-Saber R. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. IEEETransactions on Automatic Control, 2006, 51(3):401–420.
    [66] Su H, Wang X, Lin Z. Flocking of Multi-Agents With a Virtual Leader. IEEE Transactionson Automatic Control, 2009, 54(2):295–307.
    [67] Cao Y, Ren W. Distributed Coordinated Tracking via a Variable Structure Approach - Part II:Swarm Tracking. Proceedings of the IEEE Conference on Decision and Control, Baltimore,MD, 2010.
    [68] Lin J, Morse A S, Anderson B D O. The Multi-Agent Rendezvous Problem. Proceedingsof the IEEE Conference on Decision and Control, Maui, Hawaii, 2003. 1508–1513.
    [69] Cortes J, Martinez S, Bullo F. Robust Rendezvous for Mobile Autonomous Agents via Prox-imity Graphs in d Dimentions. IEEE Transactions on Automatic Control, 2006, 51(8):1289–1298.
    [70] Dimarogonas D V, Kyriakopoulos K J. On the Rendezvous Problem for Multiple Nonholo-nomic Agents. IEEE Transactions on Automatic Control, 2007, 52(5):916–922.
    [71] Marshall J A, Broucke M E, Francis B A. Formations of Vehicles in Cyclic Pursuit. IEEETransactions on Automatic Control, 2004, 49(11):1963–1974.
    [72] Pavone M, Frazzoli E. Decentralized Policies for Geometric Pattern Formation andPath Coverage. ASME Journal of Dynamic Systems, Measurement, and Control, 2007,129(5):633–643.
    [73] Ramirez J L, Pavone M, Frazzoli E, et al. Distributed Control of Spacecraft Formation viaCyclic Pursuit: Theory and Experiments. Proceedings of the American Control Conference,Hyatt Regency Riverfront, St. Louis, MO, USA, 2009. 4811–4817.
    [74] Ren W. Collective Motion From Consensus With Cartesian Coordinate Coupling. IEEETransactions on Automatic Control, 2009, 54(6):1330–1335.
    [75] Sarlette A, Sepulchre R. Consensus optimization on manifolds. SIAM Journal of Controland Optimization, 2009, 58(1):56–76.
    [76] Scharf D P, Hadaegh F Y, Ploen S R. A Survey of Spacecraft Formation Flying Guidance andControl (Part II): Control. Proceedings of the 2004 American Control Conference, Boston,Massachusetts, 2004. 2976–2985.
    [77] Wang P K C, Hadaegh F Y. Coordination and Control of Multiple Microspacecraft Movingin Formation. The Journal of the Astronautical Sciences, 1996, 44(3):315–355.
    [78] Wang P K C, Hadaegh F Y, Lau K. Synchronized Formation Rotation and Attitude Controlof Multiple Free-Flying Spacecraft. AIAA Journal of Guidance, Control and Dynamics,1999, 22(1):28–35.
    [79] Wang P K C, Yeh J, Hadaegh F Y. Synchronized Rotation of Multiple Autonomous Space-craft with Rule-Based Controls: Experimental Study. Journal of Guidance, Control, andDynamics, 2001, 24(2):352–359.
    [80] Mesbahi M, Hadaegh F Y. Formation Flying Control of Multiple Spacecraft via Graphs,Matrix Inequalities, and Switching. Journal of Guidance, Control, and Dynamics, 2001,24(2):369–377.
    [81] Lurie B J. Multi-Mode Synchronized Control for Formation Flying Interferometer. Pro-ceedings of the AIAA Guidance, Navigation, and Control Conference, Austin, TX, 2003.
    [82] de Queiroz M S, Kapila V, Yan Q. Adaptive Nonlinear Control of Multiple SpacecraftFormation Flying. Journal of Guidance, Control, and Dynamics, 2000, 23(3):385–390.
    [83] Lawton J, Beard R W, Hadaegh F Y. Elementary Attitude Formation Maneuvers via Leader-Following and Behavior-Based Control. Proceedings of the AIAA Guidance, Navigation,and Control Conference, Denver, CO, 2000.
    [84] Lawton J R, Beard R W. Synchronized Multiple Spacecraft Rotations. Automatica, 2002,38(8):1359–1364.
    [85] Shan J. Six-degree-of-freedom synchronised adaptive learning control for spacecraft forma-tion ?ying. IET Control Theory and Applications, 2008, 2(10):930–949.
    [86] Beard R W, Hadaegh F Y. Constellation Templates: An Approach to Autonomous FormationFlying. World Automation Congress, 1998, 6(39):1–177. Anchorage, Alaska.
    [87] Beard R W, Lawton J R, Hadaegh F Y. A Feedback Architecture for Formation Control.Proceedings of the American Control Conference, Chicago, IL., 2000. 4087–4091.
    [88] Beard R W, Lawton J R, Hadaegh F Y. A Coordination Architecture for Spacecraft Forma-tion Control. IEEE Transactions on Control Systems Technology, 2001, 9(6):777–790.
    [89] Ren W, Beard R W. Virtual structure based spacecraft formation control with formationfeedback. Proceedings of AIAA Guidance, Navigation, and Control Conference, Monterey,CA, 2002. AIAA Paper No. AIAA-2002-4963.
    [90] Ren W, Beard R W. Formation Feedback Control for Multiple Spacecraft via Virtual Struc-tures. IEE Proceedings - Control Theory and Applications, 2004, 151(3):357–368.
    [91] Ren W, Beard R W. Decentralized Scheme for Spacecraft Formation Flying via the VirtualStructure Approach. Journal of Guidance, Control, and Dynamics, 2004, 27(1):73–82.
    [92] Lawton J. A Behavior-based Approach to Multiple Spacecraft Formation Flying[D]. Provo,Utah 84602: Brigham Young University, 2000.
    [93] Ren W. Formation Keeping and Attitude Alignment for Multiple Spacecraft through LocalInteractions. Journal of Guidance, Control, and Dynamics, 2007, 30(2):633–638.
    [94] Schaub H, Junkins J L. Analytical Mechanics of Space Systems. American Institute ofAeronautics and Astronautics, Inc, 2003.
    [95] Shuster M D. A Survey of Attitude Representations. The Journal of the AstronauticalSciences, 1993, 41(4):439–517.
    [96] Tsiotras P. Stabilization and Optimality Results for the Attitude Control Problem. Journalof Guidance, Control and Dynamics, 1996, 19(4):772–779.
    [97] Wong H, Queiroz M S, Kapila V. Adaptive tracking control using synthesized velocity fromattitude measurements. Automatica, 2001, 37(6):947–953.
    [98] Slotine J J E, Benedetto M D D. Hamiltonian Adaptive Control of Spacecraft. IEEE Trans-actions on Automatic Control, 1990, 35(7):848–852.
    [99] Ren W. Distributed Attitude Synchronization for Multiple Rigid Bodies with Euler-Lagrange Equation of Motion. Proceedings of 46th IEEE Conference on Decision andControl, New Orleans, LA, USA, 2007. IEEE. 2363–2368.
    [100] Agaev R, Chebotarev P. The Matrix of Maximum Out Forests of a Digraph and Its Applica-tions. Automation and Remote Control, 2000, 61(9):1424–1450.
    [101] Hale J K, Lunel S M V. Introduction to functional di?erential equations. Springer-Verlag,1993.
    [102] Niculescu S I. Delay e?ects on stability: A robust control approach. Springer, 2003.
    [103] Lopes O. Forced oscillations in nonlinear neutral di?rential equations. SIAM journal ofapplied mathematics, 1975, 29(1):196–207.
    [104] Kolmanovskii V, Myshkis A. Applied theory of functional di?erential equations. KluwerAcademic Publishers, 1992.
    [105] Hong Y, Xu Y, Huang J. Finite-time control for robot manipulators. Systems and ControlLetters, 2002, 46(4):243–253.
    [106] Bhat S P, Bernstein D S. Finite-Time Stability of Homogeneous Systems. Proceedings ofthe American Control Conference, New Mexico, USA, 1997. 2513–2514.
    [107] Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rota-tional double integrators. IEEE Transactions on Automatic Control, 1998, 43(5):678–682.
    [108] Hong Y, Wang J, Cheng D. Adaptive Finite-time Control of Nonlinear Systems with Para-metric Uncertainty. IEEE Transactions on Automatic Control, 2006, 51(5):858–862.
    [109] Tang Y. Terminal Sliding Mode Control for Rigid Robots. Automatica, 1998, 34(1):51–56.
    [110] Ren W. On consensus algorithm for double-intergrator dynamics. IEEE Transcations onAutomatic Control, 2008, 53(6):1503–1509.
    [111] Hu J, Lin Y. Consensus control for multi-agent systems with double-integrator dynamicsand time delays. IET Control Theory and Applications, 2010, 4(1):109–118.
    [112] Moreau L. Leaderless Coordination via Bidirectional and Unidirectional Time-dependentCommunication. Proceedings of the IEEE Conference on Decision and Control, Maui,Hawaii, 2003. 3070–3075.
    [113] Ji M, Ferrari-Trecate G, Egerstedt M, et al. Containment control in mobile networks. IEEETransactions on Automatic Control, 2008, 53(8):1972–1975.
    [114] Cao Y, Ren W. Distributed Containment Control with Multiple Stationary or DynamicLeaders in Fixed and Switching Directed Networks. Proceedings of Proceedings of the48th IEEE Conference on Decision and Control, Shanghai, P.R. China, 2009. 3014–3019.
    [115] Yu W, Chen G, Cao M. Some necessary and su?cient conditions for second-order consensusin multi-agent dynamical systems. Automatica, 2010. In press.
    [116] Lin P, Jia Y. Average consensus in networks of multi-agents with both switching topologyand coupling time-delay. Physica A, 2008, 387(1):303–313.
    [117] Peng K, Yang Y. Leader-following consensus problem with a varying-velocity leader andtime-varying delays. Physica A, 2009, 388(2-3):193–208.
    [118] Seuret A, Dimarogonas D V, Johansson K H. Consensus under communication delay. Pro-ceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008.4922–4927.
    [119] Munz U, Papachristodoulou A, Allgower F. Delay-Dependent Rendezvous and Flocking ofLarge Scale Multi-agent systems with communication delays. Proceedings of the 47th IEEEConference on Decision and Control, Cancun, Mexico, 2008. 2038–2043.
    [120] Sun Y G, Wang L, Xie G. Average consensus in networks of dynamic agents with switchingtopologies and multiple time-varying delays. Systems and Control Letters, 2008, 57(2):175–183.
    [121] Sun Y G, Wang L. Consensus of Multi-agent Systems in Directed Networks with Nonuni-form Time-varying Delays. IEEE Transcations on Automatic Control, 2009, 54(7):1607–1613.
    [122] Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communicationdelays. IEEE Transcations on Automatic Control, 2008, 53(9):2122–2128.
    [123] Tian Y P, Liu C L. Robust consensus of multi-agent systems with diverse input delays andnonsymmetric interconnection perturbations. Automatica, 2009, 45(5):1347–1353.
    [124] Hu J, Hong Y. Leader-following coordination of multi-agent systems with coupling timedelays. Physica A, 2007, 374(2):853–863.
    [125] Ghosh B, Muthukrishnan S, Schultz M H. First and Second-Order Di?usive Methodsfor Rapid, Coarse, Distributed Load Balancing. Theory of Computing Systems, 1998,31(4):331–354.
    [126] Cao M, Spielman D A, Yeh E M. Accelerated Gossip Algorithms for Distributed Computa-tion. Proceedings of the 44th Annual Allerton Conference, Allerton House, UIUC, Illinois,USA, 2006. 952–959.
    [127] Cao Y, Ren W. Multi-agent Consensus Using Both Current and Outdated States with Fixedand Undirected Interaction. Journal of Intelligent and Robotic Systems, 2010, 58(1):95–106.
    [128] Agaev R, Chebotarev P. On the Spectra of Nonsymmetric Laplacian Matrices. LinearAlgebra and its Applications, 2005, 399:157–178.
    [129] Moreau L. Stability of Continuous-time Distributed Consensus Algorithms. 2004.arXiv:math.OC/0409010v1.
    [130] Niculescu S I. On delay-dependent stability under model transformations of some neutrallinear systems. International Journal of Control, 2001, 74(6):609–617.
    [131] Cao Y, Ren W. Distributed Consensus for Fractional-order Systems: Dynamic Interactionand Absolute/Relative Damping. Proceedings of the 48th IEEE Conference on Decision andControl, Shanghai, P.R. China, 2009. 7125–7130.
    [132] Sun Y G, Wang L, Xie G. Average consensus in directed networks of dynamic agents withtime-varying communication delays. Proceedings of the 45th IEEE Conference on Decisionand Control, San Diego, USA, 2006. 3393–3398.
    [133] Ren W, Beard R. Distributed consensus in multi-vehicle cooperative control. Springer,2008.
    [134] Cao Y, Ren W, Li Y. Distributed discrete-time coordinated tracking with a time-varyingreference state and limited communication. Automatica, 2009, 45(5):1299–1305.
    [135] Khalil H K. Nonlinear Systems. 3rd ed., Upper Saddle River, NJ: Prentice Hall, 2002.
    [136] Miroslav F. Special matrices and their applications in numerical mathematics. Dover publi-cations, 2009.
    [137] Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulatorswith terminal sliding mode. Automatica, 2005, 41(11):1957–1964.
    [138] Hardy G H, Littlewood J E, Plya G. Inequalities. Cambridge: Cambridge University Press,1952.
    [139] Man Z, Paplinski A, Wu H. A robust MIMO terminal sliding mode control scheme for rigidrobotic manipulators. IEEE Transactions on Automatic Control, 1994, 39(12):2464–2469.
    [140] Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators.Automatica, 2002, 38(12):2159–2167.
    [141] Khoo S, Xie L, Man Z. Robust Finite-Time Consensus Tracking Algorithm for MultirobotSystems. IEEE/ASME Transactions on Mechatronics, 2009, 14(2):219–228.
    [142] Cao Y, Stuart D, Ren W, et al. Distributed Containment Control for Multiple AutonomousVehicles with Double-integrator Dynamics: Algorithms and Experiments. Proceedings ofthe American Control Conference, 2010.
    [143] Lawton J R T, Beard R W, Young B J. A Decentralized Approach to Formation Maneuvers.IEEE Transactions on Robotics and Automation, 2003, 19(6):933–941.
    [144] Ren W. Distributed Attitude Alignment in Spacecraft Formation Flying. International Jour-nal of Adaptive Control and Signal Processing, 2007, 21(2–3):95–113.
    [145] VanDyake M, Hall C. Decentralized coordinated attitude control of a formation of space-craft. Journal of Guidance, Control and Dynamics, 2006, 29(5):1101–1109.
    [146] Bai H, Arcak M, Wen J T Y. Rigid body attitude coordination without inertial frame infor-mation. Automatica, 2008, 44(12):3170–3175.
    [147] Abdelkader A, Abdelhamid T. Decentralized Attitude Alignment Control of Spacecraftwithin a Formation without Angular Velocity Measurements. Proceedings of the 17th IFACWorld Congress, Seoul, Korea, 2008. 1766–1771.
    [148] Jin E, Jiang X, Sun Z. Robust decentralized attitude coordination control of spacecraftformation. Systems and Control Letters, 2008, 57(7):567–577.
    [149] Nair S, Leonard N E. Stable Synchronization of rigid body networks. American Institute ofMathematical Sciences, 2007, 2(4):595–624.
    [150] Thomas R Krogstad J T G. 6-DOF mutual synchronization of formation ?ying spacecraft.Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, 2006.5706–5711.
    [151] Sarlettea A, Sepulchrea R, Leonard N E. Autonomous Rigid Body Attitude Synchronization.Automatica, 2009, 45(2):572–577.
    [152] Chung S J, Slotine J J E. Cooperative Robot Control and Concurrent Synchronization ofLagrangian Systems. IEEE Transations on Robotics, 2009, 25(3).
    [153] Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower cooperative attitudecontrol of multiple rigid bodies. Systems and Control Letters, 2009, 58(6):429–435.
    [154] Chung S J, Ahsun U, Slotine J J E. Application of Synchronization to Formation Fly-ing Spacecraft: Lagrangian Approach. Journal of Guidance, Control and Dynamics, 2009,32(2):512–526.
    [155] Cao Y, Ren W, Meng Z. Decentralized Sliding Mode Estimators and Their Applicationsin Finite-time Decentralized Formation Tracking. Proceedings of the American ControlConference, 2010.
    [156] Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems. IEEE Transactionson Automatic Control, 1994, 39(9):1910–1914.
    [157] Cortes J. Discontinuous dynamical systems - a tutorial on solutions, nonsmooth analysis,and stability. IEEE Control Systems Magazine, 2008, 28(3):36–73.
    [158] Wen J T Y, Kreutz-Delgado K. The Attitude Control Problem. IEEE Transactions on Auto-matic Control, 1991, 36(10):1148–1162.
    [159] Lizarralde F, Wen J. Attitude Control Without Angular Velocity Measurement: A PassivityApproach. IEEE Transactions on Automatic Control, 1996, 41(3):468–472.
    [160] Ren W. Distributed Cooperative Attitude Synchronization and Tracking for Multiple RigidBodies. IEEE Transactions on Control Systems Technology. To appear.
    [161]张晓敏等.用于重力场测量的微小卫星编队飞行系统方案可行性论证报告.北京:航天东方红卫星有限公司. 2005.
    [162] Ren W. Consensus Tracking under Directed Interaction Topologies: Algorithms and Exper-iments. 2010, 18(1):230–237.
    [163] Kristiansen R, Loria A, Chaillet A, et al. Spacecraft relative rotation tracking without angu-lar velocity measurements. Automatica, 2009, 45(3):750–756.
    [164] Erdong J, Zhaowei S. Robust attitude synchronisation controllers design for spacecraftformation. IET Control Theory & Applications, 2009, 3(3):325–339.
    [165] Chopra N, Spong M W. Advances in Robot Control: Passivity-Based Control of Multi-Agent Systems. Springer Berlin Heidelberg, 2007.
    [166] Hokayem P F, Stipanovic D M, Spong M W. Semiautonomous control of multiple net-worked Lagrangian systems. International Journal of Robust and nonlinear control, 2008,19(18):2040–2055.
    [167] Ren W. Distributed Attitude Alignment in Spacecraft Formation Flying. International Jour-nal of Adaptive Control and Signal Processing, 2007, 21(2–3):95–113.
    [168] Chopra N, Spong M W. On Synchronization of Kuramoto Oscillators. Proceedings of theIEEE Conference on Decision and Control, Seville, Spain, 2005. 3916–3922.
    [169] Jiang H, Teng Z. Boundedness and Stability for Nonautonomous Bidirectional Associa-tive Neural Networks With Delay. IEEE Transactions on Circuits and Systems-II: ExpressBriefs, 2004, 51(4):174–180.
    [170] Jiang F, Wang L. Finite-time information consensus for multi-agent systems with fixed andswitching topologies. Physica D, 2009, 238:1550–1560.
    [171] Li S, Ding S, Li Q. Global set stabilisation of the spacecraft attitude using finite-time controltechnique. International Journal of Control, 2009, 82(5):822–836.
    [172] Meng Z, Ren W, You Z. Distributed Finite-time Containment Control for Multiple La-grangian Systems. Proceedings of the American Control Conference, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700